
Sensoria
016004
Software Engineering for Service-Oriented Overlay Computers

www.sensoria-ist.eu

Manual for Using the UMC Model of the Automotive
Case Study

Author(s): Maurice H. ter Beek and Franco Mazzanti (ISTI–CNR)

Date of preparation: March 12, 2010
Revision: final
Dissemination level: PU

Contract start date: September 1, 2005 Duration: 48 months
Project coordinator: Martin Wirsing (LMU)
Partners: LMU, UNITN, ULEICES, UWARSAW, DTU, PISA, DSIUF,

UNIBO, ISTI, FFCUL, UEDIN, ATX, TILab, FAST, BUTE,
S&N, LSS-Imperial, LSS-UCL, MIP, ATXT, CIR

Integrated Project funded by the
European Community under the
“Information Society Technologies”
Programme (2002—2006)

Manual for Using the UMC Model of the Automotive Case Study (final) March 12, 2010

Executive Summary

We show how to use a UMC model of the on road assistance scenario of SENSORIA’s Automotive case
study, described in [2], and verify properties formulated in the service-oriented temporal logic SocL.

016004 (Sensoria) 2

Manual for Using the UMC Model of the Automotive Case Study (final) March 12, 2010

Contents

1 UMC 4
1.1 Selecting a UMC model . 4
1.2 Experimenting with a UMC model . 6

2 Verification with UMC 7
2.1 Interpreting a Counterexample . 8

A The Full UMC Model of the On Road Assistance Scenario 10

016004 (Sensoria) 3

Manual for Using the UMC Model of the Automotive Case Study (final) March 12, 2010

1 UMC

UMC [1, 4] is an on-the-fly model checker (its current prototype can be experimented via a web inter-
face [6], which also includes a user guide [5]). UMC allows the efficient verification of SocL formulae
over a set of communicating UML state machines. SocL [4] is an event- and state-based, branching-time,
efficiently verifiable, parametric temporal logic that was specifically designed to capture peculiar aspects
of services. UMC’s web interface is depicted in Fig. 1.

Figure 1: UMC web interface.

1.1 Selecting a UMC model

By selecting “Model Definition . . . ” in the Commands Menu on the left, one obtains Fig. 2.

Figure 2: Selecting a model.

016004 (Sensoria) 4

Manual for Using the UMC Model of the Automotive Case Study (final) March 12, 2010

Subsequently clicking “Select one of the examples . . . ” brings one to Fig. 3 (it might be necessary to use
the scrollbar to select the UMC model 00-automotive.umc).

Figure 3: Selecting an example model.

Clicking “Open Selected Example” leads to Fig. 4: the UMC model of the On road assistance scenario
of the Automotive case study.

Figure 4: UMC model of On road assistance.

Using the scrollbar on the right, one can inspect this UMC code.

016004 (Sensoria) 5

Manual for Using the UMC Model of the Automotive Case Study (final) March 12, 2010

1.2 Experimenting with a UMC model

To start experimenting the UMC model, one must select “Load Current Model” in the Commands Menu
on the left, resulting in Fig. 5. This figure shows the model’s classes and active objects, as well as its
current (initial) configuration.

Figure 5: A loaded UMC model.

The latter can be inspected further by clicking “(show details . . .)”, which results in Fig. 6 (using the
scrollbar on the right details of variables, active states, event queues and possible evolutions of all active
objects can be consulted).

Figure 6: A model’s details.

Another possibility provided in Fig. 5 is to perform an evolution step by clicking on “C1 --> C2”, which
results in Fig. 7 (which can be ‘repeated’ in the obvious way to perform more evolution steps).

016004 (Sensoria) 6

Manual for Using the UMC Model of the Automotive Case Study (final) March 12, 2010

Figure 7: An evolution step.

Yet another possibility in Fig. 5 is to create a minimized abstract evolution graph of the model by clicking
on “Minimize (FullTrace)”, which results in Fig. 8.

Figure 8: A minimized abstract evolution graph.

2 Verification with UMC

Two examples show how to use UMC to verify SocL formulae over the model of Sect. 1 (described in
detail in [2]). More properties that we have verified, inspired by the Patterns of service properties listed
in [4], can be found in [2]. As a first example, we verify that the Bank service is responsive, i.e. it
guarantees a response to each received request. To this aim, it suffices to verify the SocL formula

016004 (Sensoria) 7

Manual for Using the UMC Model of the Automotive Case Study (final) March 12, 2010

AG [request(charge, ∗)] A [true {true} U {response(charge, ∗) or fail(charge, ∗)} true],

which states that each time action requestCardCharge takes place, always at a certain moment
action chargeResponseOK or chargeResponseFail takes place.1 More intuitively: If the Car
requests the Bank to charge a credit card, then the Bank will surely reply with a notification of either a
successful or a failed attempt to charge the credit card.

Verifying the above formula can be done by inserting it in the field labelled UCTL (of which SocL is
a specialized version) on the lower side, which by default contains the formula true, and subsequently
pushing the button “Check The Formula” on the lower right side. This results in Fig. 9, i.e. the above
formula is TRUE. Note that a UMC model needs to be loaded before verifying properties, so the UCTL
field only appears from Fig. 5 onward.

Figure 9: Result (true) of a verification.

2.1 Interpreting a Counterexample

As a second example, we now repeat the above operations to verify whether the Garage service is
reliable, i.e. whether it guarantees a successful response whenever it accepts a request (for this service).
To this aim, it suffices to verify the SocL formula

AG [request(garage, ∗, ∗)] A [true {true} U {response(garage, ∗, ∗)} true],

which states that each time action requestGarage takes place, always at a certain moment action
garageResponseOK takes place.2 More intuitively: Reservation requests from Car to Garage are
always followed by a notification of success.

Doing so results in Fig. 10, i.e. this formula is FALSE. Note that this is not surprising: The Garage
service might be temporarily unable to provide the requested service (so it sends the unsuccessful re-
sponse garageResponseFail). Note that the Garage service is responsive, i.e. a formula similar
to the formula verified earlier for the Bank service does hold also for the Garage service.

1Note that for the sake of readability we abbreviated the actions we used in the formulae in [2]: requestCardCharge
= request(charge,*), chargeResponseOK = response(charge,*) and chargeResponseFail =
fail(charge,*)

2Again, note that for the sake of readability we abbreviated the actions used in the formulae in [2]: requestGarage =
request(garage,*,*) and garageResponseOK = response(garage,*,*)

016004 (Sensoria) 8

Manual for Using the UMC Model of the Automotive Case Study (final) March 12, 2010

Figure 10: Result (false) of a verification.

Pushing the button “Explain the Result” on the lower right side results in Fig. 11, displaying the coun-
terexample produced by UMC. The node names are hyperlinks which, when followed, allow one to
observe all details of that configuration. Furthermore, while abstract transition labels are always fully
displayed on the right-hand side of the transitions, their corresponding underlying ground events (which
are useful for understanding what exactly is happening in the ground model’s evolutions) are shown as
dynamic tooltips that appear when the cursor is moved over the “/*...*/” regions. Note that the ex-
planation returned by UMC has the form of a (partial) proof, in the sense that not only the witnessing
model fragment but also the subformulae holding in the various substates, are put in evidence; moreover,
only what are considered the useful parts of the explanation are shown.

Figure 11: Counterexample of a formula.

016004 (Sensoria) 9

Manual for Using the UMC Model of the Automotive Case Study (final) March 12, 2010

References

[1] M.H. ter Beek, A. Fantechi, S. Gnesi and F. Mazzanti, A state/event-based model-checking ap-
proach for the analysis of abstract system properties. In Science of Computer Programming, 2010.

[2] M.H. ter Beek, S. Gnesi, N. Koch and F. Mazzanti, Formal Verification of an Automotive Scenario
in Service-Oriented Computing. In Proceedings of the 30th International Conference on Software
Engineering (ICSE’08), Leipzig, Germany, ACM Press, New York, 2008, 613–622.

[3] M.H. ter Beek, F. Mazzanti, and S. Gnesi, CMC–UMC: A Framework for the Verification of Ab-
stract Service-Oriented Properties. In Proceedings of the 24th Annual ACM Symposium on Applied
Computing (SAC’09), Honolulu, Hawaii, USA, ACM Press, New York, 2009, 2111–2117.

[4] S. Gnesi and F. Mazzanti, An Abstract, on the Fly Framework for the Verification of Service Ori-
ented Systems. In [7], 2010.

[5] F. Mazzanti, Designing UML models with UMC. Technical Report 2009-TR-43, ISTI–CNR, 2009.

[6] UMC: http://fmt.isti.cnr.it/umc/.

[7] M. Wirsing and M. Hölzl (Eds.), Rigorous Software Engineering for Service-Oriented Systems—
Results of the SENSORIA project on Software Engineering for Service-Oriented Computing,
Springer, 2010.

A The Full UMC Model of the On Road Assistance Scenario

We append the full UMC model used in this paper and in [2]. It is listed among the example models on
the UMC web interface [6] as 00-automotive.umc.3

Once loaded, this UMC model consists of 501 states. Furthermore, its system classes are Car,
Bank, and RoadAssistance, while its active system objects are car1:Car, bank1:Bank, and
ra1:RoadAssistance.

UMC allows its users to specify an observation mode of the system under analysis, in which one
explicitly specifies a set of hiding and renaming rules that precisely define the structural information
or events one is interested to observe, possibly reshaping them to fit a standard format, hiding the rest
(cf. [1] for more details). This is done by adding to the model’s UMC encoding an Abstractions
section containing this list of abstraction rules. The abstractions that are relevant for the fomulae verified
in Sect. 2 are as follows:

Abstractions {
...
Action: $1:requestCardCharge -> request(charge,$1)
Action: $1.chargeResponseOK -> response(charge,$1)
Action: $1.chargeResponseFail -> fail(charge,$1)
Action: $1.requestGarage($2,$3) -> request(garage,$1,$2)
Action: $1:$2.garageResponseOK -> response(garage,$2,$1)
Action: $1:$2.garageResponseFail -> fail(garage,$2,$1)
...

}

3In [3] we used a different UMC model of the On road assistance scenario of the Automotive case study, which is instead
listed among the example models on the UMC web interface [6] as 00-automotive-SAC09.umc

016004 (Sensoria) 10

Manual for Using the UMC Model of the Automotive Case Study (final) March 12, 2010

Class Car is

Signals:

--- OUTGOING / INCOMING SIGNALS

-- requestCardCharge(cust,cc,amount) -- request to Bank
chargeResponseOK(chargeID:Token); -- response from Bank
chargeResponseFail; -- response from Bank
-- revokeCardCharge(cust,chargeID) -- cancel to Bank
bankrevokeOK -- response from Bank
--
-- requestGarage(cust,loc) -- request to GarageService
garageResponseOK(garageData:Token); -- response from GarageService
garageResponseFail -- response from GarageService
-- revokeGarage(cust,garageData) -- cancel to GarageService
garagerevokeOK -- responde from GarageService
--
-- requestTowTruck(cust,loc) -- request to TowTruckService
towResponseOK(towData:Token); -- response from TowTruckService
towResponseFail -- response from TowTruckService
towrevokeOK -- responde from TowService
--
-- requestRentCar(cust,loc) -- request to Rent
rentResponseOK(rentData:Token); -- from RentalCarService
rentResponseFail -- from RentalCarService
rentrevokeOK -- response from RentService

--- INTERNAL SIGNALS

engineFailure; -- Engine -> Orchestrator
--
reqLoc; -- Orchestrator -> GPS
respLoc(mygps:Token); -- GPS -> Orchestrator
--
findServ(mygps:Token); -- Orchestrator -> LocalDiscovery
found(mylist:Token); -- LocalDiscovery -> Orchestrator
notFound; -- LocalDiscovery -> Orchestrator
--
choose; -- Orchestrator -> Reasoner
chosen(myRA:RoadAssistance) -- Reasoner -> Orchestrator
--
bankcharge -- Orchestrator -> VehicleCommunicationGateway
bankOK -- VehicleCommunicationGateway -> Orchestrator
bankFail -- VehicleCommunicationGateway -> Orchestrator
bankrevoke -- Orchestrator -> VehicleCommunicationGateway
--
orderGarage -- Orchestrator -> VehicleCommunicationGateway
garageOK -- VehicleCommunicationGateway -> Orchestrator
garageFail -- VehicleCommunicationGateway -> Orchestrator
garagerevoke -- Orchestrator -> VehicleCommunicationGateway
--
orderTowTruck -- Orchestrator -> VehicleCommunicationGateway
towOK -- VehicleCommunicationGateway -> Orchestrator
towFail -- VehicleCommunicationGateway -> Orchestrator
towrevoke -- unused
--
rentCar -- Orchestrator -> VehicleCommunicationGateway
failedRentCar -- VehicleCommunicationGateway -> Orchestrator
carRented -- VehicleCommunicationGateway -> Orchestrator
rentrevoke -- Orchestrator -> VehicleCommunicationGateway

Vars:
loc: Token := null; -- used by Orchestrator
chargedID: Token;
garageID: Token;
rentID: Token;
towID: Token;
list: Token := null;
ccId: Token := ccId1;
amount: Token := amount1;
theRA: RoadAssistance;

016004 (Sensoria) 11

Manual for Using the UMC Model of the Automotive Case Study (final) March 12, 2010

bank: Bank := bank1;

State Top =
CarComponents(

Engine[e1, e2] ,
Orchestrator[

o1,
EnablingPhase(

CardCharge[o2, o3, o4, final] ,
FindServices[o6, o7, o8, o9, final]),

ServiceSelection,
OrderServices(

o11,
o12,
o13,
TowAndCar(

OrderTow[
o14,
o15,
CompensateAll(

CompensateBank[x1, x4],
CompensateGarage[x2, x5],
CompensateRent[x3, x6]),

final] ,
OrderCar[o17, o18, o19, final]
)),

final] ,
LocalDiscovery[l1] ,
GPS[p1] ,
Reasoner[r1] ,
VehicleCommunicationGateway[

Procedures(
GarageComm [g1, g2, g3, g4, g5, g6],
TowComm [t1, t2, t3,t4, t5, t6],
RentComm [n1, n2, n3, n4, n5, n6],
BankComm [b1, b2, b3, b4, b5, b6]

)]
)

State RentComm Defers rentrevoke
State BankComm Defers bankrevoke

Transitions:
-- Engine

e1 -> e2 {- / engineFailure}
-- Orchestrator

o1 -> EnablingPhase {engineFailure}
--- CardCharge
o2 -> o3 {- / self.bankcharge} -- activate bank calling procedure
o3 -> o4 {bankFail}
o3 -> CardCharge.final {bankOK}
--- FindServices
o6 -> o7 {- / self.reqLoc} -- call GPS
o7 -> o8 {respLoc(mygps) / -- response from GPS

loc := mygps; self.findServ(mygps)} -- call LocalDiscoveryService
o8 -> o9 {notFound / bankrevoke} -- FAILURE with bank compensation
o8 -> FindServices.final {found(mylist:Token)} -- respond from local discovery
EnablingPhase -> ServiceSelection {- / self.choose} -- activate reasoner
ServiceSelection -> OrderServices

{chosen(myRA) / -- response from reasoner
theRA := myRA}

--- OrderServices
o11 -> o12 {- / self.orderGarage} -- activate garagecomm
o12 -> o13 {garageFail / self.bankrevoke} -- FAILURE with bank compensation
o12 -> TowAndCar {garageOK}
--- OrderTow
o14 -> o15 {- / self.orderTowTruck} -- activare towcomm
o15 -> OrderTow.final {towOK}
o15 -> CompensateAll {towFail} -- FAILURE with bank and garage and rent compensation
-- CompensateAll
x1 -> x4 {- / self.bankrevoke}
x2 -> x5 {- / self.garagerevoke}

016004 (Sensoria) 12

Manual for Using the UMC Model of the Automotive Case Study (final) March 12, 2010

x3 -> x6 {- / self.rentrevoke}
--- OrderCar
o17 -> o18 {- / self.rentCar}
o18 -> OrderCar.final {carRented}
o18 -> o19 {failedRentCar}
OrderServices -> Orchestrator.final

-- LocalDiscovery
l1 -> l1 {findServ(mygps) / self.found(list1)} -- uses loc not modelled
l1 -> l1 {findServ(mygps) / self.notFound}

-- Reasoner
r1 -> r1 {choose / self.chosen(ra1)}

-- GPS
p1 -> p1 {reqLoc / self.respLoc(gps1)}

-- GarageProcedures
g1 -> g2 {orderGarage / theRA.requestGarage(self,loc)} -- call external garage service
g2 -> g3 {garageResponseOK(garageData) / garageID := garageData; self.garageOK}
g2 -> g4 {garageResponseFail / self.garageFail} -- response Fail
-- compensations
g1 -> g6 {garagerevoke}
g3 -> g5 {garagerevoke / theRA.revokeGarage(self, garageID)} -- cancel external request
g5 -> g6 {garagerevokeOK} -- response from service
g4 -> g6 {garagerevoke}

-- TowProcedures
t1 -> t2 {orderTowTruck / theRA.requestTowTruck(self,loc)} -- call external garage service
t2 -> t3 {towResponseOK(towData) / towID := towData; self.towOK} -- response OK
t2 -> t4 {towResponseFail / self.towFail} -- response Fail
--
t1 -> t6 {towrevoke}
t3 -> t5 {towrevoke / theRA.revokeTowTruck(self,towID)} -- cancel external request
t5 -> t6 {towrevokeOK} -- response from service
t4 -> t6 {towrevoke}

-- RentProcedures
n1 -> n2 {rentCar / theRA.requestRentCar(self,loc)} -- call external rental service
n2 -> n3 {rentResponseOK(rentData) / rentID := rentData; self.carRented} -- response OK
n2 -> n4 {rentResponseFail/ self.failedRentCar} -- response Fail
-- compensations
n1 -> n6 {rentrevoke}
n3 -> n5 {rentrevoke / theRA.revokeRentCar(self,rentID)} -- cancel external request
n5 -> n6 {rentrevokeOK} -- response from service
n4 -> n6 {rentrevoke}

-- BankProcedures
b1 -> b2 {bankcharge / bank.requestCardCharge(self, ccId, amount)} -- call external service
b2 -> b3 {chargeResponseOK(chargeID) / chargedID := chargeID; self.bankOK} -- response OK
b2 -> b4 {chargeResponseFail / self.bankFail} -- response Fail
-- compensations
b1 -> b6 {bankrevoke}
b3 -> b5 {bankrevoke/ bank.revokeCardCharge(self,chargedID)} -- cancel external service
b5 -> b6 {bankrevokeOK} -- response from service
b4 -> b6 {bankrevoke}

end Car

Class Bank is

Signals:
requestCardCharge(cust:Car, cc:Token, amount:Token);
-- replies: cust.chargeResponseOK(chargeID)
-- cust.chargeResponseFail
revokeCardCharge(cust:Car, chargeID:Token);
-- replies: bankrevokeOK

State Top = s1

Transitions:
s1 -> s1 { requestCardCharge(cust,cc,amount) / cust.chargeResponseOK(bankopID) }
s1 -> s1 { requestCardCharge(cust,cc,amount) / cust.chargeResponseFail }
s1 -> s1 { revokeCardCharge(cust,chargeID) / cust.bankrevokeOK }

end Bank

Class RoadAssistance is

016004 (Sensoria) 13

Manual for Using the UMC Model of the Automotive Case Study (final) March 12, 2010

Signals:
------- GARAGE SERVICES -------
requestGarage(cust:Car,loc:Token);
-- replies: garageResponseOK(garageData) to car
-- garageResponseFail to car
--
revokeGarage(cust:Car,garageData:Token);
-- replies: garagerevokeOK
-------- TOWTRUCK SERVICES -------
requestTowTruck(cust:Car,loc:Token);
-- replies: towResponseOK(towData) to car
-- towResponseFail to car
--
revokeTowTruck(cust:Car, towData:Token)
-- replies: cust.towrevokeOK
------- RENTAL SERVICES -------
requestRentCar(cust:Car,loc:Token);
-- replies: rentResponseOK(rentData) to car
-- rentResponseFail to car
--
revokeRentCar(cust:Car, rentData:Token)
-- replies: cust.rentrevokeOK

State Top = Services
State Services = GarageService / TowTruckService / RentalCarService
State GarageService = g1
State TowTruckService = t1
State RentalCarService = r1

Transitions:

-- garage services
g1 -> g1 { requestGarage(cust,loc) / cust.garageResponseOK(garageData1) }
g1 -> g1 { requestGarage(cust,loc) / cust.garageResponseFail }
g1 -> g1 { revokeGarage(cust,garageData) / cust.garagerevokeOK }
-- tow truck
t1 -> t1 { requestTowTruck(cust,loc) / cust.towResponseOK(towData1) }
t1 -> t1 { requestTowTruck(cust,loc) / cust.towResponseFail }
t1 -> t1 { revokeTowTruck(cust,towData) / cust.towrevokeOK }
-- rental
r1 -> r1 { requestRentCar(cust,loc) / cust.rentResponseOK(rentData1) }
r1 -> r1 { requestRentCar(cust,loc) / cust.rentResponseFail }
r1 -> r1 { revokeRentCar(cust,rentData) / cust.rentrevokeOK }

end RoadAssistance

Objects:

bankopID, rentData1, garageData1, towData1, ccId1, amount1, gps1, list1: Token;

car1: Car;
bank1: Bank;
ra1: RoadAssistance

Abstractions {
Action: $1:engineFailure -> request(engineFailure,$1)
Action: $1:requestCardCharge -> request(charge,$1)
Action: $1.chargeResponseOK -> response(charge,$1)
Action: $1.chargeResponseFail -> fail(charge,$1)
Action: $1.requestGarage($2,$3) -> request(garage,$1,$2)
Action: $1:$2.garageResponseOK -> response(garage,$2,$1)
Action: $1:$2.garageResponseFail -> fail(garage,$2,$1)
Action: $1:$2.revokeGarage -> revoke(garage,$1,$2)
Action: $1:$2.requestRentCar -> request(rentalCar,$1,$2)
Action: $1:$2.rentResponseOK-> response(rentalCar,$2,$1)
Action: $1:$2.rentResponseFail-> fail(rentalCar,$2,$1)
State: inState(car1.Orchestartor.o1) -> accepting_request(engineFailure)
}

016004 (Sensoria) 14

	UMC
	Selecting a UMC model
	Experimenting with a UMC model

	Verification with UMC
	Interpreting a Counterexample

	The Full UMC Model of the On Road Assistance Scenario

