
Active Learning Strategies
for

Multi-Label Text Classification

Abstract. Active learning refers to the task of devising a ranking func-
tion that, given a classifier trained from relatively few training examples,
ranks a set of additional unlabeled examples in terms of how much fur-
ther information they would carry, once manually labeled, for retrain-
ing a (hopefully) better classifier. Research on active learning in text
classification has so far concentrated on single-label classification; active
learning for multi-label classification, instead, has either been tackled in
a simulated (and, we contend, non-realistic) way, or neglected tout court.
In this paper we aim to fill this gap by examining a number of realistic
strategies for tackling active learning for multi-label classification. Each
such strategy consists of a rule for combining the outputs returned by the
individual binary classifiers as a result of classifying a given unlabeled
document. We present the results of extensive experiments in which we
test these strategies on two standard text classification datasets.

1 Introduction

In many applicative contexts involving supervised learning, labeled data may
be scarce or expensive to obtain, while unlabeled data, even sampled from the
same distribution, may abound. In such situations it may be useful to employ
an algorithm that ranks the unlabeled examples and asks a human annotator to
label a few of them, starting from the top-ranked ones, so as to provide additional
training data. The task of this algorithm is thus to rank the unlabeled examples
in terms of how useful they would be, once labeled, for the supervised learning
task. The discipline that studies these algorithms is called active learning [1].

This paper focuses on the application of active learning to text classification
(aka text categorization – TC), and to multi-label text classification (MLTC) in
particular. Given a set of textual documents D and a predefined set of classes
(aka labels, or categories) C = {c1, . . . , cm}, MLTC is usually defined as the
task of estimating an unknown target function Φ : D × C → {−1,+1}, that
describes how documents ought to be classified, by means of a function Φ̂ :
D×C → {−1,+1} called the classifier1; here, +1 and −1 represent membership
and non-membership of the document in the class. Note that each document may
thus belong to zero, one, or several classes at the same time. MLTC is usually
1 Consistently with most mathematical literature we use the caret symbol (ˆ) to in-

dicate estimation.
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accomplished by generating m independent binary classifiers Φ̂j , one for each
cj ∈ C, each entrusted with the task of deciding whether a document belongs or
not to class cj .

In this paper we will restrict our attention to classifiers that, aside from
taking a binary decision on a given document, also return as output a confidence
estimate, i.e., a numerical value representing the strength of their belief in the
fact that the returned decision is correct. We formalize this by taking a classifier
to be a function Φ̂ : D × C → [−1,+1] in which the sign of the returned
value sgn(Φ̂(di, cj)) indicates the decision of the classifier, and the absolute value
|Φ̂(di, cj))| represents its confidence in the decision (the higher the value, the
higher the confidence).

MLTC is different from single-label TC (SLTC) since this latter tackles the
case in which one and only one class must be attributed to each document. This
is formalized by viewing a classifier as a function Φ̂ : D → C× [0, 1] which, given
a document, returns the class to which the classifier believes the document to
belong, plus an estimate of the classifier’s confidence in this belief.

An analysis of previous work on active learning in TC (see Section 4) shows
that this literature has so far exclusively concentrated on SLTC. In this context,
a typical strategy for active learning is, once a classifier has been generated with
the available training examples, to rank the unlabeled examples in increasing
order of the confidence that this classifier had in classifying them, since an ex-
ample which the system classified with low confidence has a high probability of
being, once labeled by a human annotator, very informative for retraining the
classifier (see e.g. [2]).

However, it is of key importance to note that this strategy is only made pos-
sible by the fact that in SLTC a single confidence value is returned for each unla-
beled example. Conversely, in MLTC this strategy cannot be applied straightfor-
wardly, since for each test document di MLTC generates m different confidence
values |Φ̂(di, cj))|, one for each cj ∈ C. This means that either

1. m independent document rankings are generated, each based on the confi-
dence scores returned by a given binary classifier Φ̂j , after which the human
annotator scans each class-specific ranking, one by one, annotating for each
such ranking the top-ranked documents. We call this option local labeling,
since the labeling activity is performed locally to each class. Or:

2. a unique ranking is generated, based on the combination of the m different
confidence scores associated to the same document. We call this option global
labeling, since the labeling activity is performed globally to the entire set of
classes.

Local labeling has been frequently adopted, in a simulated way, in laboratory
research on active learning. However, we argue that this is not feasible in prac-
tice. In fact, let us assume that the average human effort involved in reading
(or browsing through, or understanding for the sole purpose of classifying) a
document is r, and that the average human effort involved in deciding whether
a given class should be attributed or not to this document is c � r (we here
assume that an annotator already has an understanding of the meaning of the
classes); then the total effort involved in classifying a document is r+m∗ c. The



key observation here is that, in all likelihood, (r+m∗c) < 2(r+c)� m(r+c) for
any reasonable value of m; that is, deciding which among the m classes should
be attributed to a document we have read requires less effort than reading it
again, and much less effort than reading it m times!

Local labeling is infeasible exactly because it would compel a human anno-
tator to scan m different rankings, and hence to examine the same unlabeled
document up to m times in order to label it. Note that m may be large or
very large: it may be in the hundreds (as, e.g., in the Reuters-21578 [3] and
RCV1-v2 [4]), but it may also be in the hundreds of thousands (as in the Ya-
hoo! collection [5]). In operational environments one is thus left with only global
labeling as an option; it is different combination strategies for global labeling that
this paper proposes and studies experimentally.

We remark that this paper does not deal with active learning algorithms for
specific supervised learning devices (such as e.g., [6]), but presents active learning
strategies that are independent of the learning device, and that are suitable for
use with any such device. Incidentally, we note that this paper is the first work
that performs a truly large-scale experimentation of active learning in TC, given
that previous works [6, 2, 7–10] have limited their analysis to small datasets, con-
sisting of either few test documents, or few classes, or both. To the contrary, we
here investigate active learning in the context of two standard MLTC collections,
both including approximately 100 classes, one of them including almost 800,000
test documents.

1.1 Outline of the paper

The rest of the paper is organized as follows. Our strategies for performing active
learning in multi-label TC are described in Section 2. In Section 3 we move to
describing our experiments, also describing in detail the experimental protocol
we have followed and how it differs from those used in previous experimentation.
We review related work in Section 4 and conclude in Section 5 by pointing out
avenues for future work.

2 Active Learning Strategies for MLTC

In the experiments that follow we compare several strategies for ranking the
automatically labeled documents and presenting them to a human annotator for
global labeling. We explore three orthogonal dimensions according to which a
given strategy σ may be designed; we call them the “evidence” dimension, the
“class” dimension, and the “weight” dimension. Each individual strategy will
thus result from making a choice among several possible alternatives for each of
the three dimensions.

From now on, as a notational convention, a given ranking strategy σ is iden-
tified by a sequence of three capital boldface letters, each indicating a choice
made according to a given dimension. For instance, the sequence SAN will thus
denote a strategy obtained by choosing MaxScore (S) for the “evidence” di-
mension, Avg (A) for the “class” dimension, and NoWeighting (N) for the
“weight” dimension (see the sections from 2.1 to 2.3 for the precise meaning of



these choices); 2 choices are available for the “evidence” dimension, 3 for the
“class” dimension, and 2 for the “weight” dimension, giving rise to 2 ∗ 3 ∗ 2 = 12
different strategies. We will also use the “∗” symbol as a wildcard, so that, e.g.,
the sequence SA* will denote the set of the two strategies obtained by choosing
MaxScore (S) for the “evidence” dimension, Avg (A) for the “class” dimen-
sion, and either of the two available choices for the “weight” dimension.

We will also use the following terminology. Given a classifier Φ̂ : D × C →
[−1,+1], the value Φ̂(di, cj) will be called the cj-score of di; the value |Φ̂(di, cj)|
will be called the cj-confidence of di; and the value sgn(Φ̂(di, cj)) will be called
the cj-sign of di. We will further assume that we have a policy for combining
these class-dependent values into a single class-independent value (how this pol-
icy may vary is exactly the topic of Section 2.2); accordingly, the value Φ̂(di)
will be called the score of di; the value |Φ̂(di)| will be called the confidence of
di; and the value sgn(Φ̂(di)) will be called the sign of di.

We now move to discussing the three above-mentioned dimensions in detail.

2.1 The “evidence” dimension

The “evidence” dimension has to do with the type of evidence we decide to use
as a basis for ranking the unlabeled documents.

One potential choice is to use as evidence the confidence value |Φ̂(di)| with
which the unlabeled document di has been classified. As mentioned in Section
1, the underlying intuition is that the lower the confidence value, the more the
document should prove informative for retraining the classifier, which means that
the documents which minimize this confidence value should be the top-ranked
ones. As a consequence, we call this choice MinConfidence (in symbols: C);
essentially, this corresponds to the notion of uncertainty sampling discussed in [2]
(see Section 4). Of course, the catch here is that, in reality, not a single confidence
value |Φ̂(di)|, but m different cj-confidence values |Φ̂(di, cj)|, are generated for
each unlabeled document di. Exactly which among these cj-confidence values
for should be chosen as “the” confidence value according to which the ranking
should be produced, is the topic of the “class” dimension, to be discussed in
Section 2.2.

A second, alternative choice is instead to use as evidence the score Φ̂(di) with
which the unlabeled document di has been classified. Here another alternative
intuition is at play, namely, that the higher the score, the more likely it is that
di is a positive example (since scores close to 1 indicate high confidence that the
document is a positive example, and scores close to -1 indicate high confidence
that the document is a negative one), and that it is exactly positive examples,
rather than negative ones, that are typically most useful in a supervised learning
task. As a consequence, we call this choice MaxScore (S); essentially, this
corresponds to the notion of relevance sampling discussed in [2] (see Section 4).
Again, we are faced with the fact that m different cj-scores are generated for
each unlabeled document di; again, exactly which among these cj-scores should
be chosen as “the” score according to which the ranking should be produced,
will be discussed in Section 2.2.



2.2 The “class” dimension

The “class” dimension has to do with the fact that, whatever type of evidence
one chooses to use (as from the “evidence” dimension), for each automatically
labeled document di there are m different values for this evidence, one for each
class cj ∈ C; each alternative choice for this dimension represents a policy on
how to choose one piece of evidence from the m competing ones.

One potential choice is picking the value that maximizes our expected infor-
mativeness across all cj ∈ C. If our choice according to the “evidence” dimension
is MinConfidence, this will mean picking mincj∈C |Φ̂(di, cj)|, i.e., the minimum
across the cj-confidence values; if we have instead gone the MaxScore route,
then this will mean picking maxcj∈C Φ̂(di, cj), i.e., the maximum among the cj-
scores. The rationale of this policy is that we want the manual annotator to
concentrate on the documents that are deemed to be extremely valuable at least
for one class. We call this choice Min/Max (M).

A second, alternative choice is averaging all values across all cj ∈ C. This
policy is instead intended to force the manual annotator to label those documents
that are deemed to be at least fairly valuable for many classes. We call this choice
Avg (A).

A further, alternative choice could instead consist in employing a round robin
policy, according to which the top-ranked examples for each class are picked, so
that each class will be adequately championed in the resulting rank. This is
obtained by (a) picking, for each class cj ∈ C, the best automatically labeled
document according to the criterion chosen for the “evidence” dimension, (b)
ranking these m documents according to this criterion, (c) using the resulting
ranking to fill the positions from the 1st to the m-th of the global rank. After
this, these three steps are repeated a second time by ranking the second best
documents for each class and using the resulting ranking to fill the positions from
at most the m+ 1-th to at most the 2m-th of the global rank; ... after which the
three steps are repeated a k-th time by ranking the k-th best documents for each
class and using the resulting ranking to fill the positions from the ((k−1)m+1)-th
to the km-th of the global rank2. We call this choice RoundRobin (R).

2.3 The “weight” dimension

The “weight” dimension has to do with the fact that, in ranking the unlabeled
documents, it might or it might not be desirable to treat all classes equally.

One choice is to give more weight to those classes on which the current
classifier is still performing badly. Assuming we are using an evaluation function
f(Φ̂j) that ranges on [0, 1] (with higher values indicating better effectiveness),
this policy corresponds to placing on each class a weight (1−f(Φ̂j)) (where f(Φ̂j)
indicates the effectiveness that the current classifiers have obtained on class cj)
and giving priority to classes with higher weights, i.e., to classes on which the

2 Duplicates are obviously removed. That is, when the same document is selected for
different classes, in the same round on in different rounds, it is used only once in the
global ranking; in this case, strictly less than km documents will be ranked.



current classifiers have performed worst. Since our evaluation measure of choice
will be F1, we call this choice F1-Weighting (W).

An alternative choice is instead to treat all classes alike. We call this choice
NoWeighting (N).

3 Experiments

3.1 The learner

As the learning device for generating our classifiers we have used a boosting-
based learner, called MP-Boost [11], which we have obtained from the authors;
boosting is currently among the classes of supervised learning devices that tend
to obtain the best performance in a variety of learning tasks and, at the same
time, have strong justifications from computational learning theory. MP-Boost
is a variant of AdaBoost.MH [12] optimized for multi-label settings, which has
been shown [11] to obtain considerable effectiveness improvements with respect
to AdaBoost.MH. In all the experiments the algorithm has been run with a
number of iterations fixed to 1,000.

3.2 The datasets

In our experiments we have used the Reuters-21578 and RCV1-v2 corpora.
Reuters-21578 is probably still the most widely used benchmark in multi-

label text classification research3. It consists of a set of 12,902 news stories,
partitioned (according to the “ModApté” split we have adopted) into a training
set of 9,603 documents and a test set of 3,299 documents. The documents are
labelled by 118 categories; in our experiments we have restricted our attention
to the 115 categories with at least one positive training example.

Reuters Corpus Volume 1 version 2 (RCV1-v2)4 is a more recent text
classification benchmark made available by Reuters and consisting of 804,414
news stories produced by Reuters from 20 Aug 1996 to 19 Aug 1997. In our
experiments we have used the “LYRL2004” split, defined in [4], in which the
(chronologically) first 23,149 documents are used for training and the other
781,265 are used for test. Of the 103 “Topic” categories, in our experiments
we have restricted our attention to the 101 categories with at least one positive
training example. Consistently with the evaluation presented in [4], also cate-
gories placed at internal nodes in the hierarchy are considered in the evaluation.
Again, adopting the choices of [4], as positive training examples of these cate-
gories we use the union of the positive examples of their subordinate nodes, plus
their “own” positive examples.

In all the experiments discussed in this paper, stop words have been removed,
punctuation has been removed, all letters have been converted to lowercase,
numbers have been removed, and stemming has been performed by means of
Porter’s stemmer.
3 http://www.daviddlewis.com/resources/testcollections/~reuters21578/
4 http://trec.nist.gov/data/reuters/reuters.html



As a measure of effectiveness that combines the contributions of precision (π)
and recall (ρ) we have used the well-known F1 function, defined as F1 = 2πρ

π+ρ =
2TP

2TP+FP+FN , where TP , FP , and FN stand for the numbers of true positives,
false positives, and false negatives, respectively. Note that F1 is undefined when
TP = FP = FN = 0; in this case we take F1 to equal 1, since the classifier
has correctly classified all documents as negative examples. We compute both
microaveraged F1 (denoted by Fµ1 ) and macroaveraged F1 (FM1 ). Fµ1 is obtained
by (i) computing the category-specific values TPi, (ii) obtaining TP as the sum
of the TPi’s (same for FP and FN), and then (iii) applying the F1 = 2πρ

π+ρ

formula. FM1 is obtained by first computing the category-specific F1 values and
then averaging them across the cj ’s.

3.3 Experimental protocol

In this work we adopt the following iterative experimental protocol; the protocol
has three integer parameters α, β, and γ. Let Ω be a dataset partitioned into a
training set Tr and a test set Te, and let σ be an active learning strategy:

1. Set an iteration counter t = 0;
2. Set the current training set Trt to the set of the chronologically5 first α

examples of Tr; set the current “unlabeled set” Ut ← Tr/Trt;
3. For t = 1, . . . , β repeat the following steps:

(a) Generate a classifier Φ̂t from the current training set Trt;
(b) (If σ is one of the strategies in **W) Evaluate (by means of F1) Φ̂t by

5-fold cross-validation on Trt;
(c) Evaluate the effectiveness of Φ̂t on Te;
(d) Classify Ut by means of Φ̂t;
(e) Rank Ut according to strategy σ (if σ is one of the strategies in **W,

the F1 values required by the strategy are those computed at Step 3b);
(f) Let r(Ut, γ) be the set of the γ top-ranked elements of Ut; set Trt+1 ←

Trt ∪ r(Ut, γ); set Ut+1 ← Ut/r(Ut, γ).

It is important to remark that Step 3c has only the purpose of collecting the
results for experimental purposes (i.e., for producing the plots and tables of
Section 3.4); since it uses the test set Te, its results are obviously in no way
accessible to the algorithm.

The above protocol simulates the activity of a human annotator who, at
the beginning of the process, has available a training set Tr0 consisting of α
training examples, and an “unlabeled set” U0 consisting of |Tr| − α unlabeled
examples. The annotator generates a classifier Φ̂0 from Tr0, uses it to classify
the documents in U0, asks the active learning agent to rank them, manually
labels the γ top-ranked ones, generates a new classifier Φ̂1 from an augmented
training set that comprises Tr0 and the γ newly labeled examples, and repeats
this process β times.
5 Both datasets we use in this paper consist of newsstories that were broadcast by

Reuters over a period of time; “chronological order” here refers exactly to the date
of issue of these newsstories.



In the experiments we have run we have set, for both datasets, α = 100,
β = 20, and γ = 50; this means that each strategy will be evaluated by testing
the accuracy of the classifiers generated from training sets consisting of 100,
150, . . . , 950, 1000 training examples, for a total 19 experiments per strategy.
We think these parameters are realistic, since they simulate a situation in which

– there are only 100 training examples at the beginning; (this is reasonable,
since in many applications in which significantly more training examples are
available, human annotators might not find it worthwhile to annotate any
further);

– every time the human annotator manually labels 50 unlabeled examples,
he/she wants to retrain the system; (this is reasonable, since (a) he/she wants
to check whether the added training examples have increased the accuracy
of the system (this can be done by having the system always perform Step
3b), and since (b) he/she wants the operate on a ranking of the unlabeled
documents that incorporates as much as possible the feedback he/she has
already given to the system;)

– the human annotator does not want to do any further manual labeling once
1,000 training examples are available; (this seems reasonable, since at this
point the cost-effectiveness of the manual effort has probably decreased sig-
nificantly.)

As the baseline strategy for the evaluation of our results we adopt the one
that consists in adding further labeled documents to the training set by picking
them at random. This simulates the behaviour of a human annotator that picks
unlabeled documents and labels them in no particular order.

3.4 Results and discussion

The main results of our experiments are summarized in Table 1. This table
reports, for each individual strategy, the values of Fµ1 and FM1 obtained by
averaging across the results of the 19 different training sessions resulting from
running the protocol of Section 3.3 with α = 100, β = 20 e γ = 50. Table 2
focuses instead on the last among these 19 values, i.e., reports the Fµ1 and FM1
values obtained by the various classifiers trained on the 1,000 examples gathered
by the end of the active learning process. Table 3 is obtained by averaging the
values from Table 1 across all possible values for two of the three dimensions of
Sections 2.1 to 2.3, so as to allow a direct comparison among the various possible
choices for the same dimension.

It is clear from these tables that the results are not easy to interpret. Tables 1
and 2 show that no single strategy clearly emerges as the winner. For Reuters-
21578, CMW emerges as the best in terms of Fµ1 , but the best in terms of FM1
is a completely different strategy, namely, SAN; for RCV1-v2, instead, yet a
third strategy proves the best (namely, CMN), this time for both F ν1 and FM1 .

The situation becomes a bit clearer by looking at Table 3, from which we
are able to appreciate the contribution of the various dimensions to the overall
process.



The first indication we receive from Table 3 is that, in terms of the “evidence”
dimension, using the confidence of di (MinConfidence) is more useful than
using its score (S), since C** strategies outperform S** strategies for both
datasets and both measures. This means that the principle according to which
we should encourage the labeling of documents on which the current classifier
is very uncertain, is more powerful than the principle according to which we
should maximize the influx of new positive examples. This is not surprising.
In fact, the intuition that underlies the former principle is that documents on
which the current classifiers are very uncertain lie near the surface that, in
feature space, separates positive from negative examples according to the current
classifiers, and that, as a consequence, knowing on which side of the surface these
documents actually lie allows the learning device to individuate a better-fitting
surface. Conversely, while adopting the latter principle indeed tends to maximize
the influx of new positive examples, these positive examples tend to be not
terribly informative, since the current classifiers were already fairly convinced
of their positivity; thus, having them labeled by the human annotator tends to
reinforce the classifiers in their already held beliefs (this is thus an instance of
self-learning), but tends not to improve the insight of the classifiers on different
types of examples. From an experimental point of view, a similar conclusion had
been reached already in [2] (see Section 4); our experiments thus confirm the
results of [2] on a much larger experimental scale.

A second clear indication we receive from Table 3 is that, in terms of the
“weight” dimension, treating all classes alike (NoWeighting) is better than
weighting them according to how bad the current performance of the corre-
sponding classifier is (F1-Weighting). This is somehow more surprising, but
can probably be explained by the fact that the Fµ1 and FM1 measures indeed
treat all classes alike6; therefore, a policy, such as NoWeighting, that treats
all classes alike may be seen as directly optimizing the chosen effectiveness mea-
sures.

Indications are less clear concerning the “value” dimension; Min/Max is
the best performing policy on RCV1-v2, both for Fµ1 and for FM1 , while on
Reuters-21578 the winners are Avg for FM1 and RoundRobin for F ν1 . While
none among these three policies emerges as the clear winner, we believe Min/Max
should be the policy of choice, since it is the best performer, and for both mea-
sures, on the larger of the two test collections; proving the best on the 780,000+
test documents of RCV1-v2 should indeed be considered stronger evidence than
proving the best on the 3,000+ test documents of Reuters-21578.

6 It might be argued that Fµ
1 does not treat all classes alike, since more frequent

classes weight more. However, it is not class frequency that F1-Weighting pays
attention to, but effectiveness of the current classifier on the class. It is thus possible
that, had we devised an alternative choice to NoWeighting and F1-Weighting
that emphasized more frequent classes, this choice might have excelled in terms of
Fµ

1 .



Base CMW SMW CAW SAW CRW SRW CMN SMN CAN SAN CRN SRN

Fµ1
Reuters-21578 .682 .722 .631 .683 .657 .698 .687 .704 .671 .673 .692 .708 .689

RCV1-v2 .530 .511 .470 .491 .485 .506 .471 .566 .514 .513 .493 .541 .493

FM1
Reuters-21578 .541 .542 .508 .552 .531 .522 .534 .543 .535 .558 .559 .564 .549

RCV1-v2 .236 .215 .166 .198 .186 .215 .186 .261 .224 .224 .188 .229 .176

Table 1. Values of F1 averaged across the 19 different training sessions. Boldface
indicates the best performance on the dataset.

Base CMW SMW CAW SAW CRW SRW CMN SMN CAN SAN CRN SRN

Fµ1
Reuters-21578 .752 .790 .696 .771 .755 .777 .752 .765 .748 .747 .783 .769 .750

RCV1-v2 .622 .599 .503 .598 .565 .583 .522 .639 .570 .594 .575 .624 .560

FM1
Reuters-21578 .575 .595 .547 .615 .600 .578 .576 .570 .597 .617 .642 .617 .607

RCV1-v2 .304 .272 .183 .284 .247 .270 .230 .312 .274 .276 .261 .299 .224

Table 2. Values of F1 obtained in the last training sessions, i.e., with 1,000 training
examples selected as a result of the active learning strategy. Boldface indicates the
best performance on the dataset.

4 Related work

Several works have addressed active learning in the context of text classification
applications.

Lewis and Gale [2] propose uncertainty sampling (US), which consists in rank-
ing unlabeled documents in increasing order of their cj-confidence. The authors
compare US with relevance sampling (RS), i.e., ranking unlabeled documents in
decreasing order of their cj-score, and find that US outperforms RS.

Liere and Tadepalli [8] test various query by committee strategies, whereby
a committee of classifiers classify the unlabeled examples, and those on which
the members of the committee disagree most are ranked highest. McCallum and
Nigam [9] further combine Liere and Tadepalli’s query-by-committee method
with Expectation Maximization (EM) in order to take full advantage of the word
co-occurrence information that can be mined from the unlabeled documents.

Tong and Koller [6] propose an active learning method specific to SVMs,
in which ranking unlabeled documents is based on version space minimization
through various margin selection criteria. Xu et al. [10]’s representative sampling
method is based on clustering the unlabeled documents that lie inside the margin
determined by the SVM model learned in the previous iteration. After m clusters
are identified, the m “medoid” documents are added to the training set.

Hoi et al. [13] explore the problem of selecting an optimal batch of k unlabeled
documents at each iteration, so as to avoid the possibility that the set of the k
unlabeled documents top-ranked by an active learning process contain redundant
information, as when this set contains near-duplicates. For this they propose to
select the set of k documents that minimizes the global amount of redundancy,
as measured by the Fisher information of the classification model.

Davy and Luz [7] propose two “history-based” selection strategies. Their
history uncertainty sampling (HUS) strategy is an extension of Lewis and Gale’s
[2] US strategy in which the ranking value for a document is the sum of US



evidence class weight
Base C** S** *M* *A* *R* **W **N

Fµ
1

Reuters-21578 .682 .698 .671 .682 .676 .695 .680 .689
RCV1-v2 .530 .521 .488 .515 .495 .503 .489 .520

FM
1

Reuters-21578 .541 .547 .536 .532 .550 .542 .532 .551
RCV1-v2 .236 .224 .188 .216 .199 .202 .194 .217

Table 3. Values of F1 averaged across the 19 different training sessions and across
two of the three dimensions. Boldface indicates the best performance on the dataset
across the same dimension.

values obtained in the last k iterations of the active learning process. Their
history Kullback-Leibler divergence (HKLD) is instead a strategy that tends to
select the documents that have been labeled erratically by the most recently
generated classifiers.

Finally, the work of Raghavan et al. [14, 15] focuses on active learning as the
task of simultaneously ranking features and documents for human annotation,
for the purpose of improving feature selection.

One common feature of all the works discussed above is that, when they test
their method on a multi-label collection with m classes, they run m independent
binary experiments, thus simulating a local labeling method (which, we have
argued, is artificial and unrealistic). A second common feature of all these works
is that the scale of the experiments they carry out is much smaller than in
the present paper, since they all test their methods on no more than 20,000
documents ([2] is the exception, with a test set of about 50,000 documents), and
on no more than 10 classes. On the contrary, we work on more than 100 classes
for each dataset, and use one dataset with more than 780,000 test documents;
the present paper thus qualifies as the first truly large-scale experimentation on
active learning in text classification.

We should also remark that, to our knowledge, active learning for multi-label
classification has never been addressed even outside the realm of text classifica-
tion; the reason of this is the fact that the machine learning literature is usually
concerned with single-label classification, since it tends to consider multi-label
classification as a trivial reiteration of binary (hence single-label) classification.

5 Conclusions

Previous works in active learning in multi-label text classification have made the
assumption that the unlabeled examples are ranked and presented to the human
annotator m times, one per class. We have argued that this is unrealistic, since
m is often in the hundreds at the very least, and this “local labeling” approach
would likely require the human annotator to examine the very same unlabeled
document more than once, in the context of different rankings. As a consequence,
we have examined a set of more realistic strategies for “global labeling”, i.e., for
generating a single ranking of the unlabeled documents that combines the m
different sources of evidence, one per class, available for the same document. We



have studied 12 such strategies in a large-scale experimental study, and argued
for the superiority of one such strategy, CMN.

In the near future we plan to extend this work by studying how this best-
performing strategy behaves as a function of the parameters α, β and γ of Section
3.3, and as a function of the relationship of these parameters with the number
m of classes in the dataset.
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