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Abstract Complex networks have been receiving in-
creasing attention by the scientific community, also due
to the availability of massive network data from di-
verse domains, and the outbreak of novel analytical
paradigms, which pose relations and links among enti-
ties, or people, at the center of investigation. Networks
are usually modeled by graphs. So far, network ana-
lytics has focused to the characterization and measure-
ment of local and global properties of such graphs, such
as diameter, degree distribution, centrality, connected-
ness - up to more sophisticated discoveries based on
graph mining, aimed at finding frequent subgraph pat-
terns and analyzing the temporal evolution of a net-
work. However, in practice, real networks come with
a rich semantics attached to relations, and nodes in
a network may be connected by edges of different na-
ture: for example, any given pair of persons may com-
municate with different tools (phone, email, messaging,
etc), or in a social network can be linked by a differ-
ent relation (being friends, colleagues, relatives, etc). A
network where several possible connections (edges) ex-
ist between the same pair of entities (nodes) is called
a multidimensional network. Despite the importance
of this kind of network is recognized in many works,
and ad-hoc analytical means have been proposed to
deal with multidimensional networks of specific cases,
a thorough systematic framework for multidimensional
network analysis is still missing. This is precisely the
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aim of this paper: we develop a solid repertoire of basic
concepts and analytical mechanisms, which takes into
account the general structure of multidimensional net-
works: first, we model a multidimensional network as a
multigraph, i.e., a graph where nodes can be connected
by one or more labeled edges; second, we systemati-
cally develop a vast repertoire of network metrics for
the graph, to characterize local and global properties
of multidimensional networks. We show how popular
measures like the degree of a node, the number of con-
nected components in a graph, the shortest path, and
so on, can be viewed as particular cases of more general
definitions for multidimensional networks. Further, we
introduce brand new metrics for multigraphs, that take
into consideration the interplay among different dimen-
sion, and therefore have no counterpart in the single-
dimension case. In order to demonstrate the usefulness
and wide applicability of the proposed framework, we
consider a large array of massive networks in diverse do-
mains, ranging from query logs to social networks, cus-
tomer networks, subgraphs and bibliographic networks,
and show how in each such case the introduced metrics
- both the generalization of the known ones and the
brand new multidimensional metrics - reveal a surpris-
ing high analytical power and suggest novel solutions
to challenging real life problems.

1 Introduction

In recent years, complex networks have been receiving
increasing attention by the scientific community, also
due to the availability of massive network data from
diverse domains, and the outbreak of novel analytical
paradigms, which pose relations and links among enti-
ties, or people, at the center of investigation. In fact,
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Fig. 1 Example of multidimensional network

in as different fields as mathematics, physics, computer
science, biology, chemistry, economy and sociology, we
can find networks of users, or items, or any kind of in-
teracting entities, which are worth studying for many
interesting purposes [?,?,?,?,?,?,?].

Networks are usually modeled by graphs. So far,
network analytics has focused to the characterization
and measurement of local and global properties of such
graphs, such as diameter, degree distribution, central-
ity, connectedness - up to more sophisticated discoveries
based on graph mining, aimed at finding frequent sub-
graph patterns and analyzing the temporal evolution of
a network [?,?,?,?,?,?,?,?,?,?,?].

However, in practice, real networks come with a rich
semantic residing in the relations, and nodes in a net-
work may be connected by edges of different nature:
for example, any given pair of persons may communi-
cate with different tools (phone, email, messaging, etc),
or in a social network can be linked by a different re-
lation (being friends, colleagues, relatives, etc). A net-
work where several possible connections (edges) exist
between the same pair of entities (nodes) is called a mul-
tidimensional network. Figure ?? shows a possible mul-
tidimensional network, constituted by only two users,
where three dimensions (“phone”, “email”, “friend”)
connect them. It is worth noting that a multidimen-
sional network may contain heterogeneous dimensions,
and this is the case in the figure, where communication
tools and social relations coexist together.

The necessity of multidimensional network analysis
is recognized by several authors. Previous work, for in-
stance, introducted the OLAP graph paradigm, which
provides multidimensional and multilevel views of graph
data [?]. However, this work concentrates on defining
means for drilling up and down some aggregated mea-
sures along different dimensions, while a comprehensive
definition of the aggregate measures for multidimen-
sional network analytics is missing, as well as the means
to explore the relations among the different dimensions.

More recent works put emphasis on the analysis of
specific multidimensional social networks such as, as an
example, communication networks among people [?].
Here, the authors focus on a particular problem, and
define adequate metrics to this purpose. This situation
recurs in many studies which, explicitly or not, involve
multidimensional networks: ad-hoc notions are put for-
ward, to the end of characterizing some interesting as-
pect of the network under analysis.

What is missing, then, is a systematic definition of
multidimensional networks, together with a comprehen-
sive set of meaningful measures, that are capable of
characterizing both global and local analytical prop-
erties and the hidden relationships and dependencies
among different dimensions. This is precisely the aim
of this paper: we develop a solid repertoire of basic
concepts and analytical mechanisms, which take into
account the general structure of multidimensional net-
works, with the aim of answering questions like:
– What is the degree of a node considering only a

given set of dimensions?
– What are the connected components of the graph

considering two specific dimensions?
– How are two or more dimensions related to each

other? To what extent does one of them “contain”
the other?

– What is the “redundancy” among all dimensions?
– Are there dimensions that are good representative

of the entire network, and that would allow us to
have a condensed representation of the data?
The contributions of this paper can be hence sum-

marized as follows. First, we model multidimensional
networks with the multigraph, i.e., a graph where nodes
are connected by one or more labeled edges.

Second, we review the network metrics known in the
literature, such as the degree of a node, the number of
connected components in a graph, the shortest path,
and so on, and we show how they can be viewed as
particular cases of more general definitions for multidi-
mensional networks.

After this first step, we define new measures that
describe the interplay among different dimensions, for
example whether a dimension “includes” another one,
which and how many dimensions are “important” for
the connectivity of a graph, what happens to local mea-
sures like the degree of a node when dealing with mul-
tiple dimensions, and so further.

In order to demonstrate the usefulness and wide ap-
plicability of the proposed framework, we implemented
our proposed metrics, and performed a wide empirical
analysis over many real and large multidimensional net-
works, that we acquired and prepared for this specific
field experiment. We considered a large array of massive
networks in diverse domains, ranging from query logs to
social networks, customer networks, co-authorship bib-
liographic networks, the Web graph and a few more,
and show how in each such case the introduced metrics
- both the generalization of the known ones and the
brand new multidimensional metrics - reveal a surpris-
ingly high analytical power and suggest novel solutions
to challenging real life problems.

Our analysis shows that the measures we define are
both simple and interesting, and open the way for a new
chapter of complex network analysis in many fields.
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The remainder of the paper is organized as follows:
Section ?? presents the preliminary concepts needed for
the comprehension of our work: the concept of multi-
dimensional network together with its natural model,
the multigraph, and the meaning of extracting analyt-
ical properties from them; Section ?? briefly overviews
previous work related to our analysis; Section ?? gives
a formal definition of the problem under investigation,
and presents all the measures we define; Section ?? de-
scribes the datasets we use in the paper to evaluate our
measures; in Section ?? we present our results obtained
by applying the new measures on real data; finally in
Section ?? we conclude our work giving also possible
future research directions.

2 Background on Graphs and Network
Analytics

In this section we recall some preliminary concepts which
the reader may already be familiar with, but that con-
stitute the basis of our work. We first provide a mathe-
matical model of multidimensional networks, and then
review the main properties and metrics for complex net-
work analytics.

2.1 Multidimensional Networks as Multigraphs

The term network refers to the informal concept de-
scribing a structure composed of a set of elements and
connections or interactions between them.

In a real network the entities may be connected by
relations of different nature: for example, two persons
may be linked because they are friends, colleagues, rel-
atives or because they communicate to each other by
phone, email, and so on. A network where a pair of
entities may be linked by different kinds of links, hav-
ing more than one connection between the two entites,
is called a multidimensional network. We consider each
possible type of relation between two entities a partic-
ular dimension of the network.

Often, the graph is used to model a network with
its properties. In this graph, the entities are represented
by nodes while a relation is modeled by an (directed or
undirected) edge. In the case of a multidimensional set-
ting a convenient way to model a network is hence a
labeled multigraph. Intuitively, a labeled multigraph is
a graph where both nodes and edges are labeled and
where there can exist two or more edges between two
nodes. Even though a labeled multigraph may be di-
rected and undirected, for sake of simplicity, in our
model we only consider undirected multigraphs, where
edges have no direction. Moreover, in our context we
do not consider node labels, thus we adopt a particular
version of multigraph where only the edges are labeled.
The model that we use in the remainder of the paper is

hence the edge-labeled undirected multigraph. Formally,
such a graph is denoted by a triple G = (V,E, L) where:
– V is a set of nodes
– L is a set of labels
– E is a set of labeled edges, i.e., it is a set of triple

of the form (u, v, l) where u, v ∈ V are nodes and
l ∈ L is a label.

We assume that given a pair of nodes u, v ∈ V and a
label l ∈ L it may exist only one edge (u, v, l). Thus,
given |L| = m each pair of nodes in G can be connected
by at mostm possible edges. In the following we denotes
by P(L) the power set of the label collection L and by
G the set of graphs of the form G = (V,E, L).

When we use edge-labeled undirected multigraphs
to model a multidimensional network, the set of nodes
represents the set of entities or actors in the networks,
the edges represent the interactions and relations be-
tween them and the edge labels describe the nature
of the relations, i.e., the dimensions of the network.
Given the strong correlation between labels and di-
mensions, in the following we use the term dimension
in order to indicate label. Moreover, we denote by χE
the characteristic function of E, which equals to 1 if
a given edge (u, v, l) belonging to E, 0 otherwise. We
also say that a node belongs to or appears in a given
dimension l if it has at least one edge labeled with d.
So, we define an operator dim(v, l) : V × L → {0, 1}
which equals to 1 if the node v appears in dimension
d, 0 otherwise. Given a node v ∈ V , nv is the num-
ber of dimensions in which v appears, i.e. nv = | {l ∈
L s.t. dim(v, l) = 1} | =

∑
l∈L dim(v, l). Similarly,

given a pair of nodes u, v ∈ V , nuv is the number of
dimensions which label the edges between u and v, i.e.,
nuv = | {l ∈ L s.t. χE(u, v, l) = 1} | =

∑
l∈L χE(u, v, l).

2.2 Network Analytics

As said above, network data usually is modeled or rep-
resented by a graph. In literature, many analytical met-
rics have been defined in order to describe and analyze
properties of a network. A metric is a function that can
be defined on the whole network, or on the nodes, or on
the edges. Defining meaningful metrics provides several
advantages in the analysis of complex networks. From
the simplest metric, the degree of a node, to more so-
phisticated ones, like the betweenness centrality, or the
eigenvector centrality (a variant of which is behind the
idea of Google’s Pagerank [?]), several important re-
sults have been obtained in analyzing complex networks
on real-world case studies. Section ?? briefly describes
some of the most significant studies which involved the
use of simple measures.

In graph theory, we have two categories of met-
rics: the global metrics describing characteristics of the
whole network, and the local metrics describing local
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properties either of a specific node or of a specific edge.
The most important local metrics are:
Degree: The degree of a node v is the number of edges

connected to v. It is well known that in real-world
networks, the distribution of the degree is not ran-
dom, but follows precise laws. The most common
model of a network is the scale-free model, i.e. where
the degree distribution follows a power law [?].

Neighborhood : The neighborhood of a node v in a
graph is the set of all the nodes adjacent to v, that is
not necessarily equal to the degree, since there may
exist more than one edge between any two nodes in
the case of a multigraph.

Shortest Path: The shortest path between two nodes in
a network is the minimum of the lengths, in number
of edges, of all the possible paths between those two
nodes. Finding the shortest path is a well known
problem in computer networks, and many routing
algorithms rely on it [?].

Closeness Centrality : The closeness centrality is a mea-
sure of the centrality of a node within a network.
The closeness centrality of a node v is defined as
the mean length of the shortest paths between v

and all other nodes reachable from v [?]. This mea-
sure of centrality can be easily used in information
networks for applications such as Viral Marketing,
where the goal is to find nodes that would max-
imize the spread of information, while minimizing
the costs [?,?].

Betweenness Centrality : The betweenness centrality of
a node v is defined as the number of shortest paths
of the network that pass through v divided by the
number of shortest paths of the network [?]. This is
a good measures of the “resilience” of an informa-
tion network to random or ad-hoc attacks: with a
high variance of the betweenness centrality, in fact,
we have that there are a few nodes very important
for the flows of information, while there are many
nodes with low importance. This means that the
network is fairly resilient to random attacks, but
very vulnerable to ad-hoc ones.

Edge Betweenness: The edge betweenness score of an
edge measures the number of shortest paths that
pass through it.

It is possible to define also some global metrics describ-
ing interesting aspects of a network, such as the mean
degree, the average shortest path, etc. Moreover, some
of them are calculated as “aggregates” of some local
measure. The most popular global metrics defined on
graphs are:
Connected Components: This function computes the

number of connected components in a network. A
connected component (or simply a component) is a
maximal set of nodes such that, for any pair of the
nodes in the set, there exists a connecting path. For

example, if we consider the relationship among per-
sons “working in the same company”, this is likely to
be modeled with a network consisting of many sep-
arated connected components (each being a clique).

Diameter : The diameter of a network is the length
(in number of edges) of the longest shortest path
between any two nodes. This measure gives an idea
of how “wide” is a network, and it has been shown
to be a very low value in many real networks [?].

Mean Shortest Path: The mean shortest path is the
average length (in number of edges) of the shortest
paths between any two nodes.
From the above list, it should be clear how impor-

tant and powerful is to have a set of meaningful mea-
sures available for analyzing complex networks. When
dealing with the multidimensional setting, the analy-
sis scenario gets even richer, thanks to the availabil-
ity of different dimensions to take into account. There-
fore, many novel and meaningful metrics can be de-
fined, which allow us to catch hidden dependencies or
relationships among different dimensions. For instance,
we may want to analyze the importance of a dimension
with respect to another, the importance of a dimension
for a specific node, and so on. In Section ?? we define
several novel metrics that enable this kind of analyses.
Moreover, we show how most of the metrics defined for
classical monodimensional networks can be generalized
in order to be applied to multidimensional networks.

3 Related work

In this section we give a summarization of the most rel-
evant work related to our research, along two different
perspectives. First, we provide a sketchy overview of
the classical achievements of complex network analysis.
Second, we assess the efforts towards multidimensional
network analysis.

An exhaustive survey of network analytics concepts
is provided by Newman [?], where it is shown how many
properties apply to various kinds of networks that we
find in the real world, spanning from social to biologi-
cal networks; then the basic properties of networks are
discussed: the small world effect, the clustering coeffi-
cient, the degree distributions, the network resilience,
together with various network generation models. The
science of networks is today a highly visible fields, with
brilliant books also tailored for broad dissemination
[?,?,?].

More technically, a large body of work was dedi-
cated to the analysis of the degree distribution in net-
works, often with reference to specific networks such as
phone calls [?], Internet [?], the Web [?,?,?], citation
networks [?], online social networks [?] and many oth-
ers. Many large real-world networks exhibit particular
laws of degree distribution, such as the power law (or
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heavy-tailed) degree distribution. This property often
comes together with the “small world” phenomenon,
i.e., a relatively small average shortest path between
any two nodes of the networks. In order to deal with
outliers, the effective diameter [?] has been defined,
found to be small for many real-world large networks
[?,?,?,?]. Watts and Strogatz defined the clustering co-
efficient in [?], as a measure of the transitivity of the
network. In some cases it is observed how the clustering
coefficient decreases as the degree increases, a possible
sign of a hierarchic network [?,?].

We mention another interesting survey paper by
Chakrabarti and Faloutsos [?], where, besides the net-
work properties, several properties of graph generators
are analyzed. The authors also give a review of basic
concepts of graph mining (i.e., the problem of finding
frequent subgraphs), navigation in graphs (crawling,
search, and so on), generic flows in graphs (informa-
tion, viruses, etc.), and possible applicative contexts of
social networks in various fields, such as Viral Market-
ing (i.e. trying to individuate the smallest set of users
that maximize the spread of advertisement) or Recom-
mendation Systems.

Concerning the multidimensional networks perspec-
tive, there is little work so far on a general methodology
for multidimensional network analysis, and relatively
many works that address specific problems in a multi-
dimensional setting.

The only paper in the first line that we aware of
is [?], which introduces tha OLAP graph, a multidi-
mensional view of graph data. The paper defines in-
formational and topological dimensions over a graph.
The first ones correspond simply to different observa-
tions of the same graph, while the second correspond
to different hierarchical views of the graph. The pa-
per presents a classification of measures on the OLAP
graph, in terms of distributive, algebraic or holistic, de-
pending on whether the measures of higher level cells
can be easily computed from their lower level counter-
parts, without accessing base tuples. Finally, the paper
presents possible optimization in the computation of
some measure w.r.t. their distributive or holistic fea-
tures. In summary, this work gives a multidimensional
view of a graph to the purpose of defining the aggrega-
tion of different dimensions, but a systematic definition
of analytical measures is missing. In particular, no new
measures are defined, and the interplay among differ-
ent dimensions is not investigated in any way. In other
words, the OLAP graph is a method for supporting the
navigation along the dimensions of a network, not a
general framework for multidimensional network anal-
ysis.

On the other line, some recent works put emphasis
on specific multidimensional social networks, such as,
as an example, communication networks among people
[?]. In this paper, the authors focus on relational learn-

ing, extracting latent social dimensions via modularity
maximization. Based on the extracted social features,
a discriminative classifier like SVM is constructed to
determine which dimensions are informative for classi-
fication. Although the underlying setting is similar to
the one studied in our paper, the authors only focus on
a particular problem, and develop specific analytical
means for their objectives. Our attempt, in this paper,
is precisely to find a suitable level of generalization that
allows us to put into focus the truly important primi-
tives for multidimensional network analysis, in order to
devise a framework that can be systematically used in
practice for addressing a wide variety of problems.

4 Multidimensional Analysis

The number of existent analytical properties of a graph
can be extended to cope with multiple dimensions. Nev-
ertheless, dealing with multiple dimensions raises ques-
tions on how such dimensions are correlated to each
other, and if there are meaningful aggregate properties
that require a specific definition, and that are meaning-
less in the monodimensional case.

In the following we denote by D ⊆ L a set of di-
mensions of a network G = (V,E,L) and by Dv ⊆ L

the set of dimensions where a specific node v appears.

4.1 Extending the Monodimensional Case

In this section we describe how the analytical measures
defined on standard graphs (some of which were sum-
marized in Section ??) can be extended to deal with
multiple dimensions. Moreover, we define new aggre-
gate functions induced by some local or global mea-
sures.

In general, in order to adapt the classical metrics
to the multidimensional setting we need to extend the
domain of each function in order to specify the set of
dimensions for which they are calculated. Intuitively,
when a measure considers a specific set of dimensions,
a filter is applied on the multigraph to produce a view
of it considering only that specific set, and then the
measure is calculated over this view. In the following,
we redefine some of the classical measures on graphs
and networks, in order to follow the above approach.
After this set of measures, we present the new measures
we introduce on the multidimensional setting, that are
meaningful only in this scenario.

Degree This function computes the degree of a node
in a network, i.e. the number of edges connected to it.
In order to cope with the multidimensional setting, we
can define the degree of a node w.r.t a single dimension,
w.r.t a set of dimensions and we can also analyze the
average degree of a node within the network. To this end
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Node Degree(v,L) Neighbors(v,L) Degree(v,1) Degree(v,2) AVGDeg(v,L) Closeness(v,L) TotSplit(v) TotMix(v)
1 1 1 0 1 0.5 0.42 tt ff
2 3 3 2 1 1.5 0.66 tt ff
3 2 2 2 0 1 0.54 tt ff
4 7 5 5 2 3.5 0.85 ff ff
5 4 2 2 2 2 0.46 ff tt
6 5 3 2 3 2.5 0.6 ff ff
7 2 2 1 1 1 0.54 tt ff
8 1 1 1 0 0.5 1 tt ff
9 1 1 1 0 0.5 1 tt ff

Node NeighXOR1(v,L) NeighXOR2(v,L) DimRel(v,1) DimRelW (v,1) DimRelXOR(v,1) DimRel(v,2) DimRelW (v,2) DimRelXOR(v,2)
1 0 1 0 0 0 1 1 1
2 2 1 0.66 0.66 0.66 0.33 0.33 0.33
3 2 0 1 1 1 0 0 0
4 3 0 1 0.8 0.6 0.4 0.2 0
5 0 0 1 0.5 0 1 0.5 0
6 0 1 0.66 0.33 0 1 0.66 0.33
7 1 1 0.5 0.5 0.5 0.5 0.5 0.5
8 1 0 1 1 1 0 0 0
9 1 0 1 1 1 0 0 0

Table 1 Summary of the values of the multidimensional metrics on the nodes of the toy example.

we have to redefine the domain of the classical degree
function by including also the dimensions.

Definition 1 (Degree) Let v ∈ V be a node of a net-
work G. The function Degree : V × P(L)→ N defined
as

Degree(v,D) = |{(u, v, d) ∈ E s.t. u ∈ V ∧ d ∈ D}|
computes the number of edges between v and any other
node labeled with one of the dimensions in D.

As it can be done for most of the measures that
we present further, for this measure we can consider
two particular cases: when D = L we have the degree
of the node v within the whole network, while when
the set of dimensions D contains only one dimension
d we have the degree of v in the dimension d, which
is the classical degree of a node in a monodimensional
network. This kind of consideration also holds for all the
measures below extending the multidimensional case,
thus we avoid to repeat it for each of them.

Besides computing the average degree of the net-
work, by summing all the degrees of the nodes and di-
viding by the number of nodes, we can also induce an
aggregate function that computes the average of the de-
grees of a node v computed in different dimensions, by
dividing for the number of dimensions considered.

Definition 2 (Average of the Degrees over di-
mensions) Let v ∈ V be a node of a network G. The
function AvgDegree : V × P(L)→ R defined as

AvgDegree(v,D) =
Degree(v,D)

|D|
computes the average degree of a node v over the spe-
cific set of dimensions D of the network G. ut

In order to illustrate the measures we define in this
paper, we use a toy example, depicted in Figure ??, to
show the application of the metrics on it.

Example 1 Consider the multigraph in Figure ?? that
models a multidimensional network with 2 dimensions:
dimension d1 represented by a solid line, and dimension
d2 represented by the dashed line. In this multigraph
we have:

1 2

3 4

5

6 7

8

9

Fig. 2 A toy example. The solid line is dimension 1, the dashed

line is dimension 2.

Measure Global Dim. 1 Dim. 2
ConnComponents 2(0) 3(1) 5(3)
Diameter 3 2 2
Net. Cluster Heterogeneity 0.33 / /
NodeDimDegree 1 0.88 0.66
EdgeDimDegree 1 0.61 0.38
NodeDimDegreeUniq 1 0.37 0.16
EdgeDimDegreeUniq 1 0.62 0.4
NodeCorr 1 0.55
EdgeCorr 1 0.3
NodeParent 1 0.62 0.83
EdgeParent 1 0.37 0.6

Table 2 Values of the metrics on the dimensions of the toy ex-

ample.

– Degree(3, {d1}) = 2
– Degree(3, {d2}) = 0
– AvgDegree(3, {d1, d2}) = (2 + 0)/2 = 1
– AvgDegree(3, {d1}) = 2/1 = 2

Table ?? summarizes the values of all the measures
computed on the nodes of the toy example.

In Section ?? we use the Degree function. We show
that with this function it is possible to indentify dimen-
sions that are good representative of the global degree
distribution of the network, thus allowing tasks such as
focused sampling or (lossy) compression of the graph.
Also we show in Section ?? that even inside a multidi-
mensional network that does not present a power law
degree distribution there can be scale free dimensions.

Shortest Path As done for the degree, the classical
shortest path definition has to be revisited in order to
deal with the multidimensional setting, by extending
the domain with a set of dimensions.

Definition 3 (Shortest Path) Let u, v ∈ V be two
nodes of a network G. The function ShortestPath :
V ×V ×P(L)→ N computes the length of the shortest
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path (in terms of number of edges) between u and v,
where the edges are labeled with dimensions in D. ut

As in the classical definition, if are no paths between
two nodes then the distance between them is ∞.

We also define the Average Shortest Path and the
Average of the Shortest Paths over dimensions, which
are two aggregate functions.

Definition 4 (Average Shortest Path) The func-
tion ShortestPathAVG : P(L)→ R is defined as

ShortestPathAVG(D) =

∑
∀p∈SPD

Length(p)
|SPD|

where:
– SPD denotes the set of shortest paths having only

edges labeled with dimensions belonging to D, be-
tween node v and any node u reachable from it.

– Length(p) denotes the length of the shortest path p
in terms of number of edges.

It computes the average shortest path considering only
the set of dimensions D. ut
Definition 5 (Average of the Shortest Paths over
dimensions) Let u, v ∈ V be two nodes of a net-
work G such that v is reachable from u. The function
AvgShortestPath : V × V × P(L)→ R defined as

AvgShortestPath(u, v, D) =
P

d∈D ShortestPath(u,v,{d})
|D|

computes the average of the lengths of the shortest
paths between two nodes u and v over the specific set
of dimensions D of the network G. ut

An interesting analysis that can be done when tak-
ing the dimensions into account in the definition of the
shortest path is to verify the heterogeneity of the short-
est path, i.e. verifying how many dimensions are tra-
versed by a given shortest path. To this end, we define
a function that computes the heterogeneity of a path.

Definition 6 (Path Heterogeneity) Let P be a path
between two nodes of a multidimensional network, i.e.
a sequence of labeled edges. The Path Heterogeneity
function computes the ratio of dimensions in P with
respect to the dimensions in the whole network. ut

Given a set of paths it is possible to compute aggre-
gate functions of the path heterogeneity measure, such
as the average, the maximum and the minimum. In a
multidimensional network, it is interesting to apply this
measure on the set of the shortest paths: considering a
transportation network, this would translate in know-
ing how many different trains, or tickets, a persons has
to take to get to the destination. A possible variant
of this is to count the number of “changes” of dimen-
sions: even though the number of different crossed di-
mensions can be only two, it may happen that in order

to go from one node to another one in the network, the
shortest path is a sequence of d1 − d2 − d1 − ... − d2,
which, in the transportation network, would mean to
change train at every station. An interesting problem
would be to modify Dijkstra’s algorithm for computing
the shortest path [?] to include also the change of edge
label (i.e. dimension) as additional cost of the shortest
path. This interesting analysis opens the way for many
related problems and issues, and we plan in the future
to investigate also in this direction.

Example 2 Continuing with the example of Figure ??
we have:

– the ShortestPath(1, 7, {d1, d2}) = 3 and its Hetero-
geneity is equal to 1, as this shortest path contains
2 edges of the dimension d2 and 1 edge of the di-
mension d1.

– ShortestPath(1, 7, {d1}) =∞
– ShortestPath(6, 7, {d1, d2}) = 1
– ShortestPath(6, 7, {d1}) = 2
– ShortestPath(6, 7, {d2}) = 1
– AvgShortestPath(6, 7, {d1, d2}) = 1.5
– ShortestPathAVG({d1, d2}) = 1.6

Closeness Centrality The closeness describes a par-
ticular kind of centrality of a node within a network, in
terms of distance from all the other nodes. In the stan-
dard definition this measure is only defined on nodes.
As done for the above measures, we modify the defini-
tion introducing the dimensions.

Definition 7 (Closeness Centrality) Let v ∈ V be
a node of a network G. The function Closeness : V ×
P(L)→ [0, 1] is defined as

Closeness(v,D) =
|V̄ |∑

u∈V̄ ShortestPath(v, u,D)

where V̄ denotes the set of nodes reachable from v by
a path, excluding v itself. ut

Moreover, we define an aggregate function that com-
putes the average of the closeness centrality computed
over different dimensions.

Definition 8 (Average of the Closeness Centrali-
ties over Dimensions) Let v ∈ V a node of a network
G. The function AvgCloseness : V ×P(L)→ [0, 1] de-
fined as

AvgCloseness(v,Dv) =

∑
d∈Dv

Closeness(v, {d})
|Dv|

computes the average of the closeness centralities of a
node v over the specific set of dimensions Dv of the
network G. ut
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Please note that in this measure we explicitly in-
dicate the set Dv, as it is not meaningful to consider
the closeness in dimensions where the node does not
appear.

Example 3 In the multidimensional network of the Fig-
ure ??:
– if we consider all the dimensions and the node 7 we

have six nodes reachable with a total number of 11
edges: Closeness(7, {d1, d2}) = 6/11 = 0.54

– if we consider only the dimension d1 and the node
7 we have Closeness(7, {d1}) = 5/9 = 0.55

– if we consider only the dimension d2 and the node
7 we have Closeness(7, {d2}) = 3/5 = 0.6

– the average of the closeness on the all the dimensions
of the node 7 is AvgCloseness(7, {d1, d2}) = (0.55+
0.6)/2 = 0.57

Betweenness Centrality While the closeness central-
ity takes into account the distance between a node and
all the other nodes in a network, the betweenness cen-
trality considers the number of shortest paths that passes
through a node, thus emphasizing the analysis of the
resilience of the network to the removal of important
nodes. Also in this case, we would like to include a set
of dimensions into account, hence we modify the stan-
dard definitions, introducing the followings.

Definition 9 (Betweenness Centrality) Let v ∈ V
be a node of a network G. The function Betweenness :
V × P(L)→ [0, 1] defined as

Betweenness(v,D) =

∑
s,t∈V SPsvt(D)
SPst(D)

where:
– SPsvt(D) denotes the number of shortest path be-

tween the nodes s and t passing through v, only
considering edges belonging to the set of dimensions
D

– SPst(D) denotes the number of shortest path be-
tween the nodes s and t, considering only consider-
ing edges belonging to the set of dimensions D. ut
We can also define an aggregate function that com-

putes the average of the betweenness centralities com-
puted on different dimensions.

Definition 10 (Average of the Betweenness Cen-
tralities over Dimensions) Let v ∈ V be a node
of a network G. The function AvgBetweenness : V ×
P(L)→ [0, 1] defined as

AvgBetweenness(v,D) =
∑
d∈D Betweenness(v, {d})

|D|
computes the average of the betweenness centralities of
a node v computed over the specific set of dimensions
D of the network G. ut

Connected Components Detecting the connected com-
ponents in a network, specially in social networks, is a
powerful as easily computable way to better understand
the topology of the network. In the following we com-
pute the number of connected components of a multi-
dimensional network, including also a set of dimensions
into account.

Definition 11 (Connected Components) The func-
tion CC : G × P(L) → N, called Connected Compo-
nents, computes the number of connected component
of a graph considering only the edges labeled with di-
mensions included in a given set D. ut

Definition 12 (Average of the Connected Com-
ponents over Dimensions) The function AvgCC :
G × P(L) → R, called Average of the Connected Com-
ponents over Dimensions, is defined as

AvgCC(G,D) =
∑
d∈D CC(v, {d})

|D|
and computes the average of the number of connected
components over the specific set of dimensions D of a
given network G. ut

Example 4 Considering the multidimensional network
of the Figure ??:

– if we consider only the dimension d1 we have 3 com-
ponents, as we can consider node 1 as a component
composed by only one node

– if we consider only the dimension d2 we have 5 com-
ponents, as we can consider nodes 3, 8 and 9 as
above

– if we consider all the dimensions of the network we
have 2 components

– the connected component average of the network are
(3 + 5)/2 = 4

In Section ?? we perform an analysis based on the
statistics on the connected components by looking at
different sets of dimensions of two networks. We show
how different is the change of the structure of the con-
nected components and the giant component by adding
dimensions in networks that indeed have a similar struc-
ture in the final aggregate.

Diameter The classical definition of the diameter is
the length of the longest shortest path between any pair
of nodes in the network. Having re-defined the notion of
“shortest path” we can define the concept of diameter
in terms of it.

Definition 13 (Diameter) The function Diameter :
G×P(L)→ N computes the length of the longest short-
est path of a network G considering only edges labeled
with dimension belonging to a specific set D. ut
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Clearly, on the diameter it is possible to define ag-
gregate functions as for the shortest path. It is also
interesting to measure the difference between the di-
ameter computed considering a given set of dimension
and the diameter of the whole network.

Example 5 On Figure ??:

– Diameter(G,L) = 3
– Diameter(G, {d1}) = 2

4.2 Leveraging the Multidimensional Case

In the following, we build the most important part of
our theory: we define new metrics that are meaningful
only in the multidimensional setting, as they try to an-
alyze the true interplay that occurs among them, rather
than simply calculating a measure on an aggregate of a
set of dimensions. As we have done above, we comment
our definitions with their values on the toy example, to
better clarify their meaning.

Neighbors When considering the multidimensional set-
ting, it is straightforward to see that the degree notion
becomes not complete, as the number of edges adjacent
to a node and the number of neighbors of the node itself
are not related anymore. In order to overcome to this
problem, we define a new measure computed on a node.
First, we present the formal definition of neighbors of
a node given a set of dimensions. In the paper we use
the expression directly reachable to indicate a node for
which the length of the shortest path from a given node
is 1.

Definition 14 (Neighbor Set) Let v ∈ V be a node
and a set of dimensions of a network G. The function
NeighborSet : V × P(L)→ P(V ) defined as

NeighborSet(v,D) = {u ∈ V s.t. ∃(u, v, d) ∈ E ∧ d ∈ D}

computes the collection of all the nodes directly reach-
able from a node v following only edges labeled with
dimensions in D. ut

At this point, as the degree counts the number of
adjacent edges, we would like to count the number of
adjacent nodes.

Definition 15 (Neighbors) Let v ∈ V be a node of
a network G. The function Neighbors : V ×P(L)→ N
is defined as

Neighbors(v,D) = |NeighborSet(v,D)|.

ut

Note that in the monodimensional case, this mea-
sure corresponds to the degree.

In the following, we give also a variant of the above
definition, that takes into account only neighbors reach-
able with edges belonging only to a specific set of di-
mensions, excluding the ones that can be reached by
edges belonging to other dimensions.

Definition 16 (NeighborsXOR) Let v ∈ V be a node
of a network G. The function NeighborsXOR : V ×
P(L)→ N, defined as

NeighborsXOR(v,D) =
∑
u∈V

kuv(D)

where:

kuv(D) =

{
1 if ∀(u, v, d) ∈ E : d ∈ D
0 otherwise

computes the number of neighboring nodes reachable
following only edges labeled with dimensions in D, and
not reachable following edges labeled with other dimen-
sions. ut

As usual, we define the aggregate function that com-
putes the average on the numbers of neighbors.

Definition 17 (Average of Neighbors over Dimen-
sions) Let v ∈ V be a node of a networkG. The average
of the neighbors of v with respect to a set of dimensions
is the function AvgNeighbors : V ×P(L)→ R defined
as

AvgNeighbors(v,D) =
∑
d∈DNeighbors(v, {d})

|D|
.

ut

Example 6 In Figure ??, the followings hold:

– Neighbors(4, {d1, d2}) = 5
– Neighbors(4, {d1}) = 5
– Neighbors(4, {d2}) = 2
– NeighborsXOR(4, {d1}) = 3
– NeighborsXOR(4, {d2}) = 0
– AvgNeighbors(4, {d1, d2}) = (5 + 2)/2 = 3.5
– AvgNeighbors(3, {d1, d2}) = (2 + 0)/2 = 1
– AvgNeighbors(3, {d1}) = 2/1 = 2

In Section ?? we investigate some aspects of the
neighbor distribution. We show that this distribution
generally follows the same behavior of the degree dis-
tribution, thus presenting a power law in many cases.

The following two new concepts, meaningful only in
the multidimensional case, help in understanding the
interplay among dimensions from two different points
of view: the node and the dimension.
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Node Relevance In multidimensional networks it is
interesting to measure how much a particular node is
important, w.r.t the connectivity of the network, to a
set of dimension. To this end we define the novel notion
of node relevance.

Definition 18 (Node Relevance) Let v ∈ V be a
node of a network G. The function NodeRelevance :
V ×P(L)→ N is defined as the number of dimensions of
D where the average shortest path ShortestPathAVG(D)
increases after v is removed from the network. ut

Example 7 In the Figure ?? we are in the particular
situation in which the Node Relevance is equal to zero
for all the nodes, i.e. if we remove a node the average
shortest path does not increase in any dimension.

Dimension Relevance From the opposite view, an-
other interesting question is how much is important a
particular dimension over the others for the connectiv-
ity of a node. In order to answer this question, we define
the concept of dimension relevance. Intuitively, it an-
alyzes how that node gets disconnected if we remove
that dimension from the network.

Definition 19 (Dimension Relevance) Let v ∈ V

be a node of a networkG. The functionDimRelevance :
V × P(L)→ [0, 1] defined as

DimRelevance(v,D) =
Neighbors(v,D)
Neighbors(v, L)

computes the ratio of neighbors directly reachable from
node v following edges belonging to dimensions in D.ut

In the following, we also define two variants of the
Dimension Relevance: the first one allows the neighbors
to be reached only by edges belonging to a specific set of
dimensions, while the second is a weighted version of it,
that takes into account also the number of alternatives
(i.e. the number of edges belonging to dimensions not
included in the given set) for reaching a node. Further,
we state a theorem that relates the values of the three
definitions.

Definition 20 (Dimension Relevance XOR) Let
v ∈ V be a node of a network G. The Dimension
Relevance XOR is the function DimRelevanceXOR :
V × P(L)→ [0, 1] defined as

DimRelevanceXOR(v,D) =
NeighborsXOR(v,D)
Neighbors(v, L)

computing the fraction of neighbors directly reachable
from node v following edges belonging only to dimen-
sions included in D. ut

Definition 21 (Weighted Dimension Relevance)
Let v ∈ V be a node of a network G = (V,E,L).
The function DimRelevanceW : V × L → [0, 1], called
Weighted Dimension Relevance, is defined as

DimRelevanceW (v,D) =

∑
u∈NeighborSet(v,D)

nuvd

nuv

Neighbors(v, L)

where:

– nuvd denotes the number of dimensions which la-
bel the edges between two nodes u and v and that
belong to D;

– nuv denotes the number of dimensions which label
the edges between two nodes u and v. ut

Theorem 1 Let v ∈ V and D ⊆ L be a node and a
set of dimensions of a multidimensional network G =
(V,E,L), respectively. Then we have that

DimRelevanceXOR(v, D) ≤ DimRelevanceW (v, D) ≤
DimRelevance(v, D).

Proof In order to prove this theorem it is sufficient to
show that

NeighborsXOR(v,D) ≤
∑
u∈NeighborSet(v,D)

nuvd

nuv
(1)

and∑
u∈NeighborSet(v,D)

nuvd

nuv
≤ Neighbor(v,D) (2)

asDimRelevanceXOR(v,D),DimRelevanceW (v,D) and
DimRelevance(v,D) have the same denominator. Sup-
pose

A = NeighborsXOR(v,D)
B =

∑
u∈NeighborSet(v,D)

nuvd

nuv

C = Neighbors(v,D).

First of all, we prove the inequality (1). If the node v is
connected to a neighbor u only by edges labeled with
dimensions in D then in both the formulas, A and B, u
contributes with 1; if they are connected only by edges
labeled with dimensions that do not belong to D then
in both the formulas, A and B, u contributes with 0; fi-
nally, if they are connected by some edges labeled with
dimensions in D and some edges labeled with dimen-
sions that do not belong to D then in A the node u
contributes with a value equal to 0 while in B it con-
tributes with a value greater than 0. So, we have that
A ≤ B.

Now, we prove the inequality (2). If the node v is
connected to a neighbor u only labeled with dimensions
in D then in both the formula B and C it contributes
with 1; if they are connected only by edges labeled with
dimensions that do not belong to D then in A and B u

contributes with 0; finally, if they are connected by some
edges labeled with dimensions that do not belong to D
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and some edges labeled with dimensions in D then in B
the node u contributes with a value equal to nuvd

nuv
< 1

(d ∈ D) while in C it contributes with 1. So, we have
that B ≤ C. ut

Example 8 Considering Figure ??, the followings hold:

– DimRelevance(4, {d1, d2}) = 1
– DimRelevance(4, {d1}) = 1
– DimRelevance(4, {d2}) = 2/5 = 0.4
– DimRelevanceW (4, {d1}) = (1 + 1 + 0.5 + 0.5 +

1)/5 = 0.8
– DimRelevanceW (4, {d2}) = (0 + 0 + 0.5 + 0.5 +

0)/5 = 0.2
– DimRelevanceXOR(4, {d1}) = 3/5 = 0.6
– DimRelevanceXOR(4, {d2}) = 0/5 = 0

In Section ?? we investigate the distributions of the
three variants of dimension relevance. We show how
it is possible to infer some pieces of knowledge about
the structure of the network and the interplay among
dimensions by only looking at the global dimension rel-
evance distribution.

Totally Split and Totally Mixed We introduce two
novel notions on the nodes of a multidimensional net-
work: Totally Split and Totally Mixed. They are de-
rived from the combination of the functions Degree and
Neighbors. Intuitively, these measures in some way de-
scribe the structure around a given node in terms of
edge density: if the node is totally split this structure
is sparse, while if the node is totally mixed it is dense
and redundant.

Definition 22 (Totally Split) A node v ∈ V is called
Totally Split if each of its neighbors is reachable via only
one dimension, i.e.,

∀u ∈ NeighborSet(v, L) : ∃! d ∈ L (u, v, d) ∈ E.

ut

Note that if a node v is totally split we have

Degree(v, L) = Neighbors(v, L).

Definition 23 (Totally Mixed) A node v ∈ V is
called Totally Mixed if each of its neighbors is reach-
able via all the dimensions in the network, i.e.,

∀u ∈ NeighborSet(v, L) : ∀d ∈ L (u, v, d) ∈ E.

ut

Note that if a node v is totally mixed we have

Degree(v, L) = Neighbors(v, L)× |L|.

Example 9 In Figure ?? we have several Totally Split
nodes: 1, 2, 3, 7, 8 and 9. Some of them appear in
both dimensions (2 and 7), while other nodes appear in
only one dimension (1, 3, 8 and 9). On the other hand
we have only one Totally Mixed node: node number 5
is connected via both the dimensions with each of its
neighbors.

Lemma 1 Let v ∈ V be a node of a multidimensional
network G. Let Dv the set of dimensions where v ap-
pears. Then we have

Neighbors(v, L) = Neighbors(v, Dv) = NeighborsXOR(v, Dv).

Proof First of all, we show that Neighbors(v, L) =
Neighbors(v,Dv). By definition,Neighbors(v, L) = |{u
∈ V |(u, v, d) ∈ E ∧ d ∈ L}| and Neighbors(v,Dv) =
|{u ∈ V |(u, v, d) ∈ E ∧ d ∈ Dv}|. We can say that
Neighbors(v, L) = |{u ∈ V |(u, v, d) ∈ E ∧ d ∈ L}| =
|{u ∈ V |(u, v, d) ∈ E ∧ d ∈ Dv} ∪ {u ∈ V |(u, v, d) ∈
E ∧ d ∈ (L \Dv)}|. In this last union, the second set
is empty since it contains all the nodes not connected
with v, thus we can conclude that Neighbors(v, L) =
Neighbors(v,Dv). Now, we prove thatNeighbors(v,Dv)
= NeighborsXOR(v,Dv). First, it is easy to notice that
NeighborsXOR(v,Dv) = |{u ∈ V |(u, v, d) ∈ E ∧ d ∈
Dv}\{u ∈ V |(u, v, d) ∈ E∧ d ∈ (L\Dv)}|. The set {u ∈
V |(u, v, d) ∈ E∧ d ∈ (L\Dv)} is empty since it contains
all the nodes not connected with v, so we can conclude
that Neighbors(v,Dv) = NeighborsXOR(v,Dv). ut

We can state a few interesting properties of the to-
tally split and totally mixed nodes.

Theorem 2 Let v ∈ V be a node of a multidimen-
sional network G. Let Dv the set of dimensions where
v appears.

(a) The node v is Totally Mixed if and only if

∀d ∈ L : DimRelevanceW (v, {d}) = 1
|L| .

(b) The node v is Totally Mixed if and only if

∀d ∈ L : DimRelevance(v, {d}) = 1

(c) The node v is Totally Split if and only if∑
d∈Dv

DimRelevanceXOR(v, {d}) = 1

(d) If the node v is Totally Mixed then∑
d∈Dv

DimRelevanceXOR(v, {d}) = 0

Proof In the following we prove the four points of the
theorem.

part (a) (⇒) Assume that the node v is totally
mixed, thus for each node u ∈ NeighborsSet(v, {d})
there are |L| edges between v and u. This means that
in DimRelevanceW (v, {d}) each term nuv = |L|, there-
fore it is immediate to conclude that



12

DimRelevanceW (v, {d}) = 1
|L| .

(⇐) Assume that DimRelevanceW (v, {d}) = 1
|L| . In

order to show that v is totally mixed it is sufficient to
show that in DimRelevanceW (v, {d}) for each term we
have 1

nuv
= 1
|L| . We know that:

(1) for each u ∈ NeighborsSet(v, L) it exists at least a
labeled edge;

(2) inDimRelevanceW (v, {d}) we haveNeighbors(v, L)
terms;

(3) |L| ≥ nuv.

Since, by hypothesis, DimRelevanceW (v, {d}) = 1
|L| ,

we have |L| = nuv, and this means that v is totally
mixed.

part (b) By definition of totally mixed node and
DimRelevance.

part (c) (⇒) Assume that the node v is totally
split. By definition, we haveP

d∈Dv
DimRelevanceXOR(v, {d}) =

P
d∈Dv

NeighborsXOR(v,{d})
Neighbors(v,L)

Therefore, we have to show that∑
d∈Dv

NeighborsXOR(v, {d}) = Neighbors(v, L).

By the Lemma ??,Neighbors(v, L) = Neighbors(v,Dv).
By definition, Neighbors(v,Dv) = |{u ∈ V s.t. (u, v, d)
∈ E ∧ d ∈ Dv}| = |

⋃
d∈Dv

{u ∈ V s.t. (u, v, d) ∈ E}|.
By hypothesis, v is totally split, hence v is connected to
each neighbor u by only one edges, and this means that⋃
d∈Dv

{u ∈ V s.t. (u, v, d) ∈ E} is a disjoint union and
so we conclude that

∑
d∈Dv

NeighborsXOR(v, {d}) =
|
⋃
d∈Dv

{u ∈ V s.t.

(u, v, d) ∈ E}| = Neighbors(v, L).
(⇐) Suppose that

∑
d∈Dv

DimRelevanceXOR(v, {d}) =
1, i.e.,

∑
d∈Dv

NeighborsXOR(v, {d}) = Neighbors(v, L).
By the Lemma ??,Neighbors(v, L) = Neighbors(v,Dv)
= |{u ∈ V s.t. (u, v, d) ∈ E ∧ d ∈ Dv}| = |

⋃
d∈Dv

{u ∈
V s.t. (u, v, d) ∈ E}|. So,

∑
d∈Dv

NeighborsXOR(v, {d})
= |

⋃
d∈Dv

{u ∈ V s.t. (u, v, d) ∈ E}|. This is possible
only if

⋃
d∈Dv

{u ∈ V s.t. (u, v, d) ∈ E} is a disjoint
union and so we conclude that v is a totally split node.

part (d) Assume that the node v is totally mixed,
thus it is connected to each neighbor by |L| edges. By
definition, we haveP

d∈Dv
DimRelevanceXOR(v, {d}) =

P
d∈Dv

NeighborsXOR(v,{d})
Neighbors(v,L)

Therefore, it is sufficient to show that∑
d∈Dv

NeighborsXOR(v, {d}) = 0.

But this is straightforward since, by hypothesis, v is
totally mixed. ut

Now, having introduced the definitions of totally
split and totally mixed node, we can state a theorem
on the relation between the degree and the number of
neighbors.

Theorem 3 Let v ∈ V be a node of a multidimensional
network G = (V,E, L) and Dv the set of dimension
where v appears. Then we have that

AvgDegree(v,Dv) ≤ Neighbors(v, L) ≤ Degree(v, L).

Proof In order to prove the two inequalities we consider
the extreme cases, i.e., when v is totally mixed and
when v is totally split. First of all, we show that

AvgDegree(v,Dv) ≤ Neighbors(v, L).

By definition we haveAvgDegree(v,Dv) = Degree(v,Dv)
Dv

.
When v is totally mixed we have that Degree(v,Dv) =
|L| ×Neighbors(v, L), thus

AvgDegree(v,Dv) = Neighbors(v, L) (1)
Neighbors(v, L) ≤ Degree(v,Dv) (2)

When v is totally split we have

Degree(v, L) = Neighbors(v, L). (3)

Moreover, since Degree(v, L) = Degree(v,Dv) we have

AvgDegree(v,Dv) ≤ Neighbors(v, L). (4)

Considering (1) and (4) we can conclude that the first
inequality is true; by (2) and (3) we also conclude that
the second inequality is true. ut

In Section ?? we present some examples of actual
Totally Split and Totally Mixed nodes. We show how
this property can come in help in real problems like
improving the quality of a search engine.

Cluster Heterogeneity Like other metrics, also the
clustering coefficient can be straightforwardly computed
following its classical definition on a single dimension
or on a set of dimensions, and we omit these defini-
tions. But there is an interesting generalization of this
coefficient when we are dealing with multidimensional
networks: the Cluster Heterogeneity. Given two or more
dimensions, this measure computes how many edges are
the only connection between any two nodes in a mul-
tidimensional triangle. In the following, first of all we
define what is a multidimensional triangle, then we in-
troduce the notion of cluster heterogeneity for a single
multidimensional triangle and finally we define the no-
tion of network clustering heterogeneity.



13

Definition 24 (Multidimensional Triangle) A mul-
tidimensional triangle is a clique of three nodes in which
at least one edge belongs to a different dimension than
another edge in the clique.

Definition 25 (Clustering Heterogeneity) The
Clustering Heterogeneity (denoted as ch) of a multidi-
mensional triangle t is defined as

ch(t) =
sc

3

where sc denotes the number of edges that are the sole
connection between two nodes in the multidimensional
triangle t. ut

While the above is a local measure computed on a
triangle, it is possible to define a global measure on the
network.

Definition 26 (Network Clustering Heterogene-
ity) The Network Clustering Heterogeneity of a net-
work G is defined as:

NetCh(D) =
∑
t∈G′ ch(t)

| {t | t ∈ G′} |

where:

– G′ denotes the triple (V ′, E′, D) in which V ′ ⊆ V

contains only the nodes belonging to the dimensions
in D and E′ ⊆ E only contains the edges belonging
to dimension in D.

– t denotes a multidimensional triangle.

ut

Example 10 In Figure ?? the whole network has three
triangles. Only two of them are multidimensional: 4, 5, 6
and 4, 6, 7. These two triangles contain only two pairs of
nodes that are connected by only one dimension. Thus
the Network Clustering Heterogeneity is equal to 2/(3∗
2) = 0.33. The Clustering Heterogeneity for triangle 4,
5, 6 is zero and for triangle 4, 6, 7 is 0.66.

In Section ?? we perform a clustering heterogeneity
analysis. We show how this metric can help to infer
some considerations in the problem of investigating the
information propagation.

Dimension Degree An interesting analysis on multi-
dimensional networks is to understand which percent-
age of nodes or edges are contained in a specific di-
mension. To this aim we define a novel measure called
Dimension Degree.

Definition 27 (Node Dimension Degree) Let d ∈
L be a dimension of a network G = (V,E,L). The func-
tion DimDegreeNode : L→ [0, 1] defined as

DimDegreeNode(d) = |{u∈V |∃v∈V :(u,v,d)∈E}|
|V |

computes the ratio of nodes of the network that belong
to the dimension d. ut

Definition 28 (Edge Dimension Degree) Let d ∈
L be a dimension of a network G = (V,E, L). The func-
tion DimDegreeEdge : L→ [0, 1] defined as

DimDegreeEdge(d) =
|{(u, v, d) ∈ E|u, v ∈ V }|

|E|

computes the ratio of edges of the network labeled with
the dimension d. ut

We also introduce another measure called Dimen-
sion Degree Uniqueness, which takes into account the
number of nodes or edges that belongs only to one di-
mension.

Definition 29 (Node Dimension Degree Unique-
ness) Let d ∈ L be a dimension of a network G =
(V,E,L). The function ddunode : L→ [0, 1] defined as

ddunode(d) = |{u∈V |∃v∈V :(u,v,d)∈E ∧ ∀j∈L,j 6=d:(u,v,j)/∈E}|
|{u∈V |∃v∈V : (u,v,d)∈E}|

computes the ratio of nodes that belong only to the
dimension d. ut

Definition 30 (Edge Dimension Degree Unique-
ness) Let d ∈ L be a dimension of a network G =
(V,E,L). The function dduedge : L→ [0, 1] defined as

dduedge(d) = |{(u,v,d)∈E|u,v∈V ∧ ∀j∈L,j 6=d: (u,v,j)/∈E}|
|{(u,v,d)∈E|u,v∈V }|

computes the ratio of edges between any pair of nodes u
and v labeled with the dimension d such that there are
no other edges between the same two nodes belonging
to other dimensions j 6= d. ut

Example 11 In Figure ?? the Edge Dimension Degree
of dimension d1 is 0.61 since it has 8 edges out of the 13
total edges of the network. Its Edge Dimension Degree
Uniqueness is equal to 5/8 = 0.625. The Node Dimen-
sion Degree for the same dimension d1 is 0.88 (8 nodes
out of 9) and its Node Dimension Degree Uniqueness is
0.375 (3 unique nodes out of 8).

In Section ?? we show how these metrics can be used
in order to perform a temporal analysis of a social net-
work in which the dimensions are defined as temporal
snapshots.

Dimension Correlation The following two measures
are among the most important when detecting the in-
terplay among dimensions. Intuitively, they give an idea
of how redundant are two dimensions, if we can expect
two nodes to be connected by a given dimension when
they are found to be connected by a specific one, and
so on.
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Definition 31 (Node Correlation) Let d1, d2 ∈ L

be two dimensions of a network G = (V,E,L). The
Node Correlation is the function ρnode : L× L→ [0, 1]
defined as

ρnode(d1, d2) =
|Vd1 ∩ Vd2 |
|Vd1 ∪ Vd2 |

where Vd1 and Vd2 denote the nodes belonging to di-
mensions d1 and d2, respectively. It computes the ratio
of nodes belonging to both the dimensions over the to-
tal number of nodes belonging to at least one of them.
ut

Definition 32 (Edge Correlation) Let d1, d2 ∈ L

be two dimensions of a network G = (V,E,L). The
Edge Correlation is the function ρedge : L × L → [0, 1]
defined as

ρedge(d1, d2) =
|Ed1 ∩ Ed2 |
|Ed1 ∪ Ed2 |

where Ed1 and Ed2 denote the edges belonging to di-
mensions d1 and d2, respectively. It computes the ratio
of edges belonging to both the dimensions over the total
number of edges belonging to at least one of them. ut

Definition 33 (Dimension Correlation Average)
The Dimension Correlation Average is the functionAvgρ̄ :
P(L)→ [0, 1] defined as

Avgρ̄(D) =

∑
d1,d2∈ L ρ̄(d1, d2)

|D|
, d1 6= d2

where ρ̄ can be either the node correlation function
ρnode or the edge correlation function ρedge. ut

Intuitively, it computes the overall correlation in the
whole network, giving an idea of the total redundancy
residing in the different dimensions of the network, ei-
ther in terms of nodes (entities), or in terms of edges
(relations).

Example 12 In Figure ??, the Node Correlation finds
as common nodes of the two dimensions: 2, 4, 5, 6 and
7. Thus its value is equal to 5/9 = 0.55. The Edge
Correlation, on the other side, is equal to 3/10 = 0.3.

In Section ?? we show how the dimension corre-
lation can be used for the detection of hierarchies in
networks, sometimes called multilevel analysis [?].

Parent Besides the correlation, another important kind
of relationship between two dimensions is whether one
“includes” another one, or, as we say, it is its parent.
This measure finds the implicit hierarchy among differ-
ent dimensions.

Definition 34 (Node Parent) Let d1, d2 ∈ L be two
dimensions of a network G = (V,E, L). The Node Par-
ent is the function NodeParent : L×L→ [0, 1] defined
as

NodeParent(d1, d2) =
|Vd1 ∩ Vd2 |
|Vd1 |

where Vd1 and Vd2 denote the nodes belonging to di-
mensions d1 and d2, respectively. It computes the ratio
of nodes belonging to d1 that belong also to d2. ut

Definition 35 (Edge Parent) Let d1, d2 ∈ L be two
dimensions of a network G = (V,E,L). The Edge Par-
ent is the function EdgeParent : L×L→ [0, 1] defined
as

EdgeParent(d1, d2) =
|Ed1 ∩ Ed2 |
|Ed1 |

where Ed1 and Ed2 denote the edges belonging to di-
mensions d1 and d2, respectively. It computes the ratio
of edges belonging to d1 that belong also to d2. ut

Example 13 In Figure ?? we have:

– NodeParent(d1, d2) = 5/8 = 0.625
– NodeParent(d2, d1) = 5/6 = 0.83
– EdgeParent(d1, d2) = 3/8 = 0.375
– EdgeParent(d2, d1) = 3/5 = 0.6

In Section ?? we show that the parent metrics can
have useful applications in marketing, by highlighting
some possible unknown relationships between products
and costumers.

Dimension Closeness Similarly to the node case, we
introduce a notion of distance between a dimension and
all the others, called Dimension Closeness. In order to
define it, first we introduce the definition of distance
between two dimensions.

Definition 36 (Dimension Distance) Let d1, d2 ∈
L be two dimensions of a network G = (V,E,L). The
function DimDistance : L× L→ N, called Dimension
Distance, is defined as

DimDistance(d1, d2) =

∑
p∈P Length(p)
|P |

where:

– P denotes the set of paths from any node v belong-
ing to the dimension d1 and any node belonging to
d2 and reachable from v

– Length(p) denotes the length of the path p in terms
of number of edges. ut

Now, using the Definition ?? we can define the Di-
mension Closeness.
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Definition 37 (Dimension Closeness) Let d1 ∈ L
be a dimension of a network G = (V,E, L). The func-
tion DimCloseness : L× L→ [0, 1], called Dimension
Closeness, is defined as

DimCloseness(d1) =
1∑

d∈L,d 6=d1 DimDistance(d, d1)
.

ut
In the remainder of the paper, we present our ex-

perimental analysis, where we applied most of the above
definitions to several large real-world networks. For some
of the analysis we give suggestions for their practical
usage in real life problems, such as compression, tem-
poral analysis, computational advertisement, and a few
others.

5 Datasets and Tools

In this subsection we present the data used in this pa-
per, and the tools used to compute the statistics.

5.1 Data

For our analysis we used different kinds of real-world
networks: a social network, two email datasets, the data
coming from a large Italian chain of retail distribu-
tion, a query log dataset, a crawl of the Uk Web graph
and the well known bibliographic dataset DBLP. For
each of them, after a brief description of the collection,
we present the pre-processing stages needed to extract
the networks, which dimensions we modeled and a few
rough statistics. Table ?? summarizes the following list,
together with more complete statistics.

Query logs1. This data consists of approximately
20 millions of queries submitted by 650.000 users
from March to May in 2006 to the America On Line
search engine and was well described in [?]. A record
on this query log represents the visit to a result for
a query or the submission of a query (if no result is
visited). Each record stores an anonymous ID that
allows to group queries from the same user without
revealing the AOL users nickname, the query sub-
mitted by the user, the date and hour of the sub-
mission of the query, the rank position of the result
visited by the user on each record and the domain
portion of the URL of the result visited.
From this dataset, we extracted a word-word net-
work of query terms, consisting in roughly 200k words
(nodes), after removing a list of stop-words (words
too generic and frequent like articles, prepositions,
punctuation and so on). We connected two words if

1 http://www.gregsadetsky.com/aol-data

they appeared together in a query, ending up with
roughly 3M of edges. As dimensions we used the
rank positions of the visited results, grouped in 6
equi-populated bins: 1 for rank 1, 2 for ranks 2-3, 3
for ranks 4-6, 4 for ranks 7-10, 5 for ranks 11-58, 6
for ranks 59-500.

Flickr2. This dataset comes from the well known photo
sharing service, by crawling the data via the avail-
able APIs3. Part of the data was obtained from the
HPC-Lab4 group of the ISTI-CNR in Pisa, which
already crawled the information about 106M of pic-
tures and was described and used in [?].
As the service is really powerful, we were able to ex-
tract implicit and explicit dimensions of the social
network residing in this data. From those pictures,
in fact, we extracted the list of all the users related
to them and among these users we completed the
social network by adding edges if two users com-
mented, tagged or set the same picture as favorite,
or if they had each other as contact. For roughly
1.3M users we obtained about 1G edges, spread on
the mentioned four dimensions.

Enron5. This archive contains 619,446 email messages
complete with senders, recipients, cc, bcc, and text
sent and received from 158 Enron’s employees [?].
We took from the entire dataset the “from”, “to”,
“cc”, “bcc”, “subject” and “date” fields in each email
in the “sent” folder of every employee. We took only
the emails that were sent to other Enron employees,
removing the outgoing emails. We also performed
basic cleaning by removing emails with empty sub-
jects, noise, and so on. After the cleaning stage, the
number of remaining emails was about 12k. The
method for creating the network is trivial: two users
are linked if they have exchanged at least one email.
We identified 7 possible dimensions, corresponding
to the days of the week: an edge belongs to the
“Monday” dimension if at least one email was ex-
changed on Monday between the two connected users.
We ended up with roughly 6k nodes (employees) and
about 30k edges.

Newsgroups6. This dataset consists of Usenet arti-
cles collected from 20 different newsgroups about
general discussions on politics and religion, technical
discussions on computers and hardware, general dis-
cussions on hobbies and so on. It was first described
and used in [?,?]. Over a period of time, 1000 arti-
cles were taken from each of the newsgroups, which

2 http://www.flickr.com
3 http://www.flickr.com/services/api
4 http://hpc.isti.cnr.it
5 http://www.cs.cmu.edu/˜enron
6 http://people.csail.mit.edu/jrennie/20Newsgroups
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Dataset Nodes Dimensions #Dim #Nodes #Edges Avg Deg Density

Query logs words rank bins 6 184,760 3,565,820 38.58 3.48e−5

Flickr users friend, favorite, tag, comment 4 1,186,895 922,237,122 1554.03 3.27e−4

Enron users email exchange same day 7 5,912 30,893 10.46 2.52e−4

Newsgroups users email reply same day/same newsgroup 27 5,897 201,998 68.5 4.3e−4

Supermarket customers same dept./class of item ≥ 10 times 27 5,137 3,834,497 1492.9 1.08e−2

WebUk web pages link found in a monthly crawl 12 133,633,040 42,059,385,177 629.48 3.93e−7

Dblp authors paper together same year 29 582,201 2,633,249 9.04 5.36e−7

Table 3 Summary of the datasets used, with some statistics. Please refer to the text for a complete description of this Table.

makes an overall number of 20,000 documents in this
collection. We took from each sent email the “from”,
“to” and “date” field. After a cleaning stage, the
number of remaining emails was about 18,000. In
this case we created an edge between two users if
both have sent to a newsgroup a message with the
same subject. As in the Enron dataset, even in this
case we identified seven dimensions, following the
choice of the day of the week. We also defined a sepa-
rate dimension for each Newsgroup (an edge belongs
to the dimension of the newsgroups to which the
user sent the message), thus defining a total num-
ber of 27 dimensions.
The basic statistics about this data are a total of
roughly 6k nodes (users), connected by roughly 200k
edges spread on 27 dimensions (days of the week, or
name of the newsgroup).

Supermarket. This data comes from one of the largest
Italian chain of supermarkets. The data was col-
lected in two years of purchases in shops located in
the western Italian coast. For every store, we had the
complete data in each receipt issued for every pur-
chase by the cashiers. The incredible amount and
richness of available data was subjected to a strong
stage of preprocessing and selection, in which we
decided to take only one month of purchases (De-
cember 2008), from only six cities (Avellino, Naples,
Leghorn, Grosseto, Rome). We ended up with a to-
tal amount of 7.5M of transactions.
At the end of our preprocessing, we came to a dataset
containing about 5k nodes (customers), connected
by roughly 4M edges, where there is an edge if two
users bought the same product at least 10 times.
Each edge is labeled with the marketing depart-
ment (such as “container”, “self service”, “bread”)
or class (such as “packaged for sale”, “fresh”, “very
fresh”) associated to the item, for a total of 27 di-
mensions.

WebUk7. This network consists of 12 monthly snap-
shots of a crawl of the Uk Web graph [?] available
via the WebGraph framework [?], taken from June
2006 to May 2007, and consisting of about 133k
nodes and 5G multi-labeled edges, where for each

7 http://law.dsi.unimi.it

edge there are 12 bits representing the presence of
that edge in one of the 12 snapshot.
We naturally considered each snapshot as a dimen-
sion of the graph, and we duplicated the edges with
the goal of having one edge per snapshot, where the
original presence bit was set to 1. At the end, the to-
tal number of resulting edges was about 42G edges.

Dblp8. This is the well known bibliographic database
that keeps track of all the publications in Computer
Science including conferences, journals and books.
We built the co-authorship network using only pa-
pers in conferences and journals, using the years as
different dimensions for the network.
We ended with about 600k nodes and 3M edges over
29 dimensions, corresponding to years 1979-2007.

Table ?? summarizes the main characteristics of the
network used in the next section. All the statistics are
calculated on the aggregated networks, i.e. on the net-
work considering all the defined dimensions. In Column
1 we find the name of the dataset; Column 2 specifies
the entities used as nodes in the network; Column 3
roughly summarizes the defined dimensions (please re-
fer to the above list for a detailed description of the
dimensions); in Column 4 we find the total number of
dimensions in the network; Column 5 and 6 show the
total number of nodes and edges for each network; Col-
umn 7 shows the average degree (edges/nodes), while
Column 8 indicates the “density” of the network, ex-
pressed in number of edges over the number of possible
edges, taking into account also the number of dimen-
sions.

We can see how low density values we have, but
this is the effect of computing this metric taking into
account the number of dimensions. The aggregate also
makes possible to have very high values of average de-
grees.

5.2 Tools

All the statistics were computed on two different ma-
chines: a server with 4 Intel Xeon processors at 2GHz,
equipped with 16GB of RAM , running GNU/Linux
2.6.27 for the experiments on the WebUk and Flickr

8 http://www.informatik.uni-trier.de/ ley/db
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datasets, and a laptop equipped with a Intel Core2
Duo processor at 2GHz with 3GB of RAM, running
GNU/Linux 2.6.28, for all the other datasets. All the
statistics were implemented in Java, making use of the
WebGraph9 and fastutil10 libraries. The running times
were about 1.5 hours for the Flickr and WebUk datasets,
and less than 5 minutes (usually a few seconds) for all
the others. The memory occupation was between 6 and
12 GB for Flickr and WebUk, respectively, and less than
1GB for all the others.

6 Experiments

In this section we present some experiments performed
after modeling several real-world networks with multi-
graphs. We show how to apply the metrics we have
defined in Section ?? to data coming from very het-
erogeneous sources: exchange of emails, online social
networks, the Web, query log of a search engine, dig-
ital bibliographies, etc. Our aim is not to perform an
extensive analysis of each of these datasets, but rather
to show how powerful and meaningful the metrics, or a
combination of them, are in several different contexts.
We explicitly put the emphasis on the new metrics we
have defined, to show the power of a true multidimen-
sional analysis, that take several kinds of relations into
account at once. In the future we plan to analyze some
of these datasets under different points of view, trying
to extract, thanks to our measures, new laws and mod-
els.

6.1 Multidimensional Degree

We start our experimental section by applying the mul-
tidimensional degree measure, as defined in Definition
??, on the two email datasets: Enron and Newsgroups.
Viewed from different perspectives, they can be either
very similar or very different. For sure, as they both
track the exchange of information among users through
the same medium, the email, they appear to be similar
in their essence. However, their contexts differ: while
Enron is a collection taken from the context of a com-
pany, so a group of people working together, the kind
of entourage of the people involved in the Newsgroup
dataset is much different, as the users write about their
hobbies, their habits, their religious or political thoughts,
and so on, and this is most likely to be done in the free
time.

Figures ??a and ??a actually confirm exactly this
diversity: in these plots we see the dimension degree for
single dimensions (days of the week) in the two datasets.

9 http://webgraph.dsi.unimi.it
10 http://fastutil.dsi.unimi.it

As we can see, while people that work for Enron tend
to send emails only during weekdays, Newsgroups are
populated by messages that arrive every day, without
a significant distinction among days.

This expected result opens the way for a possible
application of our analysis, namely compressing or sam-
pling a complex network, while keeping specific global
properties such as the degree. In fact, from the figures,
it is possible to identify different “clusters” of degree
distributions: for the Enron dataset this is done by
separating “Saturday” from “Sunday” and “rest of the
week”. After this step, picking up only good represen-
tative for each cluster (specific nodes or entire dimen-
sions) would translate in a focused sampling, or would
allow for a (lossy) compression of the graph, which are
both interesting problems nowadays [?,?]. Clearly, this
process is more effective when the clusters are very
clear, assumption that for example does not hold for
Newsgroups, where one single dimension is a good rep-
resentative of the entire network.

If we look at the cumulative dimension degree dis-
tribution (Figure ??b and Figure ??b), we may note
another effect, related to the above one. The figures re-
port the cumulative degree distributions starting from
“Saturday”. It can be noticed that in Enron consider-
ing only the first three dimensions at once produce a
cumulative distribution very close to the one obtained
taking the complete set of dimensions, while, again, this
effect is not appreciable in Newsgroups. Again, this ef-
fect help in finding representative dimensions for the
whole network, w.r.t the degree.

6.2 Connected Components

In the same optic of capturing the differences between
the flow of information in Enron and Newsgroups we
analyzed some basic statistics including the number of
Connected Components of the networks. In Figure ??c
and Figure ??c, it is possible to see the values of some
global properties of the networks, starting by consid-
ering only the dimension “Saturday”, then adding one
by one all the other days, using the function defined in
Definition ??.

We have depicted: the ratio between the number of
connected components in each aggregate and the num-
ber of connected components in the entire final network;
the ratio between the number of nodes (or the number
of edge) in the aggregate and the number of nodes (or
the number of edges) in the entire final network; the
ratio between the size (in terms of nodes) and the giant
component of an aggregate and the size of the aggregate
itself.

It can be noticed that while in both datasets the
number of edges increases in a very similar way, the
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Fig. 4 The cumulative degree distribution (a), the degree distributions for cumulative dimensions (b) and some basic statistics of the

network for cumulative dimensions (c) for the Newsgroup dataset (color image).

number of nodes follows a slightly different behavior.
We can see, in fact, that the number of nodes in Enron
increases very fast in the weekend (60% in three days),
while the growth is slower during the rest of the week
(remaining 40% in four days). On the other hand, in
Newsgroups, the growth is more linear during the whole
week.

The two datasets are different also in terms of num-
ber of connected components and size of the giant com-
ponent (which are strongly correlated to each other):
while in Enron we have to wait until Monday for hav-
ing a dense network that grows (almost) linearly, this is
not the case in the Newsgroups, where the giant com-
ponent represents always the same percentage of the
aggregate, and the number of connected components
grows in a linear trend.

6.3 Neighbors

The number of neighbors is a measure closely related
to the degree of a node (see Definition ??). We can say
that in multidimensional networks it plays the same
role as the degree for the monodimensional setting. It
is therefore natural to expect that it follows a power

law in most of the networks, as the degree does. We an-
alyzed this measure on two networks: Figure ??a shows
the results computing the metric on DBLP. It is notice-
able that the degree computed on the aggregate of all
the dimensions follows a power law. In this plot, more-
over, the number of neighbors and the average degree
on dimensions (Definition ??) follow the same distribu-
tion. In all the data we tested, we found the distribution
of the degree very related to the one of the number of
neighbors: when the first was a power law, so was the
second, and viceversa. This is easy to explain, recalling
Theorem ??.

We tested this measure also on Flickr. Being a par-
ticular kind of online social network, we were expecting
for power laws. Surprisingly, as we can see in Figure
??b, the aggregate degree does not seem to follow such
a distribution. The number of neighbors behaves, as
expected, following the same distribution of the degree.
The explanation can be found by observing the plot
in Figure ??c that represents the degree distributions
of the four dimensions of the network. It is possible to
see how the degree distribution of the aggregate is very
similar to the dimensions “Comments” and “Favorite”.
These two dimensions, in fact, cover a very large ma-
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jority of edges in the network, and the proportions with
the other two dimensions are impressive: “Favorite”
has roughly 675M of edges, “Comments” about 200M,
while “Friendship” has only 45M edges and “Tag” 2M.
The dimension “Friendship”, taken alone, shows, as ex-
pected in social contact type of relations, a power law.
We can conclude that in a multidimensional network
it may exist one or more dimensions that show a scale
free degree distribution even if the whole aggregated
network follows a very different behavior.

6.4 Dimension Relevance

The dimension relevance is a measure that helps in un-
derstanding at the micro level of a single node which
dimensions are important for the connectivity of that
node to the network (Definitions ??, ?? and ??). It is,
however, possible to infer global information about the
connectivity of the whole network by looking at the cu-
mulative distribution of dimension relevance.

In Figure ?? we report the cumulative distributions
of the three different variants of the dimension relevance
computed on the Flickr dataset. We recall that there is
a sensible difference among the three variants, thus we
expect them to produce different values for each node
and dimension.

However, it is possible to see that the dimension
“Comment” follows the same distribution for each of
the three measures, and so does also the dimension
“Tag”. Recalling that the dimension relevance XOR is
always lower than the other two variants (Theorem ??),
this means that, no matter if the dimension is impor-
tant (“Comment”) for a node or not (“Tag”), given
that the three distributions are similar the pairs that
are connected in those dimensions are not connected in
the others.

The remaining two dimensions show a different be-
havior. Figures ??a, ??b and ??c show that the dis-
tribution followed by “Friendship” for the weighted di-

mension relevance is always under the one followed for
the dimension relevance, and that the distribution of
the dimension relevance XOR stays below the two. We
noted that in Flickr the “Friendship” dimension is not
likely to have high values of the dimension relevance
XOR, which means that, usually, if two users are friends,
they have also tagged, commented, or set the same pic-
ture as favorite.

Similar considerations can be done also for “Fa-
vorite”: it seems to be common for users to share the
same picture as favorite with other users, but it is rare
that this will be the only kind of relation between any
two users. In addition, while, as we said above, “Com-
ment” and “Tag” keep the same distribution when con-
sidering the XOR variant, both “Comments” and “Fa-
vorite” show lower curves, but “Favorite” tends to go
to zero more quickly.

6.5 Totally Split and Totally Mixed

As one can see from Definition ?? and ??, the concept of
Totally Mixed and Totally Split is directly derived from
the combination of multidimensional Degree and Neigh-
bors. We recall that a node is said to be totally split
if its degree is equivalent to the number of its neigh-
bors, while it is said to be totally mixed if its degree is
equal to the number of its neighbors multiplied by the
number of the dimensions of the network.

Being totally mixed or totally split for a node has
different meanings depending on the semantic of the
dimensions in the network. In Figure ?? we have rep-
resented the neighbors of three nodes, a totally split
(Figure ??a) and two totally mixed (Figure ??b and
??c), found in the network obtained from the Query
log dataset.

In this network a totally split node is a word that
is linked to all its neighbors by only a specific rank:
it hence allows to identify the exact words with which
that word always produces good results (high rank) and
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Fig. 6 Dimension Relevances for Flickr dataset (color image).

1

2 3

4 5

1 = Levitating
2 = Antigravity
3 = Devices
4 = Globes
5 = Electrostatic

1

2 3

4

1 = Greetting
2 = Cards
3 = E-mails
4 = Free

1

2

3

1 = Acuerdos
2 = Cuatro
3 = Los

(a) (b) (c)

Fig. 7 Examples of totally split and mixed (from misspelt and foreign words) nodes found in the Query Log dataset.

those with which it always works bad (rank very low).
Figure ??a shows a clear example of this situation: the
word “Levitating” is found to work well when used in
conjunction with “Devices”, “Antigravity” and “Elec-
trostatic”, but it seems to work bad when used together
with “Globes”.

On the other hand a totally mixed node means that,
regardless of which other words were used together in
a query, the users felt the need to check all the results
provided by the search engine. Words of this kind were
verified being either typing errors (Figure ??b: ”Greet-
ting”) or non-English words (Figure ??c ”acuerdos”).
We believe that this approach may significantly help
the world of the search engines in applications such
query recommendation or refinement [?], clustering of
the search results [?], or simply improving the quality
of the search results.

6.6 Clustering Heterogeneity

Another interesting side of the analysis of the interac-
tions among different dimensions is given by Clustering
Heterogeneity. Using this metric it is possible to under-
stand as different dimensions contribute when forming
triangles in the network (see Definitions ?? and ??).
The higher this value the more “important” is the role
of a single dimension in building a multidimensional tri-
angle (defined in Definition ??), w.r.t the fact of being
the only dimension connecting two nodes in the triangle
itself.

We tested this metric on two datasets: Enron and
Newsgroups. For the second dataset we considered two

Dataset Dim Set MultiDim∆ CH
Enron Days 6,075 0.58
NewsG Days 754,910 0.74
NewsG Newsgroups 1,872 1

Table 4 Cluster Heterogeneity in various datasets.

separated networks, one in which the dimensions rep-
resent the days of the week and the other one in which
they represent the newsgroups. Looking at Table 4 it
is possible to make a few considerations: in column 1
we have the dataset, in column 2 the dimensions con-
sidered, column 3 shows the number of multidimen-
sional triangles found, while column 4 shows the value
of the cluster heterogeneity. The first consideration is
that both Enron and Newsgroups in these temporal di-
mensions behave in a similar fashion. Multidimensional
triangles in Enron are still very rare and/or take place
amongs the same people, while in Newsgroups are much
more common. The similarity comes with the Cluster-
ing Heterogeneity values: in Enron just over half and in
Newsgroups almost three quarters of the edges of these
triangles are created on a particular day.

If we compare the two Newsgroup networks, one
with the days, one with the newsgroups, we can high-
light a particular behavior: the number of closed mul-
tidimensional triangles in the second network is much
smaller, i.e. Newsgroups is a network in which people
that answer together to the same post in a newsgroup
are not likely to answer together to a post in a differ-
ent newsgroup. This is also highlighted by the value of
the cluster heterogeneity: in the few multidimensional
triangles, there are no pairs of people connected by
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more than one newsgroup. Please note that this does
not mean that who writes in a newsgroup, does not
write in another one: in this case there would not exist
multidimensional triangles. Instead, the stress is in the
connection between two people: that is found to belong
only to one dimension.

6.7 Dimension Degrees

The analysis of the dimension degree (Definitions ??
and ??) is helpful to understand which dimensions con-
tain which percentage of the edges in a network. Be-
sides, the dimension degree uniqueness (Definitions ??
and ??) tells how many of the edges of a dimension are
the sole link between two nodes, enriching the meaning
of the previous measures.

These measures can be used, also in conjunction,
with several different aims. In particular, our intent is
to show how they can be used to perform basic analy-
sis of the temporal evolution of a network, thus making
the dynamic temporal analysis of a network a particu-
lar case of multidimensional analysis. In order to do so,
we need that each dimension of the network expresses a
temporal snapshot of the network itself. Hence, we con-
ducted this analysis for the WebUK and DBLP dataset,
the first having twelve monthly dimensions, the second
having 29 yearly dimensions from year 1979 to 2007.

Figures ??a and ??b show the different behaviors of
WebUK and DBLP. While DBLP presents a constant
growth in the number of edges, the growing behavior
WebUK is more irregular. Although this may be partly
affected by the problems encountered by the crawler
that produced the dataset (documented in [?,?]), the
general behavior in this dataset is different from DBLP.

However, it is important to note the different time
span of the two datasets: while we have data for 29
years in DBLP, the monthly snapshots of WebUk take
into account only one year. From the statistics, sum-
marized in the table in Figure ??c, we know that the
ratio, both in terms of nodes and in terms of edges, be-
tween one year of DBLP (we consider the 2006) and the
previous one is lower than the ratio between the end of
the WebUk year and its beginning, i.e. WebUk grows
faster than DBLP.

In WebUK the dimension degree uniqueness repre-
sents the portion of the link in a month that does not
appear in any other month. In this case the values are
heavily accentuated by the problems in the crawling.
Please note that the first and the last snapshot behave
in a different ways and appear to have higher vaules,
because their edges or nodes are not present in the
past (for the first snapshot) or in the future (for the
last). It is interesting noting that there are some peaks
in Figure ??a. These peaks represent snapshots of the

network (4, 7 and 10, i.e. September, December and
March), where a greater portion of the edges are no
longer found in the network, effectively making their
contributions less important to the final topology of
the network. We might think about those as temporary
trends of the Web, maybe they are links or pages fol-
lowing some important news that was discovered to be
false later.

Other considerations are possible on the DBLP dataset.
In Figure ??b it is possible to see that the dimension de-
gree uniqueness follows an irregular decrease from 1979
to 2000, while starting 2001 it increases again. Repre-
senting the number of authors who published only in
a particular year (nodes), or the number of collabora-
tions that took place only in a specific year (edges),
the dimension degree uniqueness tells us that, starting
from year 2001, the occasional scientific contribution of
authors from outside the DBLP community has been
playing an important role in the global network.

6.8 Dimension Correlation

We tested this metric both on the Supermarket dataset
and on DBLP, where we considered both the node (Def-
inition ??) and the edge (Definition ??) variants of this
measure. While, however, the node variant gives a view
of the correlation of two dimenions considering the ac-
tors of a network, the edge variant puts more emphasis
on the relationship among them. Being interested in the
analysis of groups of interacting people, we show here
the results obtained with the edge variant. The other
variant, however, gave pretty similar results.

Figure ??a and Figure ??b represent very simpli-
fied (i.e., they consider only a few representative di-
mensions of the networks) graphs of the relationships
found among some of the dimensions inferred from the
values of the correlation. As we can see, in Figure ??a it
is possible to identify clusters of interacting dimensions:
“Self Service” (i.e., in a supermarket, the department
where you can pick up by yourself the desired quantity
of fruit and vegetables) and “Fresh” , “Bread”, “Fruit”
(that includes vegetables) and “Very Fresh” (i.e., food
prepared daily by the supermarket itself), “Container”
and “Packaged”. Inside each cluster, we see very high
values of the correlations among the dimensions (in one
cluster this value is 1), while the correlations between
clusters (the double arrows in this graph) are very poor.
The high values are due to the implicit semantic of the
dimensions (that is taken from the metadata of the orig-
inal database): bread, fruit, and very fresh are similar
to each other, while bread and container do not have
(almost) anything to do with each other. In Figure ??c
are represented the values of edge correlations between
the dimension used for the Figure ??a, that confirm
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Fig. 9 The correlation graph of the Supermarket and DBLP datasets.

our analysis. Figure ??b shows the same kind of graph
in DBLP. In this case the situation is pretty different:
there are no cluster, even though there is another ef-
fect, i.e. there is a relatively high correlation between
consecutive years, while it goes to zero when taking two
years far from each other. Another interesting point is
that, generally speaking, the correlation between pairs
of consecutive years tend to increase in more recent
pairs: this is due to the fact that the DBLP network
generally increases.

Please note that in this kind of analysis, we implic-
itly give the basis for another interesting research di-
rection: as a cluster can be, in fact, replaced by a meta-
node representing it, we are actually performing the
detection of hierarchies in networks, sometimes called
multilevel analysis [?], graph grammar extraction [?],
and other similar views of the same problem. An im-
portant difference, however, with the graph OLAP, is
that we perform semantic clustering, i.e. we are able to
cluster also dimensions that have no particular order-
ing among them. In order to aggregate them, instead of
relying of some particular property, such as “2001” is
close to “2002”, we base our clusters on the extracted
values of the metrics, (almost) without apriori knowl-
edge of the meaning of the dimensions.

6.9 Parent

This measures reveal situations in which a dimension
“includes” another one (in terms of nodes, Definition
??, or in terms of edges, Definition ??). However, rather
than defining it as a boolean function, we preferred to
let it take all the possible values between 0 and 1, in
order to detect this phenomenon also at intermediate
levels.

Consider the Figure ?? and Figure ??, where each of
them shows three views of the same plot. In in these fig-
ures we represent the values of Node Parent computed
on two different datasets: DBLP and Supermarket. In
DBLP, the straightforward hypothesis is that each year
includes almost all the authors of the previous year, ex-
cluding a few people who have stopped publishing, and
adds some newcomers. We obtained proof of this in our
results, where, for example, it is noticeable that the
value of the parent between 2007 and 2006 is very high
and clearly higher than the one between 2007 and 1987.
Being asymmetrical, the parent between 2006 and 2007
is not equal to the one between 2007 and 2006, and ac-
tually we found it lower. The explanation can be found
if we consider that there are more new authors than the
ones who stop publishing papers. The plot in Figure
??a and ??b shows then two different slopes in its two
sides, while having the bisector of the plane increasing
towards the most recent years: the 2007 include 2006
more than how 2001 includes 2000.
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Fig. 10 Node parent on DBLP dataset. (b) and (c) plots do not include the parent of a dimension applied to itself, always equal to

1 (color image).
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Fig. 11 Node parent on the Supermarket dataset. (b) and (c) plots do not include the parent of a dimension applied to itself, always
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Fig. 12 Examples of parent and correlation on the Supermarket dataset (color image).

While the values of the parent for the DBLP dataset
depict a scenario easy to understand, this is not the
case for the Supermarket dataset. Please note that the
plots in Figures ??a and ??b show values of the par-
ent for a set of dimensions in which is not possible to
find a reasonable order: while in DBLP two years are
clearly comparable, defining an order between “Bread”
and “Container” would be not meaningful. Hence, a
“cloud” shape of values depicted by the parent is ex-
pectable. Nevertheless, while in DBLP there is no ex-
plicit hierarchy among the dimensions, this is not true

for Supermarket, while the products are arranged ex-
plicitly into categories, departments, and so on. In this
case, in fact, it is easy to validate the parent analy-
sis: we expect its value to be equal to one in case of
an explicit hierarchical inclusion. Moreover, given the
definition of this metric, any value between zero and
one expresses the “parent” relationship at different lev-
els. Figure ?? shows some “parent” and “child” rela-
tions involving the dimension “Canned”. In Figure ??a
we have represented the two dimensions with the high-
est parent value for “Canned” (left), and the two with
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the lowest (right). As expected, “Grocery” is a clear
parent of “Canned”, but we were also able to find an-
other dimension with which a slightly poorer parent
relation holds: “Very Fresh”. This means that the cus-
tomers who buy food in cans are also included in those
who buy very fresh food at the supermarket, like bread.
Two dimensions which are completely separated from
“Canned” are “Chemistry” and “Seasonal”: who buys
canned food is not looking for seasonal food.

Being “Canned” not a macro-category for goods,
its parent values, when detecting its children, are lower
than the ones found for “Grocery”, but still in Figure
??b, is possible to see how this dimension includes some
others: “Red meat” and “Use disposable”. Totally dif-
ferent dimensions are “Containers” and “Education and
Entertainment”.

7 Conclusions and future work

In this paper, we considered the problem of analyzing
multidimensional networks. After characterizing such
networks by means of multigraphs, we systematically
defined the main analytical metrics. We have both ex-
tended to the multidimensional case well known met-
rics, broadly used in social/complex network analysis
and graph theory, and introduced brand new ones, which
exploit explictly the multiple dimensionality – and there-
fore only make sense in the multidimensional case. We
have demonstrated the analytical power of the new met-
rics, whose main feature is to capture the interplay
among different dimensions of the same network. Aware
that such an ambitious definitional apparatus needs to
be empirically assessed, we devoted a large effort to
gather multidimensional network data, and performed
an extensive set of empirical experiments. We believe
that the many experiments over massive, real-world
network data from heterogeneous domains validated the
sense and the analytical power of our repertoire of met-
rics; as demonstrated in this paper, several interesting
analytical questions, which need to investigate relation-
ships between network dimensions, can be answered in
a natural way by the proposed mechanisms.

On the other hand, we are aware that the research
described in this paper leaves many problems open for
futher research, both on the theoretical and the ap-
plication side. Is the repertoire of metrics sufficiently
wide to express the desired class of analytical ques-
tions? Are there interesting properties of the metrics
that may help the analysis, or be exploited for optimiz-
ing the computation of the metrics themselves? What
should be the characteristic of a query system capable of
supporting the proposed analytical framework for mul-
tidimensional networks? These are the main challenges

that we plan to pursue in the next future, along with
continuing our field experiments over ever richer, larger
and more complex network data.
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