
Automated Testing of Healthcare Document Transformations in the
PICASSO Interoperability Platform

Massimo Pascale, Marcello Roselli, Umberto Rugani
Codices s.r.l.

via G. Malasoma - 56121 Pisa, Italy
{m.pascale, m.roselli, u.rugani}@codices.com

Cesare Bartolini, Antonia Bertolino, Francesca Lonetti, Eda Marchetti
Istituto di Scienza e Tecnologie dell’Informazione “A. Faedo”, Consiglio Nazionale delle Ricerche

via G. Moruzzi, 1 - 56124 Pisa, Italy
{cesare.bartolini, antonia.bertolino, francesca.lonetti, eda.marchetti}@isti.cnr.it

Andrea Polini
Dipartimento di Matematica ed Informatica, Università di Camerino

via Madonna delle Carceri, 9 - 62032 Camerino (MC), Italy
{andrea.polini}@unicam.it

Abstract

In every application domain, achieving interoper-
ability among heterogenous information systems is a
crucial challenge and alliances are formed to stan-
dardize data-exchange formats. In the healthcare sec-
tor, HL7-V3 provides the current international refer-
ence models for clinical and administrative documents.
Codices, an Italian company, provides the PICASSO
platform that uses HL7-V3 as the pivot format to fast
achieve a highly integrated degree of interoperability
among health-related applications. Given the XML
structure of HL7-V3, PICASSO can exploit the XSLT
technology to flexibly transform documents. However,
Codices spends a large part of the PICASSO deploy-
ment workflow for manually validating the required
XSL stylesheets. In this paper, we describe a pilot expe-
rience in test automation, based on the TAXI tool that
applies systematic black-box techniques to generate a
set of XML instances from a schema. Observed ben-
efits to Codices development process are reported and
discussed.

1 Introduction

Information systems are turning into the core asset
of enterprises and organizations in every application

domain, from Government to Healthcare, from Com-
merce to Education, from Banking to Telecommunica-
tions. “Interoperability” is today the enabling pass-
word and the crucial challenge for companies compet-
ing in the global market. The term in broad sense refers
to the ability of diverse systems and organizations to
work together [12], and may embrace different flavours,
such as legal, political, social or technical [13]. Con-
cerning interoperability among information systems, it
entails syntactic and semantic levels. The former refers
to the format of data, i.e., information systems belong-
ing to different organizations can successfully exchange
information; the latter is associated with their mean-
ing, i.e., the interacting parties also agree on the inter-
pretation of the exchanged data.

Nowadays syntactic integration is a reality. Soft-
ware developers and service providers are aware that
delivering data in an open specified format to facilitate
their sharing with other companies is a mutual benefit.
So in many domains, alliances have been established
to foster data interoperability by jointly defining and
maintaining a common syntax. The introduction of the
XML language [1] and its fast diffusion has twisted such
initiatives. XML provides the universally adopted no-
tation for the standardization of content formats across
domains. On the other hand, full semantic interoper-
ability among communicating systems is still actively
sought as the “holy Grail” [16].



Healthcare is a domain in which the need for au-
tomating information systems integration is particu-
larly vital, for several reasons. For example, the same
patient’s historical data can be spread among different,
geographically far, hospitals; within the same hospital
or healthcare organization, systems dealing with dis-
parate kinds of data need to interoperate, from the
management of medical visit reservations to person-
nel accounting, from patient’s clinical records to billing
systems; and the exchanged information oftentimes
carries on critical aspects.

Founded in 1987, Health Level Seven (HL7) [9] is
commonly acclaimed as the reference organization for
the development of international healthcare standards
relative to clinical and administrative data. The cur-
rent working version of HL7 standard is Version 3
(HL7-V3), which provides the Reference Information
Model (RIM) for development. It also addresses se-
mantic interoperability by explicitly defining the com-
munication protocols, the messages to exchange, and
the meaning of each information field.

HL7 is an international organization headquartered
in the United States, but spread all over the world
with affiliated national consortia, now almost thirty,
that specialize the international standards to the lo-
cal needs. In Italy, HL7 Italia [10] has been founded
in 2003 as a mixed consortium of hospitals, large and
small industries, and research centres. Codices is a
SME1 which is part of HL7 Italia.

Codices is actively involved in a coordinated ef-
fort among local and national government offices, to
introduce HL7-V3 standard in the healthcare sector
throughout the Tuscany region. In the past, the lack of
a central organization in establishing the cooperation
between systems managing clinical data has brought
to a proliferation of heterogenous applications, making
the task of introducing a regional standard for interop-
erability quite difficult.

In this context the experience presented in this pa-
per takes place. Codices has developed an advanced
platform to interconnect applications following differ-
ing standards, by using HL7-V3 as a pivot protocol.
The platform is called PICASSO2 (platform for in-
teroperability and application cooperation in health-
care organizations and hospitals) and is the first Ital-
ian HL7-V3 platform. PICASSO relies on the XML
technology for data transformation, on advanced algo-
rithms for performance optimization and on the use
of patterns design (like Message Broker and Remote

1Small and Medium Enterprise.
2PICASSO is an acronym from the Italian “Piattaforma per

l’Interoperabilità e la Cooperazione Applicativa nelle Strutture
Sanitarie ed Ospedaliere”.

Procedure Invocation)[11] for message exchange and
component integration. It has already successfully op-
erated in several projects. However, Codices develop-
ers were not satisfied with the validation stage at any
new installation of a PICASSO enabled communication
channel, which was performed manually.

In this paper we present a joint experience between
Codices and a CNR research group in introducing au-
tomated tool support for the validation of transfor-
mations performed within PICASSO. The proof-of-
concept case study reported here showed promising re-
sults and has been quite inspiring for further integra-
tion approaches for automation.

The paper is structured as follows: in the next sec-
tion, we provide further details about PICASSO and
its functioning. In Section 3 we present the goal of the
pilot experience. We then describe the adopted tech-
nical solution in Section 4 and its application within
the PICASSO platform in Section 5. Further consider-
ations and lessons learnt are discussed in Section 6 and
general conclusions are drawn in Section 7.

2 Background

An overview of the current status of the healthcare
sector in Tuscany showed that many of the applica-
tions are still using expensive integration solutions.
These are generally custom-made and unable to pro-
vide interoperability of a software with another com-
ing from an environment committed to different inte-
gration approaches. The heterogeneity of the integra-
tion approaches is a big obstacle against cooperation
among such applications and seriously compromises
data transfer and exchange.

As said in the Introduction, HL7-V3 defines a refer-
ence model for the healthcare information production
and a protocol that can be used for implementing se-
mantic interoperability among software applications in
the healthcare structures. To solve the interoperability
problem, for each interaction between two applications
this protocol defines: the message exchange commu-
nication patterns; the message format; in the message
body, the meaning of each information field.

Today, the most advanced software companies use
older versions of HL7 (HL7 version 2.x with x=3,4,5)
because there is upward compatibility among HL7-V2
releases. On the contrary, a compatibility between
HL7-V2 and HL7-V3 protocols is not guaranteed. So,
the same effort is needed for integrating an HL7-V3
application with either an HL7-V2.x application or an
application not conforming to HL7 protocol. This im-
plies a low diffusion of the HL7-V3 protocol.

With respect to traditional integration platforms,



Figure 1. Traditional platform vs PICASSO

PICASSO reduces the number of system interactions
by using the HL7-V3 as a pivot protocol. In particular,
as we can see in the left part of Figure 1, in a traditional
platform, an application ”A” that needs to communi-
cate with m different applications ”B” has to exchange
n × m messages, where n are the different types of
messages. Using PICASSO (see the right part of the
Figure 1), to communicate with m applications ”B”, an
application ”A” uses only n messages addressed to the
HL7-V3 protocol. PICASSO will take over the burden
of mapping the n messages into the proper messages
for the m existing applications.

Thus, PICASSO drastically reduces the complexity
of the point-to point approach to the transformation of
the existing platforms by using easier and automated
transformation steps. In particular, the automation
process foresees the definition of three XML reference
schemas: the HL7-V3 central schema and two interface
schemas called XML-Int-S and XML-Int-R (where Int
stands for Interface and S and R for Sender and Re-
ceiver, respectively). Note that these schemas are de-
fined only once and for all on the basis of the processed
events and the standard format used by the sender and
receiver applications.

Thanks to the adopted XML notation, schemas can

be employed for a quick transformation by means of an
XSL stylesheet. XSL stylesheets are defined to trans-
form XML-Int-S into HL7-V3 and HL7-V3 into XML-
Int-R. The XML-Int-S and XML-Int-R schemas de-
fine an intermediate format and are used in PICASSO
for reducing the complexity of the components (called
Connectors) that transform the application data for-
mat into and from the XML-Int intermediate format.

A sketch of the PICASSO transformation framework
is presented in Figure 2, where an interaction between
two generic applications named Sender and Receiver is
addressed. This general schema can be detailed to deal
with different real interaction scenarios. The sender or
receiver applications, for example, could be compliant
with HL7-V2.x, or they could even not be compliant
with any standard. Specific application pairs will re-
quire different implementations of the connectors.

3 Goal of the experience: Automated
validation of XSL stylesheets

We have described the attractive features of PI-
CASSO in terms of standard compliance and ease of in-
stantiation of new integration channels. In addition to
such business values, another important and competi-



Figure 2. PICASSO transformation framework

tive result for Codices is the strict deadline in setting
up an application channel within the PICASSO frame-
work: the company’s policy is to guarantee a complete
setup in no longer than three days. This requires a very
skilled personnel, a good organization of activities as
well as the adoption of advanced technologies and ex-
tensive automation in the development process.

In the current process, Codices has identified valida-
tion as the weak stage. In particular, the testing of the
XSL stylesheets involved in a channel implementation
(see Figure 2) is perceived as a critical and time con-
suming step because still entirely manually executed.
The particular nature of XSL stylesheets, containing a
set of directives destined to be interpreted by an XSLT
engine, requires a varied and specific set of test cases
for verifying all the possible situations, that most of
the times cannot be easily derived. Moreover, this
testing process is by its very nature human-intensive
and error-prone, if manually performed, because XSL
is not purposefully conceived for human manipulation.
We evaluated from past experiences that testing a 25-
element XSL stylesheet takes approximately half a day,
using a test suite around 50 or 60 cases. This is clearly
a consistent portion of the three days available, and
could easily result in a problem in the case of particu-
larly complex stylesheets.

Our goal is therefore the introduction of automatic
support for the validation of the XSL stylesheets which
transform to and from the HL7-V3 format. We have
performed a field overview and found some existing
tools for XSL stylesheet testing. For example, UTF-
X [2] is an extension to the JUnit Java unit testing
framework. It provides functionality for XSL stylesheet
unit testing, strongly encouraging a test-first-design
principle (which is far from our process workflow).
Other tools include tennison-tests [4], which allow users
to write unit tests in XML and exercise XSLT from
Ant; while Alster [3] is an XSLT unit testing frame-
work which supports the creation and execution of XSL

stylesheets containing specially marked test templates.
However, also such tools are not suitable either, since
testing remains heavily based on preparatory manual
settings; this means that the correctness of the results
eventually depends again on the expertise of tester.

In contrast, our target is to push automation in the
testing stage as much as possible, so as to drastically
decrease the time and effort required by the verification
of the XSL stylesheets. The framework shown in Fig-
ure 3 describes the ideal approach we want to adopt
for the PICASSO interoperability platform. Starting
from a reference XML Schema (XML Schema A), an In-
stance Generator is used to automatically derive XML
instances to be provided to the XSLT engine. The
latter transforms the set of XML files into different
XML files according to the rules defined within an XSL
stylesheet. It is worth noting that the pure functional
behavior of an XSLT engine allows to derive a really
simple tester that has to take one single XML instance
at a time and directly pass it to the XSLT engine.

Every time an XML instance is passed to the XSLT
engine, another XML document will be created. Also,
in this case it is not mandatory to have an XML
Schema defining the target structure (actually, XSLT
also supports output formats other than XML). Nev-
ertheless, since our purpose is to test the correctness
of the transformation rules, the availability of an XML
Schema for the target format (XML Schema B) pro-
vides a simple oracle checking if the transformed in-
stances conform to the target schema. As shown in
Figure 3, this scenario leads to a completely automated
framework to check if an XSL stylesheet is correct.

4 Experimented technology: TAXI

XML Schema is a formal, computer-readable speci-
fication for the input data domain. By processing the
schema, a set of conforming XML instances can be de-



Figure 3. Fully automated XSL stylesheet validation

rived, and these can be used as test case entries for
systematic black-box testing of the application. The
execution of the application over the generated test in-
stances can be used for conformance testing, i.e., to
test how the application behaves on automatically gen-
erated conforming instances. Some proposals for deriv-
ing such instances are available in literature, for exam-
ple [14, 7]. However, before fully integrating an au-
tomatic tool in our channel development process, the
evaluation of the possible improvements was required.

In this section we briefly describe a possible imple-
mentation of the Instance Generator (as referred in Fig-
ure 3), useful for the automated derivation of confor-
mance test suites based on an XML Schema specifica-
tion. Among the applications available we decided to
start our evaluation from the TAXI tool [7]. In the rest
of this paper we report the results obtained.

TAXI (Testing by Automatically generated XML In-
stances) [6, 7] is a tool able to generate compliant XML
instances from a given XML Schema. It has been con-
ceived so as to cover all the interesting combinations
of the schema by adopting a systematic black-box cri-
terion. For this reason, TAXI applies the well-known
Category Partition (CP) technique [15] to the XML
Schema. CP provides a stepwise intuitive approach to
identify the relevant input parameters and environment
conditions and combine their significant values into an

effective test suite. A detailed description of TAXI
functioning and architecture is outside the scope of the
present paper. We refer to [6, 7] for a more accurate
description.

In the following, we only present the main activi-
ties of the TAXI component, which are more relevant
for the understanding of this case study. TAXI activ-
ity starts with the analysis of an input XML Schema.
In case choice elements are included into the schema,
a set of sub-schemas are derived by selecting a differ-
ent child from each choice element. In case of nested
choice elements, a combinatorial explosion of choice
children is performed. This ensures that the set of
sub-schemas represents all possible structures derivable
from choices.

The implementation of CP requires the analysis of
the XML Schema and the extraction of the useful in-
formation. Element occurrences and types are an-
alyzed and the constraints are determined from the
XML Schema definition (normally an XSD file). In
particular, boundary values for minOccurs and max-
Occurs are defined. If specific values are defined for
minOccurs and maxOccurs, they are used as bound-
ary values, whereas if a maxOccurs attribute has an
“unbounded” value, a user-defined default number is
used. Exploiting the information collected so far and
the structure of the (sub)schema, TAXI derives a set



of intermediate instances by combining the occurrence
values assigned to each element.

The final instances are derived from the interme-
diate ones by assigning values to the various elements.
Two approaches can be adopted, depending on the con-
tents of the database embedded within TAXI:

• if a given element has a selection of possible val-
ues stored in the database (or in the schema itself
through an enumeration), a random value is se-
lected from those. This allows to have meaningful
values, albeit fictional, in the instances. Storing
data in the database is an operation that must
be done manually: currently TAXI supports no
means of loading data from an external source, al-
though this might be a feature in a future ver-
sion of the software. However, populating the
database is an operation which must be done only
once for all instances to be generated, and, since
the database is persistent, the data can be reused
throughout multiple executions of the test suite;

• if a set of possible values is not provided for the
element, its value is randomly generated in each
instance. This approach generates instances whose
values are meaningless and illegible, however they
are still compliant with the data types and their
restrictions, making the instances still compliant
with the schema. Of course, this approach does
not require the initial population of the database
and can be immediately adopted;

• obviously, it is possible to partially populate the
database, assigning value sets to some elements or
attributes and leaving the others empty for ran-
dom generation. This mixed approach is less ex-
pensive than the full population and allows to fo-
cus a major attention on the most critical parts of
the schema.

A special care during the final instance derivation
is devoted to the all elements. Every time an inter-
mediate instance contains an all construct, a random
sequence of its children elements is chosen for generat-
ing the final instance. This new sequence is then used
during the assignment of values to each element.

To make the generation more flexible, TAXI also
provides different test strategies to pilot the instance
generation. These include the coverage of all the possi-
ble (sub)schemas, or occurrence combinations, or value
combinations, or simply the generation of a predeter-
mined, user-defined number of instances.

5 Validation automation in practice

In this section, we outline our experience in using
TAXI to test the correctness of the XSL stylesheets
used within PICASSO.

For this purpose, we use a specific feature built in
TAXI, which we refer to as the “transformation and
validation” of a set of XML instances. Given a set of
source XML instances (which may have been gener-
ated by TAXI itself from an input XML Schema), this
feature comprises the following steps:

1. a user specifies an XSL stylesheet and a target
XML Schema;

2. TAXI picks each instance in sequence, transforms
it according to the rules in the stylesheet, and
stores the output XML instance in a file;

3. TAXI validates the output instance against the
target XML Schema;

4. finally, a log is generated that describes which of
the transformed instances were conforming and
which were not, and details the validation errors
for the non-conforming ones.

This “transformation and validation” feature al-
lowed us to carry out the whole experimentation ac-
cording to the process described in Figure 3 within the
TAXI environment and without the need of external
tools.

We now consider the experiment setup. Structurally
speaking, from an interface perspective there are three
possible types of healthcare applications:

• HL7-V3

• HL7-V2 (several revisions of the protocol)

• non-HL7 (potentially infinite data structures)

This leads to a total of 9 categories of communica-
tion channels, which would correspond to the 9 cells of
Table 1 below. This table also shows which types of
XSL stylesheet are not needed in the PICASSO frame-
work (marked with an X). Since we are using HL7-V3
as a pivot, every communication must be adapted to
the HL7-V3 protocol. Therefore there is no need to
make direct transformations between different revisions
of HL7-V2 or proprietary protocols; additionally, it is
pointless to have the transformation from HL7-V3 to
HL7-V3 (identical transformation). This leaves a total
of 4 conceptually different XSL stylesheet: non-HL7 to
and from HL7-V3, and HL7-V2 to and from HL7-V3.

As an example, let’s consider two communicating
applications, A which is compliant with the HL7-V2



non-HL7 HL7-V2 HL7-V3
non-HL7 X X
HL7-V2 X X
HL7-V3 X

Table 1. Communication channels

standard, and B which uses a proprietary format; the
communications cross a pivot channel, called P, based
on HL7-V3. In our example, A performs a remote pro-
cedure call (RPC) request to B. The full communica-
tion channel is made up of a total of four transforma-
tions:

1. HL7-V2 to HL7-V3 for transforming the data of
A’s request into P ’s format;

2. HL7-V3 to the proprietary format for delivering
the request to B ;

3. proprietary format to HL7-V3, to make the re-
sponse compliant with P ;

4. HL7-V3 to HL7-V2 to deliver the response data to
A.

Each of these steps requires a separate XSL
stylesheet. The four stylesheets are autonomous and
require separate development processes, however these
processes are structurally identical. For this reason,
our experience focuses only on one of these transfor-
mations, specifically the first one (A→P).

As explained in Section 2, the interfaces are first
converted to XML formats which are as close as pos-
sible to a predefined schema, to ease the process of
developing the stylesheet. Therefore, the XSLT trans-
formation applies to the XML-Int format and HL7-V3.
In our example, we used the XML-Int-S corresponding
to an application compliant with HL7-V2. The exper-
imentation was conducted in two separate steps.

5.1 Initial development

In the first phase, we wanted to uproot every pos-
sible bug or problem. A transformation error might
be related to bugs either in the XSL stylesheet or in
the interface schema. Our purpose was to detect both
types of errors. To evaluate the benefits of the auto-
mated approach versus the traditional manual testing,
we decided to carry out both and compare their results.
So, after developing preliminary versions of the schema
and the stylesheet, we initially executed our usual set
of manual tests (as described in Section 3). These were
successful, which led us to the conclusion that this part
of the channel was correct.

Then we switched to the automated testing based
on TAXI. As outlined in Section 4, we had the two
options of either populating the database with mean-
ingful values or leaving it empty. The former choice
produces “neat” instances which actually resemble op-
erative data, but it requires an “onset time” which may
take up to a few hours, while the latter option produces
less readable instances but saves up time. We chose the
latter.

During this first trial, we generated a total of 50 in-
stances using TAXI, and transformed them using the
XSL stylesheet. The output of the transformation and
validation showed us that there were some unchecked
errors, which had not emerged during the manual test-
ing. Upon deeper analysis, we noticed that some of
the validation errors were due to problems in the XSL
stylesheet, while the others were related to problems in
the XML-Int-S schema. We then proceeded to fix the
errors discovered and went on to the second step.

5.2 Fully automated testing

In this second step, we wanted to test the final ver-
sions of the schema and the stylesheet with a higher
number of test cases. The manual testing was avoided
this time, because building a lot of test cases would
have required too much time, something that cannot
be afforded by Codices in an actual production.

TAXI, applying the Category Partition algorithm
and setting an upper limit for unbound cardinality el-
ements, predicted a total of 131072 possible instances
of the XML-Int-S schema. Once established the num-
ber of instances to be run, one of the functionalities
of TAXI is the possibility of applying a test strategy,
based on pair-wise approach [8, 5], for picking the in-
stances that maximize the fault detection capability.

Thus, for the second step, we decided to run a test
session of 200 instances, and this time the validation
passed on all instances. This was enough for us to
assert that the schema and the stylesheet were accept-
able. However, in a production context, a higher num-
ber of test cases might be used; if the source schema
is not exceedingly complex, even an exhaustive test-
ing of all the possible data structures could be carried
out, in still less time than our manual testing of 50–60
instances.

Several benefits have emerged from this experience:

• an in-depth testing using a smart algorithm to se-
lect the useful instances likely provides better re-
sults than a manual testing, because all the sig-
nificant parts of the structure can be exploited.
There is no guarantee that the errors would have
been detected without a systematic approach;



• the improvement in time is priceless. The auto-
mated methodology required a matter of seconds
to evaluate the number of possible structures and
generate 200 instances, and a similar time to trans-
form and validate all the instances and produce
the output log. Even if we had taken the time to
populate the database, which might have taken a
time between 30 and 60 minutes, the results are as-
tounding when compared to the half day or so re-
quired for a manual test with around 50 instances;

• the final conformance testing with a high number
of test cases is simply not affordable with a manual
approach (much less one which exploits all possible
data structures). From this perspective, the auto-
mated methodology offers a much higher degree of
warranty that the results are correct.

6 Experience feedback

The experience collected over the years evidences
that the current Codices processes are effective. How-
ever, our success is greatly due to the strong exper-
tise of the developers and their profound knowledge
of the application environment. Skilled personnel can
focus immediately on the peculiarities of each XSL
stylesheet, and consequently develop a useful set of
XML instances, each one able to stress different key
parts of the transformation. However, due to time
constraints (a deadline of three days for the whole
channel), it is not possible to verify all the transfor-
mations implemented in each stylesheet, and only a
limited number of instances can be developed. More-
over, this manual process is critical, because when a
novel application is encountered it may clearly require
unpredictable learning cycles and error-prone tuning
processes.

For such reasons, we have planned to push test au-
tomation as far as possible. From the experience re-
ported here, evidence has been gained that the appli-
cation of advanced tools for automatic XML instances
derivation can improve the performance of the Codices’
validation phase in a significant way. We have not car-
ried out a formalized empirical assessment to get pre-
cise quantitative estimations of the gains in time reduc-
tion, or of the improvements in test coverage or effec-
tiveness. We are aware that from an academic perspec-
tive a formal experiment would have produced added
value. However, this was not in scope with our objec-
tive, and would have meant a lot of additional effort
and cost with little return for the company.

To us, the hands-on experience with TAXI repre-
sented a very good starting point towards making vali-

dation faster, predictable and more effective. The gains
achieved by the usage of the tool, at practically no cost,
are so evident that we did not need to get precise num-
bers to be convinced. Not only has the testing time
for a single stylesheet been drastically reduced from
about half a day to a few minutes, but we also get
an improvement of the effectiveness of the test suites.
Thanks to the test strategy implemented in the TAXI
tool, the XML instances have been generated system-
atically, considering two different kinds of variability:
in their structure and in the values assigned to the var-
ious attributes and elements composing the instance.

When combined, these two factors guarantee that
the XML instances used in the testing phase adequately
cover the full spectrum of the whole possible XSL input
domain and highlight a huge variety of possible prob-
lems (many of which had never been revealed before).

This positive experience has persuaded Codices to
introduce the automated framework introduced in this
paper as part of the channel development process. This
will reduce the time required for channel setup, and
improve the competitivity of Codices in developing in-
teroperability solutions within the healthcare sector.
Moreover, the skill and knowledge of the developers will
be better focused on the other critical aspects of the
platform implementation, with a consistent improve-
ment in terms of quality of the released products.

7 Conclusions

Testing is always reported, particularly by software
companies, as one of the most expensive activities in
software production. As a consequence, companies are
more and more eager of having tools and techniques
that can support the different testing activities.

In this work we showed how a technique and a tool
(TAXI) developed within an academic context have
been applied in an industrial setting with minimal ef-
fort and interesting results. The peculiarities of the
selected application domain were suited for defining a
completely automatic testing phase based on the avail-
ability of XML-based descriptions for the exchanged
data.

To fulfill the vision of an open, interconnected world,
the key notion is to guarantee an interchange format
as well as the trustworthiness of data and quality of
the applications using those data. Codices’ PICASSO
framework for healthcare interoperability focuses on
the consistent exchange of data among systems using
different data formats. To achieve this, an important
component of the framework is devoted to transforming
documents from a format into another, both of which
are specified using the XML Schema language.



TAXI’s functionality is to automatically derive cor-
rect XML instances starting from an XML Schema.
The generation is carried out according to powerful and
long-established test strategies which guarantee the
derivation of a set of instances meaningfully distributed
over the input domain. When validating XSLT trans-
formations, the testing process can be fully automated,
since a reliable oracle is readily available as the XML
Schema corresponding to the format of the document
expected as output.

The experience reported here has been a win-win
endeavor for both the involved industrials and the re-
searchers. The noticeable improvements in terms of
time and effectiveness of the testing phase have con-
vinced Codices of the opportunity to introduce the
TAXI tool into their deployment workflow. The adop-
tion of TAXI can drastically improve their processes,
shifting from a testing phase typically made up of ad-
hoc instances, hand-coded by Codices personnel, to a
completely automated one.

For the CNR researchers, the opportunity of exper-
imenting TAXI on PICASSO has highlighted several
weaknesses of the tool when scaling up to a schema
taken from a real application domain, and paved the
way for many possible improvements. It may well be
that using an XML Schema as the oracle is not suf-
ficient to reveal all possible problems; we believe it is
useful to further enrich the oracle and augment the con-
straints to be checked, for instance using XPath, while
still maintaining a completely automatic approach. As
explained in Section 4, the population of the database
is a critical step. Since information systems are more
and more hungry for semantic interoperability, this
step could fruitfully interact with domain ontologies
to breed the database with meaningful input values.

Together, we plan further experiments in the near
future, to build the basis for a wide-scale dissemination
within HL7 Italia of the benefits of highly automated
integration through PICASSO.

Acknowledgements

This work was partially supported by the TAS3

Project (EU FP7 IP No.216287) and by ART DECO
(Adaptive infRasTructure for DECentralized Organi-
zations), an Italian FIRB (Fondo per gli Investimenti
della Ricerca di Base) 2005 Project.

The authors wish to thank Paolo Marcheschi of the
CNR Institute of Clinical Physiology for triggering this
experience and for inspiring discussions.

References

[1] W3C extensible markup language (XML). http://

www.w3.org/XML/, 1996.
[2] Unit Testing Framework - XSLT. http://utf-x.

sourceforge.net/, 2004.
[3] Alster-XSLT Unit Testing Framework. http://

alster.sourceforge.net/, September 2006.
[4] tennison. http://tennison-tests.sourceforge.

net/index.html, July 2006.
[5] Pairwise testing. http://www.pairwise.org/, ac-

cessed Feb. 9, 2009.
[6] A. Bertolino, J. Gao, E. Marchetti, and A. Polini. Sys-

tematic generation of XML instances to test complex
software applications. In Proceedings of Rapid Inte-
gration in Software Engineering, (RISE 2006). LNCS
4401, September 2006. Geneve, Switzerland.

[7] A. Bertolino, J. Gao, E. Marchetti, and A. Polini.
Automatic test data generation for XML Schema-
based partition testing. In Proceedings of Interna-
tional Workshop on Automation of Software Test 2007
(ICSE’07 companion), Minneapolis, Minnesota, USA,
May 2007.

[8] D. M. Cohen, S. R. Dalal, M. L. Fredman, and G. C.
Patton. The AETG system: An approach to testing
based on combinatiorial design. IEEE Transactions
on Software Engineering, 23(7):437–444, July 1997.

[9] Health Level Seven. http://www.hl7.org/, accessed
Oct. 9, 2008.

[10] HL7 Italia. http://www.hl7italia.it/, accessed
Oct. 9, 2008.

[11] G. Hohpe and B. Woolf. Enterprise Integration Pat-
terns. Addison-Wesley Professional, Reading, MA,
2003.

[12] Interoperability. Wikipedia, the free encyclopedia.
http://en.wikipedia.org/wiki/Interoperability,
Accessed Oct. 9, 2008.

[13] P. Miller. Interoperability - What is it and Why should
I want it? Ariadne, (Issue 24), June 2000.

[14] J. Offutt and W. Xu. Generating test cases for web ser-
vices using data perturbation. In Workshop on Test-
ing, Analysis and Verification of Web Services, Boston
Mass, July 2004.

[15] T. Ostrand and M. Balcer. The category-partition
method for specifying and generating functional tests.
Communications of ACM, 31(6), 1988.

[16] M. Uschold and M. Gruninger. Ontologies and se-
mantics for seamless connectivity. SIGMOD Rec.,
33(4):58–64, 2004.


