
1

Towards Automated Dependability Analysis of

Dynamically Connected Systems
Paolo Masci, Marco Martinucci and Felicita Di Giandomenico

Information Science and Technologies Institute

Italian National Research Council - Pisa, Italy

e-mail: {masci, martinucci, digiandomenico}@isti.cnr.it

Abstract

Dynamic environments may include autonomous and decentralised components that pose many

challenges from the point of view of interoperability, thus triggering research studies in several directions.

One of these challenges is the investigation of the automatic composition of heterogeneous systems willing

to communicate, by synthesising at run-time the connectors that allow interoperation. Besides functional

properties, synthesised connectors generally need to satisfy also non-functional (dependability-related)

properties. This paper investigates the definition of an automated procedure to support the synthesis of

dependable connectors.

Index Terms

Stochastic modelling, autonomous systems interoperation, automated dependability analysis.

I. INTRODUCTION

Ubiquitous computing refers to a vision of technology where devices are seamlessly integrated in the

environment and everyone benefits from their services without even being aware of their presence [1].

In such a vision, complex and pervasive systems are expected to be composed of autonomous and

decentralised components that cooperate or require services on the basis of specific needs. Pervasive

systems may evolve along time, rely on heterogeneous communication protocols, and dynamically es-

tablish communication at run-time. The fast pace at which technology evolves continuously undermines

the effectiveness of such systems because ubiquitous systems components need to exchange information,

but this ability is generally linked to the level of interoperability of their underlying technologies.

October 12, 2010 DRAFT

2

Among the current studies addressing the issue of interoperability of the next generation systems,

the European Project CONNECT [2] targets the dynamic synthesis of connectors via which networked

systems communicate. The resulting emergent connectors compose and adapt interaction protocols run

by the networked systems. The dynamic synthesis of connectors relies on activities related to discovery,

learning, and dependability [3] analysis: interaction protocols are, in general, not known a priori, and both

functional and non-functional (dependability-related) properties must be taken into account to synthesise

a proper connector that enables successful interactions among networked systems.

In this work, we report on the research we are undertaking towards the development of a Depend-

ability unit that implements an automated dependability analysis to support the synthesis of dependable

connectors. The Dependability unit employs a stochastic model-based analysis, which shows appropriate

to support design decisions during connector synthesis. We describe the logical architecture of a De-

pendability unit, and a prototype implementation of the modules composing its architecture. In order

to exemplify the functionalities of the Dependability unit and the practical utility during the synthesis

process, we consider a simple case study from a distributed marketplace scenario. In the considered

scenario, the dynamic synthesis of a connector with a given dependability level is required to enable

successful interoperation among heterogeneous consumers and merchants.

The paper is organised as follows. Section II summarises the main aspects of our reference frame-

work, which includes the units for Discovery/Learning, Synthesis, Dependability, and Monitoring. The

architectural structure of the Dependability unit is introduced in Section III, pointing out both its internal

organisation in modules and a possible implementation for each module. The case study on a distributed

and heterogeneous marketplace application is presented in Section IV. The final considerations and

conclusions are drawn in Section V and VI.

II. REFERENCE FRAMEWORK

Following the approach taken in the CONNECT Project, which is general and well suited for addressing

interoperability in the context of complex pervasive systems, we consider a reference framework with

four logical units: Discovery/Learning, Synthesis, Dependability and Monitoring.

Discovery/Learning. This unit gathers information on the networked systems. Specifically, the unit

discovers mutually interested networked systems, and retrieves information on the specification of the

interfaces of the networked systems. The unit assumes that networked systems are discovery enabled,

i.e., they provide a minimal description of their intent and functionalities. When networked systems do

October 12, 2010 DRAFT

3

not provide the complete description of their behaviour, the unit completes the specification through a

learning procedure (e.g., via model-based testing).

Synthesis. This unit performs the dynamic synthesis of mediating connectors to enable interoperation

among networked systems willing to interact. The unit uses the behavioural models built by Discov-

ery/Learning to identify mismatches between the communication protocols employed by the networked

systems, generates a connector that resolves the incompatibilities between the communication protocols,

and deploys the connector.

Dependability. This unit supports the Synthesis unit in the definition of a connector that enables networked

systems to interact with a given dependability level. Specifically, the unit executes a stochastic model-

based quantitative analysis to determine if the dependability [3] level of the connected system meets

the required dependability level –in the case the requirements are not satisfied, the unit reports possible

dependability enhancements to Synthesis.

Monitoring. This unit becomes operational when the connector is deployed. The unit continuously

monitors the deployed connector to update the functional and non-functional specification of the connector

with run-time data.

In this framework, a networked system broadcasts a connect request whenever a new connection to

a service is needed. The connect request contains a description of the requested service together with

a specification of the required dependability level for the service. When Discovery/Learning detects a

connect request, the unit searches the networked systems that can provide the requested service. If such

systems are found and operate a communication protocol different from that of the networked system

that made the connect request, Discovery/Learning activates Synthesis to generate a suitable connector

that enables interoperation. The Synthesis unit, on the basis of the specification of the communication

protocols, produces a mediating connector. Before connector deployment, Synthesis activates the De-

pendability unit to evaluate if the connected system that will be obtained satisfies the non-functional

requirements expressed by the networked systems. If the non-functional requirements are satisfied, the

connector is deployed; otherwise, Synthesis is supported by the Dependability unit in the definition

of possible enhancements that can be applied. Once the connector is deployed, the Monitoring unit

continuously updates the functional and non-functional specification of the connector with run-time data

October 12, 2010 DRAFT

4

Fig. 1. Input-Output relations between the Dependability unit and the other units.

to allow the other units to take into account dynamic system changes.

In this work, we elaborate on the Dependability unit. A Dependability-centric view of the input-output

relations between the Dependability unit and the other units is shown in Figure 1: Discovery/Learning

provides the dependability requirements; Synthesis provides the specification of the connected system,

and possibly requests a dependability enhancement; Monitoring provides run-time statistical data on the

execution of the deployed connector. The dependability assessment and the enhancements determined by

the Dependability unit are used by Synthesis.

III. ARCHITECTURE OF THE DEPENDABILITY UNIT

The Dependability unit is logically split into four main functional modules (see Figure 2): Builder,

Analyser, Evaluator and Enhancer. The Builder module derives the dependability model of the connected

system from the specification provided by Synthesis. The Analyser uses the generated dependability model

to perform a quantitative assessment of the non-functional requirements reported by Discovery/Learning.

The Evaluator checks the analysis results to determine if the non-functional requirements are met. If

the requirements are satisfied, the Evaluator reports to Synthesis that the connector can be successfully

deployed. If, on the other hand, the requirements are not satisfied, the Evaluator reports a warning message

to Synthesis. The Synthesis unit, in turn, may reply with a request to improve the dependability level

of the connected system. Upon receiving such enhancement request, the Evaluator module activates a

loop in the Dependability unit to determine solutions to improve the dependability level of the connected

system, e.g., use an updated specification that takes into account an alternative connector deployment or

enhance the connector specification with ad hoc dependability mechanisms.

October 12, 2010 DRAFT

5

Fig. 2. Architecture of the Dependability unit.

In the following, we provide more details on the functionalities of the modules of the Dependability

unit, and report on the prototype implementation we realised.

A. Builder

The Builder module takes in input the specification of the connected system from Synthesis, and

the dependability requirements from Discovery/Learning. The specification includes both the nominal

behaviour of the connected system, i.e., in fault-free situations, and the exceptional conditions, i.e., the

failure modes. The module produces in output a dependability model of the connected system that contains

enough details to assess the given dependability requirements.

Specification of the connected system. With reference to recent works on synthesis of mediating con-

nectors [4] and automata discovery/learning [5], the specification of the connected system is given with

Labelled Transition Systems (LTSs) annotated with non-functional information necessary to build the

dependability model of the connected system. An LTS is an abstract machine that represents the sequence

of actions performed by the system. Formally, an LTS is a tuple (S,S0,L, T), where S is a set of states,

S0 ⊆ S is a set of initial states, L is a set of labels, and T ⊆ S×L×S is a transition relation. Annotations

include, for each labelled transition, the following fields: time to complete, firing probability, failure mode,

and failure probability.

October 12, 2010 DRAFT

6

Dependability requirements. Typical dependability-related requirements are related with availability, re-

liability, performance and their combination. In our architecture, the dependability requirements provided

by the networked systems are translated by Discovery/Learning into metrics and guarantees. Metrics are

arithmetic expressions that describe how to obtain a quantitative assessment of the properties of interest

of the connected system. In this context, metrics are expressed in terms of transitions and states of the

LTS specification of the networked systems. Guarantees are boolean expressions that are required to be

satisfied on the metrics under a set of constraints.

Dependability model. The dependability model of the connected system is specified with a formalism

that allows to describe complex systems that have probabilistic behaviour, e.g., stochastic processes.

Implementation. The prototype implementation of the Builder module takes in input the LTS of the

connected system described with Finite State Processes (FSP) [6]. LTS annotations are expressed as C++

functions. The dependability model of the system is specified with Stochastic Activity Networks (SANs),

a generalisation of Stochastic Petri Nets introduced in [7] and formally defined in [8].

The SAN model is obtained from the LTS model by using the theory of regions [9]. A region identifies

a set of states in the LTS such that all transitions with the same label either enter, exit, or never cross the

boundary of the region. Each region in the LTS corresponds to a place in the derived SAN model, and

each labelled transition in the LTS corresponds to an activity in the SAN model. A similar approach has

already been used in other works to translate LTSs into Petri Nets (see, for instance, [10], [11] and [12]).

In our approach, in order to have a well-defined probabilistic model, non-deterministic choices among k

transitions outgoing from an LTS state are mapped in the SAN model into instantaneous activities with

k case probabilities.

The metric is an arithmetic expression that may contain a predefined set of functions (see Table I for

some examples). The guarantee is given by a boolean expression on the metric and a set of constraints on

the connected system model (e.g., constraints on the time frame of evaluation of the metric and constraints

on the behaviour of the networked systems). Statistical operators (e.g., mean and variance), comparison

and logical operators can be used in the expression. In order to uniquely identify states and transitions

of the metric expression that appear in the generated SAN model, renaming is used to constrain the

definition of the LTS regions.

October 12, 2010 DRAFT

7

Function Description

timeFrame(s) : S → R+ returns the interval of time when the system is in state s

minT imeStamp(tr) : T → R+ returns the first instant of time when transition tr fires

avgT imeStamp(tr) : T → R+ returns the average instant of time when transition tr fires

maxTimeStamp(tr) : T → R+ returns the last instant of time when transition tr fires

#(tr, t1, t2) : T × R+ × R+ → N returns number of times transition tr fires during the interval [t1, t2]

#(l, t1, t2) : L × R+ × R+ → N returns number of times transitions with label l fire during the interval [t1, t2]

TABLE I

EXAMPLES OF PREDEFINED FUNCTIONS THAT CAN BE USED IN THE METRIC EXPRESSION.

B. Analyser

The Analyser module takes in input the dependability model from the Builder module and the de-

pendability requirements from Discovery/Learning. The module builds a reward model, i.e., a model that

enables a quantitative assessment of the metrics of interest, and makes use of a solver engine to obtain

a quantitative assessment of the dependability metrics.

Reward model. The reward model is the dependability model extended with reward functions. Reward

functions allow to specify properties of interest: they return a value depending on the system state, and

can be evaluated either at an instant of time or accumulated over a time frame.

Solver. The solver evaluates the reward functions defined in the reward model. The evaluation can be

performed either with analytical approaches or with simulation. Analytical approaches are based on state

space analysis, and they are applicable when the model does not face state space explosion and when

timing information follow deterministic or exponential distributions. Simulation, on the other hand, is

always applicable (unless extremely rare events have to be evaluated), and is expected to be particularly

useful when a tradeoff between accuracy and time to perform the assessment is needed.

Implementation. The prototype implementation of the Analyser is based on Möbius [13], a popular

software tool that provides a comprehensive framework for model-based evaluation of dependability and

performance aspects of systems. The framework supports, among others, the SAN formalism.

In Möbius, each reward function is a C++ function that returns a value depending on the marking

October 12, 2010 DRAFT

8

of the SAN. There are two kinds of reward functions: rate rewards and impulse rewards. Rate rewards

are used to implement time-based reward functions. Impulse rewards are used to implement action-based

reward functions, i.e., they are associated with specific activities and can be evaluated only when the

associated activity completes.

The reward functions are automatically derived from the metrics expression as follows: the metric is

mapped into its syntax tree to decompose the metric into a combination of basic functions; the basic

functions are translated into C++ functions by using a predefined repository of function templates. For

instance, with reference to the functions shown in Table I, a rate reward template is used to translate

timeFrame(s), while an impulse reward template is used to translate #(tr, t1, t2). The content of the

repository of function templates is not shown in this work, but some details will be provided in the case

study shown in Section IV.

The Solver evaluates the reward functions via simulation. The quantitative assessment of the metric is

obtained from the assessment of the reward functions by merging the results according to the arithmetic

operations specified in the syntax tree of the metric expression.

C. Evaluator

The Evaluator reports to Synthesis if the connected system satisfies the dependability requirements

provided by Discovery/Learning. In the case of requirements mismatch, the Evaluator sends a warning

message to Synthesis, and may receive back a request to evaluate if enhancements can be applied to

improve the dependability level of the connected system.

Requirements mismatch. If the requirements are not satisfied, the Evaluator may receive a request to

explore one of the following three directions for improvements:

1. Update the specification of the connector to take into account an alternative connector deployment

(e.g., a deployment that uses a communication channel with lower failure rate). Upon receiving

this request, the Evaluator triggers a new analysis that considers the updated specification of the

connector.

2. Enhance the specification of the connector by including dependability mechanisms (e.g., a message

retransmission technique). Upon receiving this request, the Evaluator triggers a sensitivity analysis

whose objective is to understand which failure modes of the connected system have highest impact

on the dependability measure. Such failure modes will be the first ones to be considered for devising

appropriate counter-measures capable of limiting their effects. To this end, the Evaluator builds a

October 12, 2010 DRAFT

9

sensitivity analysis campaign to instruct the Builder module on the creation of dependability model

variants, each of which considers a specific subset of failure modes, among those foreseen. Whenever

a variant is generated, the Analyser module performs the assessment of the metrics on the generated

model. The Evaluator collects the analysis results and, after all variants have been analysed, produces

a ranking of the failure modes. This ranking is used by the Evaluator to iteratively activate the

Enhancer module as long as one of the following conditions is not met: the guarantees are satisfied,

or the Enhancer signals that all possible dependability mechanisms have been explored.

3. Apply a combination of the previously mentioned enhancements.

Implementation. The Evaluator compares the analysis results against the guarantees specified in the

requirements, and reports a message containing a boolean value to Synthesis. The Evaluator may receive

from Synthesis the following three types of enhancement requests:

• alternative deployment: upon receiving this request, the Evaluator triggers a new analysis that

considers the updated annotated LTS specification of the connector contained in the request.

• dependability mechanism: upon receiving this request, the Evaluator triggers a sensitivity analysis

that considers the impact of one failure mode at a time. Specifically, for each failure mode, a variant

of the SAN models is generated such that the considered failure mode is the only one considered in

the model. The ranking of the failure modes is obtained by assessing the metrics on the generated

variants: the higher the impact on the guarantees dissatisfaction, the higher the ranking of the failure

mode.

• combined enhancement: a request that allows a combined use of the previously mentioned enhance-

ments. The combined enhancement request contains the annotated LTS specification of the connector

for the alternative deployment, and an indication that the Evaluator module should also enable the

evaluation of dependability mechanisms to improve the connector. A field in the request is used to

specify if the enhancements should be evaluated individually and/or in combination. When evaluated

individually, an evaluation ordering is also provided.

D. Enhancer

The Enhancer is activated by the Evaluator when the guarantees are not satisfied and Synthesis makes

a request to enhance the connector with dependability mechanisms. The Enhancer is instructed by the

Evaluator module on the requirements mismatch and the failure mode that needs to be tackled. Specifically,

the Enhancer performs the following actions: (i) selects a dependability mechanism that can be employed,

October 12, 2010 DRAFT

10

(a) Original model. (b) Enhanced model with message retransmissions.

Fig. 3. Example of dependability mechanism and application rule.

among those available, to contrast the failure mode indicated by the Evaluator module; (ii) if all possible

applications of dependability mechanisms have already been explored without success, the Enhancer

sends a warning message to the Evaluator module; otherwise, the Enhancer instructs the Builder module

on the application of the selected dependability mechanism in the connected system model and triggers

a new analysis.

Dependability mechanisms. Dependability mechanisms are counter-measures that can be adopted to con-

trast failure modes. Typically, dependability mechanisms are based on the application of redundancy, e.g.,

duplication of system channels, or retry of message transmissions over system channels. The dependability

mechanism, in this context, will be embedded in the synthesised connector, because networked systems

are not under the control of the framework. Nevertheless, the dependability mechanisms embedded in the

connector can be employed to improve, to some extent, the dependability level of the networked systems.

For example, the reliability level of a transmission performed by a networked system can be improved

through timeouts or message retransmissions applied at the connector level.

Implementation. The dependability mechanism suitable to contrast a given failure mode is determined

through an ontology of dependability mechanisms, such as that reported in [14]. A detailed discussion

on the content of the ontology is out of the scope of this paper.

We developed ad hoc dependability models for a set of relevant dependability mechanisms, and a set

of rules to automate the application of the mechanisms in the SAN model of the connected system. The

ad hoc models can be parametric; for instance, a retransmission mechanism is parametric with respect

to the maximum number of allowed retransmissions. As an example of mechanism and application rule,

in Figure 3 we graphically show a retransmission mechanism and how to modify the original model in

October 12, 2010 DRAFT

11

order to apply message retransmissions to a send operation. Specifically, the original model contains a

timed activity send that models the send operation, an input gate send_cond that specifies the enabling

condition of the activity, and two output gates, send_success and send_fail, that specify the output

functions in the case of correct and faulty behaviour. The enhanced model is obtained from the original

model by adding the following elements: a place send_count, with initial marking the maximum

allowed number of retransmissions; an output gate send_count_reset, which resets the marking

of send_count to its initial value when the send succeeds; an output gate send_retry, which

reactivates send as long as send_count contains tokens, and resets the marking of send_count

after performing all retransmission attempts.

IV. CASE STUDY

In this section, we show in detail the operations performed by the modules of the Dependability unit to

support the synthesis of a dependable connector in a simple case study based on a distributed marketplace

with heterogeneous networked systems. In the considered scenario, consumers need to interoperate with

merchants to purchase products. Consumers and merchants have heterogeneous devices. In the general

case, each merchant and each consumer may use a different protocol. Without loss of generality, in this

case study we assume that all merchants have the same protocol P1, and that all consumers have the

same protocol P2 (P2 6= P1).

A. Connected System Specification

The LTS of the connected system is obtained as the parallel composition of the LTSs of consumers,

connectors and merchants, which are defined hereafter.

The consumer follows a tuple space protocol, e.g., LIME [15], in which communication is obtained

by reading and writing tuples onto a shared space. The consumer starts the interaction by writing a

browse request (tpListBrowse) in the tuple space to check the availability of a certain product. After

reading the response (tpListResp) from the tuple space, the consumer either restarts the interaction

(restart), or writes a purchase request (tpBuyReq) and then reads the confirmation of successful

transaction (tpBuyResp).

The merchant follows a message passing protocol, e.g., SOAP [16]. In the protocol, the consumer starts

the interaction with a discovery phase (spSearch). After receiving all responses (spResp) from the

available merchants, the consumer either directly sends a purchase request to a merchant (spBuyReq),

or starts a new discovery phase.

October 12, 2010 DRAFT

12

(a) Consumer (b) Merchant

(c) Connector for one consumer and one merchant

Fig. 4. LTS specifications.

In the connected system, the number of consumers ranges over [1, 100] and the number of merchants

ranges over {1, 3, 5}.

The synthesised connector is generated according to the algorithm reported in [4]. Specifically, a

tpListBrowse from a consumer is translated into a multicast spSearch directed to all merchants;

the spResps from the available merchants are collected and translated into a single tpListResp; a

tpBuyReq from a consumer is translated into an spBuyReq followed by a tpBuyResp. A connector

enables the interaction between one consumer and many merchants. The LTSs of consumer, merchant

and connector are shown in Figure 4. The complete FSP specification is reported in the Appendix.

Annotations. All transitions are exponentially distributed, and have a rate equal to one message per

second. The probability that the consumer restarts the communication is Prestart. The failure mode of

a transition associated with any send (spSearch, tpListResp, spBuyReq and tpBuyResp) and

any receive (tpListBrowse, spResp, tpBuyReq) action performed by the connector is message

omission. The omission probability of the transition is linked to the number of devices that use the

channel. Consumers and merchants use different channels, and there is an exponential relation between

the omission probability and the number of devices that use the channel. The omission probability for

consumers results in the interval [0.7, 0.85], while for merchants results in the interval [0.92, 0.96].

October 12, 2010 DRAFT

13

B. Dependability Requirements

The metric is Service Discovery Ratio (SDR), which gives the mean probability for a consumer to

successfully complete a purchase transaction with a merchant in a given time frame. The metric is specified

in terms of networked system transitions as follows: SDR(t1, t2) =
#((S3, tpBuyResp, S0), t1, t2)

#((S0, tpListBrowse, S1), t1, t2)
.

The guarantee on the metric is mean(SDR(0, 200)) ≥ 0.7. The constraint are: the consumer performs

only one, fault-free, tpListBrowse request during the interval [0, 200], and a product is purchased

after the consumer has successfully checked the availability of a merchant. These constraints can be

expressed by the conjunction of the following conditions: the tpListBrowse request completes exactly

once during the interval [0, 200], i.e., #((S0, tpListBrowse, S1), 0, 200) = 1, such request is correctly

received by the connector, i.e., P (fail(S0, tpListBrowse, S1) | fire(S0, tpListBrowse, S1)) = 0, and

the consumer does not restart the transaction, i.e., P (fire(S2, restart, S0)) = 0.

C. Automated Dependability Analysis

Dependability Model. The SAN model automatically generated by the Builder module has a timed activity

for each labelled transition in the LTS. All activities have two case probabilities: case 1 is associated to

the correct behaviour, while case 2 models the omission failure specified in the annotations. In order to

show a human-readable model, in Figure 5(a) we show the LTS model in the case of one consumer and

two merchants, and in Figure 5(b) we show the SAN model obtained from such LTS.

Reward Model. The syntax tree of the SDR metric expression has two branches: the quotient operator is

the root of the tree, and the dividend and divisor are the two branches of the tree. The functions of the two

branches are translated into impulse reward functions associated to the timed activities tpBuyResp_11,

tpBuyResp_12, and tpListBrowse_1. The reward functions return 1 every time such transitions

fire. The impulse rewards are evaluated during the time frame [0, 200], as specified in the guarantee.

Dependability Assessment. The generated reward model is evaluated via simulation. Connected systems

with different number of consumers (c) and merchants (m) are considered, according to the provided

specification (c ∈ [10, 100] and m ∈ {1, 3, 5}). In Figure 6(a), we show the threshold specified in the

requirements (70%) and the trend of SDR (on the y axis) for different number of consumers (on the

x axis) and different number of merchants (one curve for each possible number of merchants). We can

notice that SDR monotonically decreases as the number of consumers gets larger. This is reasonable

because, according to the specification of the channel used by the connector, higher number of consumers

October 12, 2010 DRAFT

14

(a) LTS model of the connected system.

(b) SAN model of the connected system.

Fig. 5. Connected system models with one consumer, one connector and two merchants.

leads to higher message loss. The same applies when comparing the curves with different number of

merchants: if we fix the number of consumers, SDR is lower when the connected system contains a

higher number of merchants. This is due to the fact that the connector must wait for the responses from

all merchants before replying to the consumer, and the probability that at least one response gets lost

increases when the system contains a higher number of merchants.

Evaluation of Results. The guarantee (SDR ≥ 0.7) is not satisfied for the admissible range of consumers

and merchants. The Evaluator reports a warning message to Synthesis; here, we assume that Synthesis

replies with a combined improvement request with a new deployment type and a dependability mechanism.

The improvements must be evaluated individually and in combination. The specification associated with

the new deployment reports that the failure mode on the consumers’ channel is still linked to the number

of devices that use the channel through an exponential relation, but that the omission probability results

in the range [0.81, 0.96]. The first improvement that must be evaluated is a new deployment type.

Dependability Enhancement. The analysis results for the alternative deployment are shown in Figure 6(b).

The guarantee is still not met for connected systems with high number of consumers and merchants.

October 12, 2010 DRAFT

15

(a) Synthesised connector. (b) Alternative connector deployment.

Fig. 6. Metric assessment.

(a) Failures only on consumers’ channel. (b) Failures only on merchants’ channel.

Fig. 7. Sensitivity analysis.

The Evaluator, hence, triggers a sensitivity analysis for the possible failure modes. The impact of

each failure mode is evaluated separately. The results of the analysis when the omission failure on the

consumers’ channel is the only one considered are shown in Figure 7(a); the results when the failure

on the merchants’ channel is the only one considered are shown in Figure 7(b). The Evaluator gives the

highest rank to the failure mode on the consumers’ channel because the number of times the guarantee

is dissatisfied is higher when the failure on the consumers’ channel is enabled.

October 12, 2010 DRAFT

16

(a) Original deployment and retransmissions. (b) Alternative deployment and retransmissions.

Fig. 8. Metric assessment when using dependability mechanisms.

The Enhancer, according to the ontology of dependability mechanisms, chooses a message retransmis-

sion technique to contrast the omission failures. We assume that the ontology reports that the maximum

allowed number of retransmissions is 2. Figure 8(a) shows the analysis results for a connected system

when the connector is enhanced with message retransmissions. The figure reports the value of SDR in

case of 5 merchants, which is the most critical scenario. In the figure, Rc (Rm) represent the number

of retransmissions performed on the consumers’ (merchants’) channel. The Enhancer tries to apply first

the retransmission mechanism to the transitions performed on the consumers’ channel. Nevertheless, the

guarantee is not satisfied even when the maximum allowed number of retransmissions is used. Hence,

the Enhancer applies the retransmission technique also to the transitions performed on the merchants’

channel. Although SDR gets further improved, the guarantee is still not satisfied when the connected

system contains high number of merchants.

The Evaluator, then, triggers an analysis of the connected system in the case of combined use of

the two improvements. Figure 8(b) shows the analysis results for a connected system with 5 merchants

(the most critical scenario): the first combination found that allows to satisfy the guarantee uses the

alternative connector deployment and extends the connector specification with two retransmissions on

the consumers’ channel (Rc = 2), and one retransmission on the merchants’ channel (Rm = 1). This

information is reported to Synthesis in order to enable the deployment of an enhanced connector that

satisfies the given dependability requirements.

October 12, 2010 DRAFT

17

V. FINAL DISCUSSION

The architectural structure and implementation described in this paper constitute an important step

towards the definition of an automated procedure to provide dependability analysis as a support the

synthesis of dependable connectors. There are several aspects that still need to be investigated to fully

reach the ambitious goal of automated dependability analysis, and a discussion on the main points that

need to be addressed is proposed in the following.

Possible constraints on the time allowed for the dependability analysis to complete have not been

accounted for so far. At the moment, the envisaged applications of the framework assume that networked

systems networked systems do not suspend their activity while waiting the connector to be ready. Indeed,

at the moment, timing constraints are considered only on the operations performed after connector

deployment. Performing dependability analysis in a complete on-line setting is a very challenging problem

and techniques are need to balance between time to produce results and their accuracy. For instance, in

the automatic generation of the dependability model from the specification of the connected system, a

technique needs to be developed to optimise the dependability model on the basis of the specific metrics

that needs to be assessment.

Compositional solution methods for the dependability model would be desirable, possibly reusing

partly solved model, e.g., when the synthesised connector is derived as specialisation of an already

existing connector that has already been analysed, or when already analysed dependability mechanisms are

introduced in the dependability model. Indeed, although the addressed context is dynamic and evolving,

we assume that the pace at which evolution occurs is in general considerably slower that the requested

rate of an already available connector. Hence, the networked systems are expected to remain stable for

a significant portion of their lifetime and to request services for which the same synthesised connector

can be reused to satisfy interoperability.

The ontology to support enhancement of the connector model with dependability mechanisms coping

with failure patterns needs to be extended over time with new mechanisms, to enhance the handling of

failure modes or to contrast new failure modes. We should also take into account that the identification of

the dependability mechanisms may depend on the connector deployment, i.e., the connector may share

resources with some of the bridged networked system, or the connector may have its own resources

separate from those of the networked systems.

October 12, 2010 DRAFT

18

VI. CONCLUSIONS

This paper has presented an approach for the realisation of a completely automated dependability

analysis in heterogeneous and dynamic environments. The presented research activity is undertaken in

the context of the framework proposed in the European project CONNECT, which is general and well suited

for addressing interoperability in the context of complex pervasive systems. A model-based approach has

been adopted, which can be successfully employed since the early stages of the connector synthesis. The

logical architecture of a Dependability unit that supports the synthesis of dependable connectors has been

presented together with a prototype implementation. A simple case study has been considered to show

how the approach works and the utility of the Dependability unit in guiding the connector synthesis.

ACKNOWLEDGEMENTS

This work is partially supported by the EU FP7 Project CONNECT (FP7–231167).

REFERENCES

[1] M. Weiser, “The computer for the twenty-first century,” Scientific American, pp. 94–104, September 1991.

[2] “EU FP7 Project CONNECT (FP7–231167),” 2009–2013, http://connect-forever.eu/.

[3] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr, “Basic concepts and taxonomy of dependable and secure

computing,” IEEE Transactions on Dependable and Secure Computing, vol. 1, pp. 11–33, 2004.

[4] R. Spalazzese and P. Inverardi, “Mediating connector patterns for components interoperability,” in Proceedings of the

European Conference on Software Architecture (ECSA2010) - To Appear, 2010.

[5] H. Raffelt, B. Steffen, and T. Berg, “Learnlib: a library for automata learning and experimentation,” in FMICS ’05: the

10th intl. workshop on Formal methods for industrial critical systems. New York, NY, USA: ACM, 2005, pp. 62–71.

[6] J. Magee and J. Kramer, Concurrency: state models & Java programs. New York, NY, USA: John Wiley & Sons, 2006.

[7] A. Movaghar and J. F. Meyer, “Performability modelling with stochastic activity networks,” in 1984 Real-Time Systems

Symposium. Austin, TX: IEEE Computer Society Press, December 1984, pp. 215–224.

[8] W. H. Sanders and J. F. Meyer, “Stochastic activity networks: formal definitions and concepts,” pp. 315–343, 2002.

[9] A. Ehrenfeucht and G. Rozenberg, “Partial (set) 2-structures. Part I: basic notions and the representation problem,” Acta

Inf., vol. 27, no. 4, pp. 315–342, 1990.

[10] J. Cortadella, M. Kishinevsky, L. Lavagno, and A. Yakovlev, “Deriving petri nets from finite transition systems,” IEEE

Trans. Comput., vol. 47, no. 8, pp. 859–882, 1998.

[11] U. Buy and G. Singal, “Toward efficient algorithms for generating compact petri nets from labeled transition systems,” in

COMPSAC ’02. Washington, DC, USA: IEEE Computer Society, 2002, pp. 717–722.

[12] J. Carmona, J. Cortadella, and M. Kishinevsky, “Genet: A tool for the synthesis and mining of petri nets,” in ACSD ’09.

Washington, DC, USA: IEEE Computer Society, 2009, pp. 181–185.

[13] “Mobius tool,” http://www.mobius.illinois.edu/.

[14] “ReSIST: Resilience for Survivability in IST. Deliverable D33: Resilience-explicit computing.” Tech. Rep., 2008.

October 12, 2010 DRAFT

19

[15] A. L. Murphy, G. P. Picco, and G.-C. Roman, “Lime: A coordination model and middleware supporting mobility of hosts

and agents,” ACM Trans. Softw. Eng. Methodol., vol. 15, no. 3, pp. 279–328, 2006.

[16] M. Gudgin, M. Hadley, N. Mendelsohn, J.-J. Moreau, and H. F. Nielsen, “Soap version 1.2 part 2: Adjuncts,” W3C

Recommendation, June 2003. [Online]. Available: http://www.w3.org/TR/soap12-part2/

October 12, 2010 DRAFT

20

APPENDIX

/* FSP specification of the distributed marketplace scenario */

const ConsumerN = 100

const MerchantN = 5

range CN = 1..ConsumerN

range MN = 1..MerchantN

CONSUMER = (tpListBrowse -> tpListResp ->

(restart -> CONSUMER | tpBuyReq -> tpBuyResp -> CONSUMER)).

MERCHANT = (spSearch -> spResp -> MERCHANT | spBuyReq -> MERCHANT).

MainCONNECTOR = (tpListBrowse -> spSearch -> tpListResp ->

(restart -> MainCONNECTOR | select -> tpBuyResp -> MainCONNECTOR)).

SubCONNECTORa = (spSearch -> spResp -> tpListResp -> SubCONNECTORa).

SubCONNECTORb = (select -> tpBuyReq -> spBuyReq -> tpBuyResp -> SubCONNECTORb).

||CONNECTOR = (con:MainCONNECTOR /{ tpListBrowse/con.tpListBrowse, spSearch/con.spSearch,

tpListResp/con.tpListResp, restart/con.restart,

forall[i:MN] {select[i]/con.select},
forall[i:MN] {tpBuyResp[i]/con.tpBuyResp} }

|| sa[MN]:SubCONNECTORa /{ forall[i:MN] {spSearch/sa[i].spSearch},
forall[i:MN] {spResp[i]/sa[i].spResp},
forall[i:MN] {tpListResp/sa[i].tpListResp} }

|| sb[MN]:SubCONNECTORb /{ forall[i:MN] {select[i]/sb[i].select},
forall[i:MN] {tpBuyReq[i]/sb[i].tpBuyReq},
forall[i:MN] {spBuyReq[i]/sb[i].spBuyReq},
forall[i:MN] {tpBuyResp[i]/sb[i].tpBuyResp} })\ {select}.

||SYS = (c[CN]:CONSUMER /{ forall[i:CN] {tpListBrowse[i]/c[i].tpListBrowse},
forall[i:CN] {tpListResp[i]/c[i].tpListResp},
forall[i:CN] {restart[i]/c[i].restart},
forall[i:CN] { forall[j:MN] {tpBuyReq[i][j]/c[i].tpBuyReq} },
forall[i:CN] { forall[j:MN] {tpBuyResp[i][j]/c[i].tpBuyResp} } }

|| m[MN]:MERCHANT /{ forall[i:MN] {forall[j:CN] {spSearch[j]/m[i].spSearch} },
forall[i:MN] {forall[j:CN] {spResp[j][i]/m[i].spResp} },
forall[i:MN] {forall[j:CN] {spBuyReq[j][i]/m[i].spBuyReq} } }

|| con[CN]:CONNECTOR /{ forall[i:CN] {tpListBrowse[i]/con[i].tpListBrowse},
forall[i:CN] {spSearch[i]/con[i].spSearch},
forall[i:CN] {tpListResp[i]/con[i].tpListResp},
forall[i:CN] {restart[i]/con[i].restart},
forall[i:CN] { forall[j:MN] {tpBuyReq[i][j]/con[i].tpBuyReq[j]} },
forall[i:CN] { forall[j:MN] {spBuyReq[i][j]/con[i].spBuyReq[j]} },
forall[i:CN] { forall[j:MN] {tpBuyResp[i][j]/con[i].tpBuyResp[j]} },
forall[i:CN] { forall[j:MN] {spResp[i][j]/con[i].spResp[j]} } }).

October 12, 2010 DRAFT

