
Technical Report: Privacy-preserving
Outsourcing of Association Rule Mining

Fosca Giannotti∗ Laks V.S. Lakshmanan† Anna Monreale‡

Dino Pedreschi§ Hui (Wendy) Wang¶

Abstract

Spurred by developments such as cloud computing, there has been consider-
able recent interest in the paradigm of datamining-as-service. A company (data
owner) lacking in expertise or computational resources can outsourceits mining
needs to a third party service provider (server). However, both the items in the
outsourced database and the patterns of items that can be mined from the database,
are considered as the private property of the corporation (data owner). To pro-
tect the corporate privacy, the data owner transforms its data and shipsit to the
server. The server sends extracted patterns to the owner in responseto the latter’s
mining queries. The owner recovers the true patterns from the extractedpatterns
received. In this paper, we study the problem of outsourcing the association rule
mining task within acorporate privacy-preserving framework. We propose an
attack model based on background knowledge and devise two schemes, namely
FrugalandRobFrugal, for privacy-preserving outsourced mining, based on the
concept of k-anonymity. The protection against the privacy violation attack comes
from ensuring that each transformed item (itemset) is indistinguishable, w.r.t. the
attacker’s background knowledge, from at least k-1 other transformed items (item-
sets). We show that the owner can recover the true patterns as well as their support
by maintaining a compact synopsis. Finally, we empirically demonstrate using
comprehensive experiments on a very large and real transaction database, that our
techniques are effective, scalable, and protect privacy.

1 Introduction
In this technical report are available all the proofs and details omitted in the work
“Privacy-preserving Mining of Association Rules from Outsourced Transaction
Databases”, that we submitted to ICDE2010.

∗ISTI-CNR, Pisa, Italy
†Univ. of British Columbia, Vancouver, Canada
‡University of Pisa, Italy
§University of Pisa, Italy
¶Stevens Inst. of Tech., New Jersey, USA

1

2 Encryption/Decryption Schemes Section
Definition 1 The Frugalencryption scheme consists in grouping together cipher
items inD∗ into groups ofk adjacent items in the item support table in decreasing
order of support, starting from the most frequent iteme1.

Lemma 1 For every non-monotone groupingG, there is a monotone groupingG′,
obtained by swapping items between groups, such that||G′|| ≤ ||G||.

Proof: Suppose to the contrary that the groupingG is non-monotone and that
by swapping items between groups we obtain eitherG′ non-monotone or||G′|| >
||G||. This means that inG = (G1, . . . , Gp) there exists a groupGi s.t. for some
e ∈ Gi we havesupp(e) ≤ mi+1, wheremi+1 is the maximum support (inD) of
any item in groupGi+1. Denote bye′ the item with supportmi+1 and suppose of
exchanging the iteme ∈ Gi with e′ ∈ Gi+1. It is immediate to verify that in this
caseG′ is monotone. So, if we show that||G′|| ≤ ||G|| we obtain a contradiction.
Consider the case ofG′ = (G1, . . . , Gi, Gi+1, . . . , Gp) whereG′

i = (e1, . . . , e
′)

andG′
i+1 = (e, . . . , es). This means that we havesupp(e) = m′

i+1 andmi+1 >
m′

i+1, therefore
∑

∀ej∈G′i+1 (m′
i+1 − supp(ej)) <

∑

∀ej∈Gi+1 (mi+1 − supp(ej)).

As a consequence||G′|| ≤ ||G||. Hence, groupingG′ is monotone and||G′|| ≤
||G||, which yields a contradiction.

Lemma 2 Let Gfrug be the grouping obtained using the above procedure. Then
Gfrug is optimal, i.e., it has the least size among all groupings of cipher items into
groups of size≥ k each.

Proof: We show that any grouping method different fromFrugalis not optimal.
Let F be the grouping obtained usingFrugal. Notice that F is a partition of the
itemsI. Suppose to the contrary that a groupingX, different fromFrugal, is
optimal. A grouping method different fromFrugalgenerates a groupingX that
can be either a non-monotone grouping or a monotone grouping. IfX is non-
monotone then by the Lemma 1 we show thatX is not optimal. IfX is monotone
and not obtained withFrugalprocedure then we can have two case:

• Let mi be the maximum support of items inXi and lete1, e2 ∈ Xp be
the item with supportmp and the item with the second largest value, re-
spectively. Movinge1 from Xp to Xp−1 will change the size of the grop-
ing to ||X|| + (mp−1 − mp) − (|Xp| − 1)(mp − suppD(e2)), where
(mp−1 − mp) − (|Xp| − 1)(mp − suppD(e2)) < 0.

• Let mi be the maximum support of items inXi and lete1 ∈ Xp−1 be the
item with minimum support. Movinge1 from Xp−1 to Xp will change the
size of the groping to||X|| − (mp−1 − suppD(e1)) + |Xp|(suppD(e1) −
mp), where(mp−1 − suppD(e1)) + |Xp|(suppD(e1) − mp) > 0.

In both cases it is possible to obtain a grouping with smaller size, hence, group-
ing X is not optimal, which yields a contradiction.

Theorem 1 Let D be a TDB andD∗ its encryption obtained using the group-
ing Gfrug. ThenD∗ is the smallestk-private TDB forD, i.e., its size||D∗|| is
minimal among allk-private encryptions ofD.

Proof: By Lemma 2 we have thatGfrug is optimal, hence no groupingX 6=
Gfrug has the least size among all groupings of cipher items into groups of size
≥ k each. Since||D∗|| = ||D|| + ||Gfrug|| we conclude that||D∗|| is minimal.

2

2.1 Details on the Construction of fake transactions
It should be noted that given the frequency of cipher items in the noise column,
any exact covering of these occurrences by means of a suitable set of transactions
yields a correct realization of our encryption scheme. However, we aimat devising
a method for arranging fake transactions that allows for a compact synopsis with a
strong protection level.

Given a noise table specifying the noiseN(e) needed for each cipher iteme,
we generate the fake transactions as follows. First, we drop the rows with zero
noise, corresponding to the most frequent items of each group or to other items
with support equal to the maximum support of a group. Second, we sort the re-
maining rows in descending order of noise. Lete′1, . . . , e

′
m be the obtained order-

ing of (remaining) cipher items, with associated noiseN(e′1), . . . , N(e′m). The
following fake transactions are generated:
• N(e′1) − N(e′2) instances of the transaction{e′1}

• N(e′2) − N(e′3) instances of the transaction{e′1, e
′
2}

• . . .

• N(e′m−1) − N(e′m) instances of the transaction{e′1, . . . , e
′
m−1}

• N(e′m) instances of the transaction{e′1, . . . , e
′
m}

Continuing the example, in theFrugalcase we consider cipher items of non-
zero noise in Table 1 (a).

(a) FrugalScheme

Item Support Noise
e2 5 0
e4 3 2

e5 2 0
e1 1 1
e3 1 1

Table 1: Noise table fork = 2

The following two fake transactions are generated: 1 instance of the transaction
{e4} and 1 instance of the transaction{e4, e3, e1}. In the RobFrugalcase, we
consider the cipher items with non-zero noise in Table 1 (b). The following 3
fake transactions are generated: 2 instances of the transaction{e5, e3, e1} and 1
instance of the transaction{e5}.

It can be shown that this method yields a minimum number of differenttypes
of fake transactions that equals the number of cipher items with distinct noise (this
number is 2 in both cases in the example). This observation yields a compact
synopsis for the client, of the introduced fake transactions. As a final remark, we
observe that fake transactions introduced by this method may be longer than any
transactions in the original TDBD. Recall that the attack model only includes
plain items and their exact support inD as the background knowledge of the at-
tacker and not the transaction lengths inD. So, adding longer fake transactions
technically does not constitute privacy breach. However, for added protection, we
can consider shortening the lengths of the added fake transactions so that they are
in line with the transaction lengths inD. In our running examples above, we obtain

3

in theFrugalcase the fake transactions{e4, e3}, {e1}, and{e4}; in theRobFrugal
we obtain{e5, e3}, 2 of {e1} and 1 instance of{e5}. These transactions are of
length either 1 or 2. We briefly illustrate the idea here. Letl be the length suggested
by Frugal/RobFrugalfor a fake transaction and letl > lmax, wherelmax is the
maximum length of a transaction inD. Then find the largest numberq : q ≤ lmax

and one of the following holds: (i)q divides l evenly, or (ii) l mod q ≈ q, or
(iii) l mod q < ⌊l/q⌋. Here, we can takel mod q ≈ q to bel mod q = q − 1.
If conditions (i) or (ii) hold, we simply split the fake transaction of lengthl into
smaller ones of sizeq or q − 1. If condition (iii) holds, then we create⌊l/q⌋ trans-
actions of sizeq. From the remaining set ofl mod q items, we add one each to
l mod q distinct transactions. So, we will have transactions of sizeq or q + 1.
For example, supposel = 50 andlmax = 7, the calculatedq value equals to 7,
i.e., the fake transaction of length 50 is split into 6 shorter ones of length 6,and
2 of length 7. In our experiments we studied the distribution of transaction length
in both the original and encrypted TDBs, and observed that such distributions are
very close. Figure 1 shows the distribution of transaction lengths before and after
the encryption of the TDBCoopProd.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0 20 40 60 80 100 120 140 160 180 200

tr

an
sa

ct
io

ns

lengths

Length Distribution - CoopProd - RobFrugal

original TDB
k=10
k=20
k=30
k=40
k=50
k=60

Figure 1: Distribution of transaction lengths for different k values

2.2 ImplementingRobFrugalEfficiently
The encrypt/decrypt module is a “black box” to the users. We explain some im-
plementation details of this black box. Note that all these details are hidden in the
encrypt/decrypt module. Users need not concern themselves with them.

The key to achieveRobFrugalis that for any groupG, efficiently check whether
supp(G) > 0 . For this purpose, the ED module makes use of a simpler version
of FP-tree [1] in order to store the TDB in a compressed way; however,the ED
module does not store transaction supports nor perform any mining. The data
structure is composed of the well-known prefix tree structure and an item header
table. In the prefix tree every node corresponds to an item in the databaseand
contains three fields: the item name, the parent-link that is the link to the parent

4

node and the node-link that links to the next node in the tree carrying the same
item-name or null is there is none. Every path represents the items that arein
the same transaction. The paths share the same prefix sub-trees, if there is any.
Each entry in the item header table consists of two fields: the item name and the
head of the node-link. In Figure 2 we show and example of TDB stored bythe
prefix tree. Note that the prefix tree is constructed once by the ED module and is
solely used for efficiently whether a given itemset has support> 0. The client can
of course repeatedly issue mining queries to the server with various constraints
on support threshold and item properties. The tree is constructed by two steps.
First, scan the database once, collect the items, and sort them by their frequency in
descending order. Then scan the database for the second time. Duringthis scan, for
each transaction, re-order the items by their sorted orders, and insertthe re-ordered
transaction into the prefix tree. In particular, for the itemi that immediately follows
item j in the transaction, letni andnj be their corresponding nodes in the prefix
tree. Ifnj has no child of the same item name asni, thenni is inserted as a new
node undernj . The procedure is repeated until all transactions are inserted into
the tree. Then checking whethersupp(G) > 0 is equivalent to checking whether
G corresponds to a path in the tree and this can be done efficiently using this
structure. In particular, given an itemsetG first of all, we have to sort the items
by their frequency in descending order, then we access to the header table using
as key the last itemej . Therefore, we access directly to the first occurrence of
that item into the prefix tree, the nodeni. So, using the parent-link we visit the
path reachingni, starting from it and going up to root. If this path contains all the
items ofG thensupp(G) > 0. Otherwise, by using the link-node field ofni it is
possible to analyze others paths containing the last itemej . If all the paths do not
containG thensupp(G) = 0.

Figure 2: Prefix tree

5

3 Details on Complexity Analysis
In this section, we discuss time and space complexity of theFrugalandRobFrugal
encryption schemes and associated decryption scheme. Recall thatn is the number
of (distinct) items inD andlmax is the maximum transaction length inD. Our next
result justifies the nameFrugalfor the encryption scheme.

Theorem 2 TheFrugalencryption scheme encodes the fake transactions using a
synopsis of sizeO(n), which can be built inO(n log n) time, given the item
support table of databaseD.

Proof: We show that each step of theFrugalencryption method is linear inn in
space and costsO(n log n) in time. We note that theGrouping step of procedure
Frugalgenerates the groups ofk adjacent items of the item support table, while
generating the noise table. These two operations require to visit at most once all
distinct items; therefore, this step requiresO(n) time. The second step, first of all,
sorts the list of items with non null noise values in descending order of noiseand
then, creates hash tables in order to store the fake transactions efficiently. The cost
of this operation isO(n log n) for the sorting andO(n− n

k
) for the creation of the

hash tables. Indeed, we have to visit the list of items with non null noise values:
by construction, at least then

k
most frequent items of each group do not occur

in this list. So, we conclude that the time complexity of theFrugalencryption is
O(n log n). In order to encode the fake transactions,Frugaluses the list of items
with their support and noise value, requiringO(n) space. Moreover, this method
generates perfect hash tables containing all the items with non null noise values.
Again, the collection of these items contains at mostn − n

k
items because, for

each group ofk items, the item with highest support value has null noise value.
Therefore, we conclude that the fake transactions are encoded usingO(n) space.

Theorem 3 The RobFrugalencryption scheme encodes the fake transactions in
O(n) storage andO(n2) time, given the item support table of databaseD and the
prefix-tree representation ofD.

Proof: The noise table and the hash tables, analogously to Thm. 2, require
O(n) space. Notice thatRobFrugalin order to guarantee thek-private grouping
has to assure that eachk-group does not occur inD. In order to check this fact
efficiently the ED module makes use of data structure described in Sec. 2.2 in order
to representD. The generation of fake transactions requires: (1) to generate the
k-private grouping and (2) the creation of the hash tables. The phase (1) generates
a grouping such that for eachk-groupG, suppD(G) = 0. For this check this step
uses the prefix tree as described in Sec. 2.2. The worst case requires to check the
support ofO(n2) k-groups, wheren is the number of items. Given ak-groupG,
in order to check whethersuppD(G) = 0, at worst case all the paths, containing
the last itemej of G, have to be visited. This operation can be done as explained
in Sec. 2.2 efficiently. In general, in the prefix tree the number of occurrences
of a node with item-nameej (denoted byOcc(ej)) depends on both the support
of the item and the position of the item in the sorted list of items. Given an item
ej in positionx in the sorted list thenej should occur in the tree at most2x−1

times but it has to be considered also the support of this item inD. So, the number
of occurrence ofej is Occ(ej) = min{suppD(ej), 2

x−1}. Considering that the
item support distribution is described by a power law the max value ofOcc(ej) is
the maximum of the functionf = α

xβ − 2x−1. Note that, a path in the prefix tree

6

represents a transaction therefore, for each path the number of nodes to be visited is
lmax. Finally, the number of nodes to be visited to check whethersuppD(G) = 0
is O(maxf ∗ lmax). Thus, the step (1) requiresO(maxf ∗ lmax ∗ n2) in time.
Clearly,O(maxf ∗ lmax) in this kind of problem can be considered a constant, so
the time required isO(n2).

The step (2) generates the hash tables and as showed in the Theorem 2 this
requiresO(n log n) time. Clearly, the cost of the step (1) dominates the cost
of the step (2). So we conclude that the generation of fake transactions,and so
RobFrugal requiresO(n2) time.

Theorem 4 Given a cipher patternE with its fake support from the server, the
decryption procedure computes its actual support inO(|E|) time.

Proof: In order to compute the actual support value of a given itemsetE re-
turned from the server, it is necessary to use the perfect hash tables that represent
the fake transactions. First of all, the client by using any iteme ∈ E and the
second-level hash functionH selects the hash tableHT containinge. Then, it
selects the itememax ∈ E such that for eache ∈ E h(e) < h(emax), whereh
is the perfect hash function for the hash tableHT . In this way, the client can take
the entry values of the hash table to compute the real support. To this purpose, a
number of lookups equal to the number of items in the pattern is needed. The per-
fect hashing gives hash tables where the time to make a lookup is constantin the
worst case. Therefore, the time complexity for the computation of the real support
of a single pattern isO(|E|).

3.1 Incremental Maintenance
We now consider incremental maintenance of the encrypted TDB. The EDmodule
is responsible for this. We focus on batches of appends, which are very natural in
data warehouses. LetD be an initial TDB and∆D be a set of transactions that
are appended. LetD∗ be the original encrypted TDB. The ED module storesD
as a prefix treeT . Let syn(D, D∗) denote the compact synopsis stored by the ED
module for encoding the generation of fake transactions inD∗. The server and
client have the item support tablesIST of D andIST ∗ of D∗.

Next, the new TDB∆D arrives, together with its item support tableIST∆.
The following steps can be applied to obtain an incremental version of the ED
module according to either of theFrugalor RobFrugalschemes:

1. The new transactions in∆D are inserted into the prefix-treeT , obtaining
a cumulative representation ofD ∪ ∆D. Also, a cumulative item support
tableIST is constructed by adding the support of each item inIST ∗ and
IST∆. In particular, for each itemei ∈ IST ∗ the support ofei is added to
the support ofei ∈ IST∆. Clearly,IST∆ should both:

a not contain some item belonging toIST ∗;

b contain some new items.

In the case (a) the support of these items in the cumulative item support
tableIST is equal to the support of them inIST ∗; while in the case (b)
the support of these items inIST is equal to their support inIST∆. Note
that, when the cumulative item support tableIST is constructed the method
keeps the order of the items in theIST ∗. So, if an item belonging toIST ∗ is

7

in the positioni, then in the cumulative item support tableIST its position is
i. When an item only belongs to theIST∆, then this item is appended to the
list. Clearly, the balance of support in each group is now generally destroyed
by the new item supports, and it is needed to add new fake transactions to
restore the balance.

2. In theFrugalscheme, the pre-existing grouping is maintained, and the new
synopsis for the new fake transactionsF ∗ is constructed as usual. On the
other hand, in theRobFrugalscheme, the old grouping is checked for ro-
bustness w.r.t. the overall prefix-treeT and the pre-existing synopsis, which
is equivalent to checking against toD∗ ∪ F ∗. If the check for robustness
fails, than a new grouping is tried out with swapping, until a robust grouping
is found. Then, the new synopsis for the new fake transactions is constructed
as usual; notice that the new grouping is robust w.r.t. the new fake transac-
tions by construction, as the most frequent item of each group does notoccur
in any fake transaction.

3. The ED module uses both old and new synopses to reconstruct the exact
support of a pattern received from the server.

On the complexity side, we observe that the incremental encryption has a cost of
O(||∆D|| + n2) time, namely the cost of updating the prefix tree with∆D plus
the cost ofRobFrugal, whereO(n2) is a very pessimistic upper bound. Besides
the first term dominates the overall complexity for reasonably sized batches of
appends. As a consequence, the incremental encryption has again a linear cost in
the size of∆D. Our method extends to the case when simultaneously, a new batch
is appended and old batch is dropped; the method also works in the case when new
items arrive or old items are dropped.

3.2 A toy example
We now present a toy example which shows how our incremental encryption pro-
cedure works whenRobFrugalis used. LetD∗ be the original encrypted TDB,
obtained withk = 3. Consider its item support tableIST ∗ and its synopsis repre-
senting the fake transactions, showed in Table 2 and Table 3, respectively.

Item Support
e1 10
e2 10
e3 10
e4 5
e5 5
e6 5

Table 2: Item support tableIST ∗ for toy example

Suppose another set of transactions∆D arrives with the item support table
IST∆ (Table 4). Note that,IST∆ does not contain the iteme6 while it contains
the new iteme7.

The incremental procedure computes the cumulative item support tableISTcum

(Table 5) as explained in Sec. 3.1.

8

Table1
0 〈e3, 0, 2〉
1 〈e6, 1, 1〉
2 〈e2, 0, 1〉
3 〈e5, 1, 0〉

Table 3: Synopsis forD∗

Item Support
e1 2
e2 21
e7 2
e3 3
e4 10
e5 12

Table 4: Item support tableIST∆ for toy example

Two cases are possible: 1) the grouping defined during the previous step is also
robust for∆D; 2) this grouping for∆D is not robust.

In the case 1) we generate the fake transactions by usingISTcum. In the case
2) we have to generate a robust grouping forD∗ and∆D starting fromISTcum.
Thus, we have to do queries to∆D, D and fake transactions represented by the
synopsis. We can do this using the prefix tree, representingD and∆D, and the
synopsis.

Suppose that the3-groups{e1 e2, e3} and{e1, e2, e4} occur in∆D. Then
the robust grouping, the noise table and the new synopsis are computed inorder
to represented the new set of fake transactions (Tables 6, 7). At this point the ED
module has to use both old and new synopses (Tables 3, 7) to reconstruct the exact
support of a pattern received from the server.

4 Proofs: Privacy Analysis Section
Theorem 5 For every cipher iteme ∈ E , let Cand(e) be the corresponding can-
didate set computed by the above pruning procedure. Then every candidate set
Cand(e) is minimal. Furthermore,Cand(e) = {i′ | suppD∗(e′) = suppD∗(e)},
wherei′ is the true plain item corresponding toe′.

The proof of Theorem 5 is straighforward from the pruning procedure. For
better understanding, we illustrate the theorem and the pruning procedurewith an
example.

Example 1 Consider a transaction databaseD containing itemsi1, ..., i6. Let
ej be the substitution cipher corresponding toij . Let the support distribution
of items in D correspond to Figure 3, column “suppD(i)”. Suppose that the
encrypted databaseD∗ has a support distribution of cipher items matching the
column “suppD∗(e)”. The last column, “Noise” corresponds to the additional

9

Item Support
e1 12
e2 31
e3 13
e4 15
e5 17
e6 5
e7 2

Table 5: Item support tableISTcum for toy example

Item Support Noise
e2 31 0
e5 17 14
e1 12 19

e4 15 0
e3 13 7
e6 5 10
e7 2 13

Table 6: Noise table fork = 3

support of every cipher item that is caused by the addition of fake transactions.
Then it is easy to verify thatICand(e1) = ICand(e2) = {i1, i2, i3, i4, i5, i6},
ICand(e3) = ICand(e4) = {i3, i4, i5, i6}, andICand(e5) = ICand(e6) =
{i5, i6}. Notice that cipher items with the same support inD∗ have the same
set of (initial) candidate sets. Now, after sorting cipher items on support, first,
for e5 and e6, the attacker can infer thatCand(e5) = Cand(e6) = {i5, i6}.
Second, the attacker removesi5, i6 ande5, e6 from further consideration. This re-
movesi5, i6 from ICand(e3) andICand(e4). Then the attacker concludes that
Cand(e3) = Cand(e4) = {i3, i4}. Similarly, he concludes thatCand(e1) =
Cand(e2) = {i1, i2}.

Assuming every candidate item is equally likely to be the true plain item cor-
responding to a given cipher item, we can show:

Item suppD(ij) suppD∗(ej) Noise
i1 100 100 0
i2 67 100 33

i3 40 40 0
i4 33 40 7

i5 20 20 0
i6 8 20 12

Figure 3: Support of Plain and Cipher Items

10

Table2
0 〈e1, 5, 14〉
1 〈e5, 1, 13〉
2 〈e7, 3, 10〉
3 〈e6, 3, 7〉
4 〈e3, 7, 0〉

Table 7: Synopsis for∆D∗

Theorem 6 Let D be a transaction database andD∗ the encrypted database pro-
duced by theFrugalscheme or theRobFrugalscheme. Then for every cipher item
e, the probability of its crack is bounded by:prob(e) ≤ 1/k, wherek is a given
parameter for itemk-anonymity.

The correctness of Thm. 6 follows from the construction details of fake items
for both Frugal and RobFrugal; by guaranteeing that every item is included in
a candidate set of size at leastk, the probability of cracking its cipher value is
at most1/k. The theorem shows that the probability that an individual item is
broken can always be controlled to be below a threshold chosen by the owner. By
controlling the parameterk, the owner can control the crack probability of cipher
items. The owner can choose a value fork by striking a balance between increased
privacy and increased server side overhead for mining the encrypted database.

4.1 Set-based Attack
Theorem 7 Given a cipher itemsetE = {e1, e2, . . . , em}, let C1, ..., Ct be the
collection of equivalence classes ofE. Then the size of the candidate set of item-
sets is|Cand(E)| = Πt

i=1

(

|Cand(Ci)|
|Ci|

)

.
Proof: It is straightforward thatE is a union of one or more equivalence

classes. Construction of candidate itemsets from each equivalence class is in-
dependent of each other. Thus|Cand(E)| equals to product of

(

|Cand(Ci)|
|Ci|

)

,
the size of candidate itemsets constructed from the equivalent classCi. Since
|Cand(Ci)| > |Ci| and|Cand(Ci)| ≥ k, the result follows.

Theorem 8 Given the original transaction databaseD, let D∗
r be its encrypted

version obtained using any robust grouping scheme. Then∀ itemsetE with non-
zero support inD∗

r , the crack probabilityprob(E) ≤ 1/k, wherek is the given
threshold fork-anonymity.

Proof: The key is to show that no cipher itemset can be complete under the
RobFrugalscheme. Assume there is. ThenE must be the union of one or more
complete equivalence classes. In other words, every equivalence class inE has
non-zero support inD∗

s . This contradicts the property ensured by the construction
of RobFrugal. Thus there must exist at least one equivalence class that is not
complete. Theorem 7 has shown that the bound of the candidate itemset for each
incomplete equivalence class is at leastk. Thus the size of candidate itemset forE
must be at leastk. The theorem follows.

11

References
[1] J. Han, J. Pei, Y. Yin, R. Mao. Mining Frequent Patterns without Candidate

Generation: A Frequent-Pattern Tree Approach. Data Mining and Knowl-
edge Discovery, 8, 5387, 2004.

12

