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Abstract As the number of digital images is growing fast and Content-based Image

Retrieval (CBIR) is gaining in popularity, CBIR systems should leap towards Web-

scale datasets. In this paper, we report on our experience in building an experimental

similarity search system on a test collection of more than 50 million images. The first

big challenge we have been facing was obtaining a collection of images of this scale with

the corresponding descriptive features. We have tackled the non-trivial process of image

crawling and extraction of several MPEG-7 descriptors. The result of this effort is a test

collection, the first of such scale, opened to the research community for experiments and

comparisons. The second challenge was to develop indexing and searching mechanisms

able to scale to the target size and to answer similarity queries in real-time. We have

achieved this goal by creating sophisticated centralized and distributed structures based

purely on the metric space model of data. We have joined them together which has

resulted in an extremely flexible and scalable solution. In this paper, we study in detail

the performance of this technology and its evolvement as the data volume grows by

three orders of magnitude. The results of the experiments are very encouraging and

promising for future applications.

Keywords similarity search · content-based image retrieval · metric space · MPEG-7

descriptors · peer-to-peer search network

1 Introduction

It is common in database community to open a discussion with some reference to

the data explosion. According to recent studies, we will create more data in the next

three years than has been produced in all of human history. But where is all this data
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coming from? The Enterprise Strategy Group1 estimates that more than 80 billion

photographs are taken each year. To store them would require 400 petabytes of storage.

If an average digital photo occupies 750 KB, it takes as much space as 30 pages of digital

text, i.e., about 18,000 words. The management of digital images promises to emerge

as a major issue in many areas providing a lot of opportunities in the next couple of

years, particularly since a large portion of pictures remains as “unstructured data”.

Current searching engines headed by Google are in the center of current informa-

tion age; Google answers daily more than 200 million queries against over 30 billion

pages. However, the search power of these engines is typically limited to text and its

similarity. Since less than 1% of the Web data is in textual form, the rest being of

multimedia/streaming nature, we need to extend our next-generation search to accom-

modate these heterogeneous media. Some of the current engines search these data types

according to textual information or other attributes associated with the files. An or-

thogonal and well-established approach is the Content-based Image Retrieval (CBIR).

However, the problem of Web-scale CBIR does not seem to be solved in a satisfactory

manner. The current publicly-available systems for large-scale CBIR index typically

hundreds of thousands of images. There is a high discrepancy between these numbers

and the volumes of images available on current Web, so we decided to investigate the

situation by shifting the current bounds up by two orders of magnitude.

This work results from a cooperation of two research groups within the European

project SAPIR2 and it builds on experience and results accumulated over a long-term

research in the area of CBIR and especially similarity indexing and searching. In the

context of the SAPIR project, which aims at finding new content-based methods to

analyze, index, and search large amounts of speech, image, video, and music, we have

intended to develop a large-scale architecture for indexing and searching in image

collections according to visual characteristics of their content. The system should be

able to scale to the order of tens, or even hundreds, of millions. Until now, no image

collection with respective descriptive features of such size has been available. The first

contribution of this work is a report on the nontrivial goal of crawling a set of over

50 million images from a photo-sharing system Flickr3 and extraction of five MPEG-7

features from every image. This collection, called CoPhIR Test Collection [1], has now

been made available to the research community.

We use a specific combination of the visual features [3] to get an effective similarity

measure for generic photo images. This combination can be effectively modeled by a

metric space [27] and we have developed efficient indexing and searching mechanisms

based purely on this data model. Another contribution of this work is a description of

the route from indexing tens of thousands of images up to tens of millions and especially

a unique comparison of performance experiments conducted in individual steps. The

results show that we have achieved our goal and the final system synergically combining

centralized and distributed search techniques can manage at least tens of millions of

images while answering similarity queries in real-time. All our indexing and searching

technologies were created within the MUFIN project [2]. Since the metric approach is

highly versatile, all these mechanisms can be straightforwardly applied to various data

types, for example, face recognition, music, video clips, etc.

1 http://www.enterprisestrategygroup.com/
2 EU IST FP6 project 045128: Search on Audio-visual content using Peer-to-peer IR
3 http://www.flickr.com/
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The rest of the paper is organized as follows. Section 2 maps the current state

in the area of large-scale CBIR and it marks out the challenges we decided to face

in this paper. Section 3 describes the process of building the test collection: crawling

the images and extraction of the MPEG-7 features. Section 4 maps the evolution and

performance of our indexing and searching mechanisms. Finally, Section 5 analyzes the

results obtained, discussing also future research directions opened by our achievements.

2 Objectives

Before we specify the objectives and quantitative challenges of our work we mention

the current systems for large-scale CBIR which are taken as a stepping stone.

2.1 Current State

As documented by a very recent and comprehensive survey [10], the endeavour after

analyzing and searching digital images lasts for fifteen years, at least. Focusing on the

large-scale systems for image retrieval, there is a number of publicly-available systems

which base the search on annotations or other attributes associated with the images. In

this case, traditional well-established indexing and searching techniques can be applied

in order to efficiently manage Web-scale image collections: Google Images, Yahoo!,

ExaLead4, or PicSearch5. Because these systems may suffer from a lack of trustworthy

image annotations, there are attempts to increase the quality of image labeling via

interactive public-domain games, e.g. The ESP Game6 or Google Image Labeler7.

Searching photos by the geographic locations where they were taken is another example

of attribute-based search. This functionality is provided, e.g. by Flickr system8, which

allows users to query about 30 million images in this way.

An orthogonal approach is adopted by CBIR techniques which search the images

according to their visual content similarity. Such techniques typically extract a char-

acterization (signature) of the image content, which is then used for indexing and

searching. A majority of theoretical works and their applications [10,25] are specialized

and tuned for a specific application domain and/or they manage relatively small data

collections. Speaking about large-scale systems, the Tiltomo project9 indexes about

140,000 images from Flickr and searches them by color and texture characteristics; it

also allows to combine it with “subject” searching. The ImBrowse10 system allows to

search a collection of about 750,000 images by color, texture, shapes and combinations

of these (employing five different search engines). The Cortina system [12] searches over

10 million images by means of three MPEG-7 descriptors which are stored in flat file

structures. The authors provide no technical details nor mention any response times

or other performance characteristics. Recently, the Idée Inc. company has started a

4 http://www.exalead.com/
5 http://www.picsearch.com/
6 http://www.espgame.org/
7 http://images.google.com/imagelabeler/
8 http://www.flickr.com/map/
9 http://www.tiltomo.com/

10 http://media-vibrance.itn.liu.se/vinnova/cse.php
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product11 which searches a commercial database of 2.8 million images. No details of

the data, search technology or system performance could be found.

Another research stream is an automatic image annotating based on the analysis of

the image content. System ALIPR [16] uses a training set of images which is separated

into a number of concept categories; these categories are annotated. The indexed im-

ages are categorized and annotated by means of extracting visual features from them

and by applying statistical methods. Searching is then based purely on the assigned

annotations. The ALIPR has a public demo12; its internal functionality is provided by

a system SIMPLIcity [26].

A great research effort is still necessary in the area of CBIR: different approaches

have to be tried and evaluated. It is important to evaluate their user-perceived ef-

fectiveness as well as their performance on large-scale volumes. In this direction, it

is worth mentioning the activities of several European research projects, in the field

of multimedia search, integrated in the Chorus13 initiative. Still, a high discrepancy

remains between the data volumes which can be searched by content efficiently and

the billions of images available on the Web nowadays.

2.2 Scalability Challenge

Regarding the quantitative characteristics of current search engines as mentioned above,

we have established our scalability challenge as follows:

– to incrementally build, index, and test image collection up to 100 million images;

– the search time for main memory indexes ≤ 1 s;

– the search time for disk-based indexes up to 2–3 s.

These objectives go far beyond the current practice. On the data acquisition level,

this would require to download and process from 15TB to 50TB of data, depending

on the image resolution. Moreover, we need a storage space for the image descriptors

(including the MPEG-7 features) and the thumbnails of about 1.5TB. We also have to

bear in mind that the image crawling and feature extraction process would take about

12 years on a single standard PC and about 2 years using a high-end multi-core PC.

Since the content-based retrieval is much more expensive than the text search,

such data volume needs a non-trivial computational infrastructure support and it is

necessary to apply scalable mechanisms to use the infrastructure effectively. By analogy

to data acquisition, having one single-processor PC, evaluation of a similarity query on

an image content index with a sequential scan would take over 10 hours, if the index

is on disk, and about one hour, if the index could fit in main memory.

3 Building the Image Collection

Collecting a large amount of images for investigating CBIR issues is not an easy task,

at least from a technological point of view. The challenge is mainly related to the size

of the collection we are interested in. Shifting state-of-the-art bounds of two orders of

magnitude means building a 100 million collection, and this size makes it very complex

11 http://labs.ideeinc.com/
12 http://www.alipr.com/
13 http://www.ist-chorus.org/
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to manage every practical aspect of the gathering process. However, since the absence

of a publicly available collection of this kind has probably limited the academic research

in this interesting field, we tried to do our best to overcome these problems. The main

issues we had to face were:

1. identification of a valid source;

2. efficient downloading and storing of such a large collection of images;

3. efficient extraction of metadata (MPEG-7 visual descriptors and others) from the

downloaded images;

4. providing reliable data-access to metadata.

In the following we will discuss the above issues by describing the challenges, the

problems we encountered, and the decisions we took.

3.1 Choosing the Data Source

Crawling the Web is the first solution if you are looking for a practically unlimited

source of data. There are plenty of images on the Web, varying in quality from almost

professional to amateur photos, from simple drawings to digital cartoons.

There are also many different ways to retrieve such data. The first option is to

exploit spider agents that crawl the Web and download every image found on the

way. Of course, this would result in a large amount of time and bandwidth wasted

in downloading and parsing HTML pages, possibly gathering only a few images. The

authors of [6] report that the average number of images hyperlinked by HTML pages

is varying. In their experiments with the Chilean Web, they repeatedly downloaded

each time about 1.3 million Web pages. The number of images retrieved were 100,000

in May 2003, 83,000 in August 2003 and 200,000 in January 2004. Thus, assuming that

these percentages are still valid today, we can expect that:

Fact: To gather 100 million images, we would have to download and parse from

650 million to 1.5 billion Web pages.

A second option, which may be more efficient, is to take advantage of the image

search service available on most commercial Web search engines. Just feeding the search

engine with queries generated synthetically, or taken from some real query log, would

provide us with plenty of images.

This abundance and diversity of Web images is definitely a plus. Not only because

we want a large collection, but also because we want our collection to spread over

different kinds of images. A problem is instead given by the large differences in the

quality and size of the retrieved images. A large portion of them are decoration elements

like buttons, bullet list icons, and many other which are very small images or photo

thumbnails. These images are not suitable for our purposes and would pollute the

corpus, some of them could be filtered out automatically as the feature extraction

software is likely to fail on images with non-standard sizes.

However, for the need of high-quality data, we finally decided to follow a third way:

crawling one of the popular photo sharing sites born in the last years with the goal

of providing permanent and centralized access to user-provided photos. This approach

has several advantages over the aforementioned approaches.
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Image Quality In fact photo sharing sites like Flickr, PhotoBucket, Picasa, Kodak

EasyShare Gallery, Snapfish, etc. mainly store high-quality photographic images. Most

of them are very large since they come from 3–8 Megapixel cameras, and have a stan-

dard 4:3 format.

Collection Stability These sites provide quite static, long term and reliable image repos-

itories. Although images may be deleted or made private by the owners, this happens

quite rarely. Most photos stay available for a long time and they are always easily

accessible. Conversely, the Web is much more dynamic, images change or are moved

somewhere else, pages are deleted and so on.

Legal Issues The above consideration is very important also when considering the

legal issues involved in the creation of such collection of images. In fact, storing for

a long time a publicly available image may in some case violate author’s copyrights.

We are mainly interested in the visual descriptors extracted from the images, but any

application of CBIR has to access the original files for eventually presenting the results

retrieved to a human user. Since Photo sharing sites are fairly static, we can build a

quite stable collection without permanently storing the original files, but maintaining

only the hyperlinks to the original photos that can be accessed directly at any time.

Rich Metadata Finally, photo sharing sites provide a significant amount of additional

metadata about the photos hosted. The digital photo file contains information about

the camera used to take the picture, the time when it was taken, the aperture, the

shutter, etc. More importantly, each photo comes with the name of the author, its title,

and a description, often with user-provided tags. Sometimes also richer information is

available such as comments of other users on the photo, the GPS coordinates of the

location where the photo was taken, the number of times it was viewed, etc.

Among the most popular photo sharing sites, we chose to crawl Flickr, since it is

one with the richest additional metadata and provides an efficient API14 to access its

content at various levels.

3.2 Crawling the Flickr Contents

It is well known that the graph of Flickr users, similarly to all other social media

applications, is scale free [15]. We thus exploited the small-world property of this kind

of graphs to build our huge photo collection. By starting from a single Flickr user

and following friendship relations, we first downloaded a partial snapshot of the Flickr

graph. This snapshot of about one million distinct users was crawled in February 2007.

We then exploited the Flickr API to get the whole list of public photo IDs owned by

each of these users. Since Flickr Photo IDs are unique and can be used to unequivocally

devise a URL accessing the associated photo, in this way we have easily created a 4.5 GB

file with 300 million distinct photo IDs.

In the next step, we decided what information to download for each photo. Since

the purpose of the collection is to enable a general experimentation on various CBIR re-

search solutions, we decided to retrieve almost all information available. Thus, for each

14 http://www.flickr.com/services/api/
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photo: title and description, identification and location of the author, user-provided

tags, comments of other users, GPS coordinates, notes related to portions of the photo,

number of times it was viewed, number of users who added the photo to their favourites,

upload date, and, finally, all the information stored in the EXIF header of the image

file. Naturally, not all these metadata are available for all photos. In order to support

content based search, we extracted several MPEG-7 visual descriptors from each im-

age [18]. A visual descriptor characterizes a particular visual aspect of an image. They

can be, therefore, used to identify images which have a similar appearance. Visual

descriptors are represented as vectors, and the MPEG-7 group proposed a distance

measure for each descriptor to evaluate the similarity of two objects [17]. Finally, we

have chosen the five MPEG-7 visual descriptors described below [17,13]:

Scalable Color It is derived from a color histogram defined in the Hue-Saturation-

Value color space with fixed color space quantization. The histogram values are

extracted, normalized and non-linearly mapped into a four-bit integer representa-

tion. Then the Haar trasform is applied. We use the 64-coefficients version of this

descriptor.

Color Structure It is also based on color histograms but aims at identifying localized

color distributions using a small structuring window. We use the 64-coefficients

version of this descriptor.

Color Layout It is obtained by applying the DCT transformation on a 2-D array of

local representative colors in Y, Cb, or Cr color space. This descriptor captures both

color and spatial information. We use the 12-coefficients version of this descriptor.

Edge Histogram It represents local-edge distribution in the image. The image is

subdivided into 4× 4 sub-images, edges in each sub-image are categorized into five

types: vertical, horizontal, 45◦ diagonal, 135◦ diagonal and non-directional edges.

These are then transformed in a vector of 80 coefficients.

Homogeneous Texture It characterizes the region texture using the mean energy

and the energy deviation from a set of 30 frequency channels. We use the complete

form of this descriptors which consists of 62 coefficients.

There are several other visual descriptors in the MPEG-7 standard which can be

useful, for example, for specialized collections of images (e.g. medical). Our experi-

ence [3] suggests that these five descriptors perform quite well on non-specialized im-

ages, such as the ones in our collection.

Unfortunately, the extraction of MPEG-7 visual descriptors from high-quality im-

ages is very computationally expensive. Although the MPEG-7 standard exists for

many years, there is not an optimized extraction software publicly available. To ex-

tract descriptors, we used the MPEG eXperimentation Model (MPEG-XM) [13] that

is the official software certified by the MPEG group that guarantees the correctness of

the extracted features. This software running on a AMD Athlon XP 2000+ box takes

about 4 seconds to extract the above five features from an image of size 500 × 333

pixels. Therefore, even without considering the time needed to download the image

and all additional network latencies involved, we can estimate that:

Fact: A single standard PC would need about 12 years to process a collection of

100 million images.

It was thus clear that we needed a large number of machines working in parallel to

achieve our target collection of 100 million images in a reasonable amount of time. For
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Fig. 1 Organization of the crawling and feature extraction process.

this reason, we developed an application that allows to process images in parallel on an

arbitrary (and dynamic) set of machines. This application is composed of three main

components: the image-id server, the crawling agents, and the repository manager as

shown in Figure 1.

The image-id server was implemented in PHP as a simple Web application ac-

complishing the task of providing crawling agents with an arbitrary number of photo

identifiers not yet processed.

The crawling agent is the core part of our application. It loops asking the image-id

server for a new set of image identifiers to process. Once it obtains a set from the server,

it starts the actual retrieval and feature extraction process. Given a photo ID, the first

step is to issue an HTTP request and download the corresponding Flickr photo-page.

This is parsed to retrieve the URL of the image file and some of the metadata discussed

above. Thanks to Flickr APIs, this metadata is then enriched with other information

(title of the photo, description, tags, comments, notes, upload date, user name, user

location, GPS coordinates, etc.).

We downloaded medium-resolution version of the photos, which have the larger di-

mension of 500 pixels. This improves the independence of extracted features from image

size and reduces the cost of processing large images. The MPEG-XM [18] software is

used to extract the aforementioned five visual descriptors.

The extracted features and all the available metadata are used to produce an XML

file containing the knowledge we collected from the image. Finally, a thumbnail is also

generated from the photo. The XML file and the thumbnail of the image are sent to a

Web-service provided by the repository manager.

The repository manager runs on a large file-server machine providing 10TB of

reliable RAID storage. In addition to receive and store the results processed by the

crawling agents, the repository manager also provides statistic information about the

state of the crawling process and basic access methods to the collection.

Fact: Disks provide a potentially unreliable storage and, actually, two disks had

to be replaced.
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Fig. 2 Machines collaborating on the crawling.

3.3 Using the GRID for Crawling and Feature Extraction

We have considered GRID to be the right technology to obtain large amount of comput-

ing power we needed. GRID is a very dynamic environment that allows to transparently

run a given application on a large set of machines. In particular, we had the possibility

to access the EGEE European GRID infrastructure provided to us by the DILIGENT

IST project15.

We were allowed to use 35 machines spread across Europe (see Figure 2). We

did not have an exclusive access to these machines and they were not available all

the time. Both hardware and software configurations were heterogeneous: they had

various CPUs, memory, disk space, but also the libraries, software (e.g. Java), and

Linux versions installed. Thus, we had to build a self-contained crawling agent.

The crawling agent is logically divided into two modules. The first one accomplishes

the communication with the image-id server, crawls Flickr website, uses Flickr APIs,

and sends the result of the computation to the repository manager. This was coded

in Java to improve portability. However, since we could not assume the presence of

the Java virtual machine on every machine, we incorporated into the crawling agents

also a JVM and the required Java libraries. Due to the latencies of the crawling task,

the crawling agent can instantiate a number of threads, each of them taking care

of processing a different image. The setting, which proved to be adequate, has four

threads per agent (per one CPU core) and processes a maximum of 1,000 images.

These parameters induced computations times of 20 to 60 minutes depending on the

CPU speed.

15 http://www.diligentproject.org/
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Fig. 3 Number of GRID and local machines available during the two crawling periods: July
16th to October 9th 2007 (left) and December 19th 2007 to February 7th 2008 (right).

The second module of the crawling agent is the MPEG-XM feature extraction

software. Since the MPEG-XM software is not maintained, it has become incompatible

with the recent compilers and libraries versions. For this reason and for the heterogenity

of the GRID, we encapsulated into the crawling-agents also all the libraries it uses.

Submitting a job to a GRID infrastructure, the user does not have a full control on

the time and location where the job runs. The GRID middleware software accepts the

job description and schedules it on the next available machine according to internal

policies related to the load of each node, the priority of the different organizations using

the GRID infrastructure, etc. In our case, the job always first downloads the crawling-

agent package from our repository-manager and then runs the software contained in

the package. The GRID provides a best-effort service, meaning that a job submitted to

the GRID may be rejected and never executed. Indeed, there are several factors that

may cause the failure of a job submission.

Fact: From the 66,440 jobs submitted, only 44,333 were successfully executed that

means that 33,3% of the jobs failed due to unavailability of GRID resources.

Our straightforward approach together with the self-scheduling of images by each

crawling agent has two important advantages. First, in case the GRID middleware is

not able to deploy the given job, there would be no consequences in the remainder of

the system, especially, no image will be skipped. Second, in case of a software update,

it is just needed to replace the old version on the repository manager with the new

one.

Not all of the GRID machines were available through the crawling period and,

therefore, we also used a set of local machines in Pisa which processed the images

during the GRID idle time. We thus reached the total of 73 machines participating in

the crawling and feature extraction process.

The crawling process took place in two separate periods, both because of GRID

availability and because we needed to consolidate the data after the first period. In

Figure 3, we report on the number of machines available during the crawling process.

During the first period, the GRID provided an average of 14.7 machines out of the

35 and, simultaneously, there were 2.5 local machines available, on average. Also the

availability of the machines during the day was unstable: The local machines were

mainly available over night while some of the GRID machines were available only for a

few hours per day. During the second period, only one powerful multiprocessor machine
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Fig. 4 Number of images processed by each site.

was available from the GRID, and we could continue the process only with our local

resources.

Figure 4 reports the total number of images processed by each site. The best ma-

chine (provided by the GRID) processed about 17% of the whole collection – this is a

very powerful machine equipped with seven quad-core CPUs. The second best is a local

machine used only during the second phase, which is equipped with two quad-cores

Intel Xeon 2.0 GHz and it processed about 13% of the collection. These machines were

the most powerful and the most constantly available over time. However, the largest

total contribution came from a number of machines each of which was able to process

only a small number of images.

3.4 The CoPhIR Test Collection

The result of this complex crawling and image processing activity is a test collection

that served as the basis of the experiments with content-based image retrieval tech-

niques and their scalability characteristics, in the context of the SAPIR project.

We have not yet reached the target of 100 million images: we have made a check-

point at about half of the target. The current image test collection has the following

quantitative characteristics:

– number of images: 54.58 million (about 200,000 were removed by the data cleaning

process);

– storage space: 245.3GB for image descriptors, 54.14GB for the image content index,

355.5GB for thumbnails;

– on average, each photo is described by 3.1 textual tags, has been viewed 42 times

by Flickr users, and received 0.53 user comments.

Given the effort required in building such test collection, and the potential interest

to the international research community, to make experiments in large-scale CBIR, we

decided to make it available outside the SAPIR project scope.

The result is the CoPhIR (Content-based Photo Image Retrieval) Test Collection,

managed by ISTI-CNR research institute in Pisa. The data collected so far represents
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the world largest multimedia metadata collection available for research purposes, with

the target to reach 100 million images till the end of 2008. Each entry of the CoPhIR

collection is an XML structure containing:

– link to the corresponding image on the Flickr Web site;

– the thumbnail of the photo image;

– the photo textual metadata: author, title, location, GPS, tags, comments, views,

etc.;

– an XML sub-structure with 5 standard MPEG-7 visual descriptors.

Note that our use of the Flickr image content is compliant to the most restrictive

Creative Commons license. Moreover, the CoPhIR test collection complies to the Eu-

ropean Recommendation 29-2001 CE, based on WIPO (World Intellectual Property

Organization) Copyright Treaty and Performances and Phonograms Treaty, and to the

current Italian law 68-2003. The scientific organizations (universities, research labs,

etc.) interested in experiments on CoPhIR have to register at the CoPhIR Web site16

and to sign the CoPhIR Access Agreement establishing conditions and terms of use for

the collection.

4 Content-based Image Retrieval

Building a large-scale system for efficient image similarity search is a tough and exciting

challenge to face. Such system would put to test proclamations about the theoretical

scalability of solutions on which the system is built. This section maps the route we

followed from thousands of images towards tens of millions.

We perceive the content-based retrieval problem as a triangle: the type of data and

the way the similarity is assessed, indexing techniques which are used to enhance the

efficiency, and infrastructure the system is running on. The data we index and search

is formed by the five MPEG-7 features described above; we model this data as a single

metric space. All index and search techniques are based purely on the metric space

model and are implemented over the same framework. The index structures and their

implementations are very flexible regarding the hardware infrastructure they run on.

4.1 Metric Space Approach

The metric space model [27] treats the data as unstructured objects together with a

function to assess proximity of pairs of objects. Formally, the metric space M is a pair

M = (D, d), where D is the domain of objects and d is the total distance function

d : D ×D −→ R satisfying the following postulates for all objects x, y, z ∈ D:

d(x, y) ≥ 0 (non-negativity);

d(x, y) = 0 iff x = y (identity);

d(x, y) = d(y, x) (symmetry);

d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality).

The semantics of this concept is: The smaller the distance between two objects is,

the more similar they are. The metric space is typically searched by similarity queries

16 http://cophir.isti.cnr.it/
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Table 1 The features with their respective distance measures and their weights in the aggre-
gate metric function.

MPEG-7 Feature Metric Weight

Scalable Color L1 metric 2
Color Structure L1 metric 3
Color Layout sum of L2 2
Edge Histogram special 4
Homogeneous Texture special 0.5

defined by a query object q ∈ D and some constraint on the data to be retrieved from

the indexed dataset I ⊆ D. The basic type of similarity query is the range query R(q, r)

which retrieves all objects o ∈ I within the range r from q (i.e., {o | o ∈ I, d(q, o) ≤ r}).
From the user point of view, the most important query is the nearest neighbors query

kNN (q, k) which returns the k objects from I with the smallest distances to q. This

type of query is also convenient for an image search system and we will focus on it in

the following.

Fact: Metric space is a highly flexible model of similarity.

The metric space model provides us with a unique generality and almost absolute

freedom in defining and combining the similarity measures. Specifically, as the individ-

ual MPEG-7 features and their distance functions form metric spaces, we can combine

several features into a single metric function by a weighted sum of the individual feature

distances. The particular distances are normalized before being weighted and summed.

Table 1 summarizes the features we use, their respective distance measures [17], and

their weights in the aggregate metric function.

4.2 Implementation

All indexing and searching structures described below have been implemented over

a unified Metric Similarity Search Implementation Framework (MESSIF) [8] and are

written in Java. The MESSIF contains the encapsulation of the metric space model and

provides a number of modules from a basic storage management, over a wide support

for distributed processing, to automatic collecting of performance statistics. Due to its

open and modular design, the integration of individual components is straightforward.

The MESSIF offers several generic clients to control the index structures and there is

also a customized GUI for image similarity search.

4.3 100K: Centralized Searching

Our first indexing experience with the Flickr images was with a rather small dataset of

100,000 images. We have used the M-Tree [9] technique which is de-facto a standard for

similarity searching based on metric technology. Similarly to B-Trees and R-Trees, all

objects are stored in (or referenced from) leaf nodes while internal nodes keep pointers

to nodes at the next level, together with additional information about their subtrees.
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Specifically, an object called pivot and a covering radius is used to specify the minimal

sphere-like region of the metric space the respective subtree covers. The M-tree is a

dynamic structure, thus the tree can be built gradually as new data objects come in.

The insertion algorithm looks for the best leaf node in which to insert a new object

and, if there is not enough space, the node is split possibly propagating the split to

higher tree levels.

Since the original M-Tree is practically a decade old, there are many extensions

available focusing on various improvements. We have decided to implement the Pivot-

ing M-Tree (PM-Tree) extension [22], which employs additional filtering by means of

precomputed distances between all objects stored in the structure and a fixed set of

pivots, which improves search space pruning. We also apply an advanced node-splitting

algorithm defined in Slim-Tree [24] in order to keep the M-Tree regions as compact as

possible.
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Fig. 5 Response times and number of distance computations of M-Tree for kNN (q, 50).

Experience

Figure 5 reports on our experience with the M-Tree. To analyze the scalability trends,

we have inserted the 100,000 objects in ten batch series of 10,000 objects. After each

batch, we have run a set of fifty kNN (q, 50) queries with different query objects q and

studied the evolution of response times (left graph). To establish a baseline, we have

compared our results with a sequential scan algorithm. It is a simple implementation

of the kNN search that computes the distance to the query object q for all the objects

one by one and keeps the k best. Our implementation also confirmed the well-known

fact that a query evaluation spends most of the time in metric function computations.

Thus, we have measured this cost during our trials and we report on our findings in

the right graph. To show the improvement gained by the PM-Tree filtering, the graph

shows also the number of distance computations without this extension (denoted as

“M-Tree w/o filt.”).

The graphs prove that M-Tree enhances the search performance significantly. How-

ever, we can also see that the response times grow linearly as we increase the size of

the dataset. It means that we can use the M-Tree structure for indexing several tens

of thousands images, but we cannot go much farther if we require on-line responses.

Fact: Centralized indices achieve online response for up to 100,000 images.
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4.4 1M: Distributed Searching

The previous section indicates that the similarity search is inherently expensive and has

identified the practical boundaries of the centralized structures for similarity search.

A natural way to overcome the limitations of the centralized resources is to shift to-

wards distributed environments. Such approach allows to exploit parallelism during the

query processing and also provides an easily enlargeable and virually unlimited storage

capacity.

Our similarity distributed structures [7] are based on the paradigm of Structured

Peer-to-Peer (P2P) Networks. The system consists of peers – nodes which are equal in

functionality. Each peer manages a part of the overall dataset and maintains a piece

of navigation information which allows to route a query from any peer to the one with

relevant data. In the case of similarity indices, the query is typically routed to multiple

peers which search their local data and compute partial answers. The originating peer

then gathers all the partial answers and merges them into the total result of the query.

The M-Chord Structure

The M-Chord [21] is a P2P data structure for metric-based similarity search which

is used in our system. The M-Chord has been inspired by a centralized vector-based

method called iDistance [14] – they both map the data space into a one-dimensional

domain in a similar way. The M-Chord then applies any one-dimensional P2P protocol,

like Chord [23] or Skip Graphs [5], in order to divide the data domain among the peers

and to provide navigation within the system. The search algorithms exploit the features

of the data-mapping to navigate the queries only to relevant peers.

The M-Chord mapping (schematically depicted in Figure 6a) works basically as

follows: Several reference points are selected globally from the sample dataset (we call

these objects pivots and are denoted as pi). The data space is partitioned in a Voronoi-

like manner into clusters Ci (each object is assigned to its closest pivot). Following the

iDistance idea, the one-dimensional mapping of the data objects is defined according

to their distances from the cluster’s pivot. The M-Chord key for an object x ∈ Ci is

defined as

mchord(x) = d(pi, x) + i · c

where c is a separation constant greater than any distance in the dataset. To evaluate

a range query R(q, r), the data space to be searched is specified by mchord domain

intervals in clusters which intersect the query sphere – see an example in Figure 6b.

Having the data space mapped into the one-dimensional M-Chord domain, every

active node of the system takes over responsibility for an interval of keys. The range

queries are routed to peers responsible for the intervals as seen in Figure 6b. The

algorithm for nearest neighbors query kNN (q, k) consists of two phases: (1) The query

is evaluated locally on “the most promising peer(s)”; in this way, we obtain an upper

bound rk on the distance to the kth nearest object from q. (2) Range query R(q, rk)

is executed and the k nearest objects from the result are returned. There is a natural

tradeoff between the cost of the first phase and the precision of the rk estimation and,

thus, cost of the second phase. We use an experimentally tuned setting which visits

several peers in the first phase. For more details about M-Chord and its performance

see [7,21].
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In our system, the local data of each peer is organized in an M-Tree structure (see

Section 4.3). The overall architecture of the system is schematically depicted in Fig-

ure 7. In experiments throughout this section, the M-Chord uses 20 pivots to partition

the data space into clusters and the peer-to-peer navigation protocol is Skip Graphs.
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Fig. 7 Schema of the distributed system.

Experience

The experimentation with a distributed system requires an appropriate hardware. Our

system is based purely on peer-to-peer paradigm and our implementation is strictly

detached from the actual physical hardware being written in Java and using TCP/IP

communication protocol. Thus, we are able to run the system on wide variety of in-

frastructures. Our 1M images network consists of 50 peers mapped to 16 CPUs. In the

experiment, we have run a batch of kNN queries varying the k, i.e., the number of

most similar images returned to the user. The results for each k are averages over 50

different query images.
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Figure 8 shows the response times of the described experiment. We can see that the

search times increase only slightly with the number of nearest objects (k). The response

times about 500ms are achieved by two facts: (1) each peer organizes approximately

20,000 objects in a local M-Tree index and (2) evaluation of the queries on the relevant

peers proceeds in parallel, whenever allowed by the hardware infrastructure.
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Fig. 9 Number of distance computations of 1M network.

Fact: We achieve 500ms response times on the one million image collection with

50 peers on 16 CPUs.

Figure 9 shows the number of distance computations corresponding to this exper-

iment. The “total number of distance computations” (left graph) expresses the theo-

retical costs of the searching if the whole distributed system shared a single CPU. In

the distributed environment, the query processing is done in parallel and the “parallel

costs” (right graph) represent the maximal number of distance computations evaluated

on a single peer. This graph shows a general (theoretical) value of parallel DC indepen-

dent of the actual number of CPUs and of other hardware infrastructure details. The

difference among the total and parallel costs is proportional to the number of peers

accessed to get the answer, which is about 30 peers in this case, which is shown in

Figure 10 (left graph).

The right graph in Figure 10 reports on the number of messages sent during the

query processing. Note that messages are needed for both contacting the destination

peers and for responses from the peers which consult their local index. In our case, ap-



18

 0
 5

 10
 15
 20
 25
 30
 35

 0  20  40  60  80  100
k

Visited Peers

nu
m

be
r 

of
 v

is
ite

d 
pe

er
s

 0
 10
 20
 30
 40
 50
 60
 70
 80

 0  20  40  60  80  100
k

Total number of messages

nu
m

be
r 

of
 m

es
sa

ge
s

Fig. 10 Number of visited peers and messages exchanged.

proximately 44 messages were needed to contact the 31 peers and another 31 messages

were sent back to the originating peer for the kNN queries with k = 100. The contri-

bution of the communication to the response time is typically negligible compared to

the evaluations of the distance function.

4.5 10M: Approximate Distributed Searching

The previous section showed that we can retain online response times for a 1M dataset

having an appropriate hardware infrastructure. We tried to increase the utilization

of the hardware and build a 10M network on the same hardware configuration. The

previous section also shows that kNN queries accessed over half of the network’s peers.

Having a higher number of data objects, which makes the metric space denser, the

answers are more compact and thus the percentage of visited peers is lower. Despite this

fact, the absolute volume of the data accessed by the query is disproportionately higher

than the number of objects returned by the query. We have uncovered that majority

of the answering peers contribute to the answer result only negligibly or not at all and

they are accessed only to prove the preciseness of the answer. We decided to allow a

moderate approximation and thus prune the number of accessed peers significantly.

We have reached this goal and thus managed to run the 500-peers network with 10M

images on a relatively modest hardware configuration.

Approximation in M-Chord

The approximate evaluation-strategy for the kNN queries in M-Chord [19] is based on

the relaxed branching policy [4]. The basic idea is to examine highly-promising data

partitions only and ignore those with low probability of containing qualifying data.

Thus, the most promising parts of the most promising clusters are explored in M-

Chord. The clusters are selected using a tunable heuristic that takes into consideration

the distance between the query and the cluster’s pivot. Within a selected cluster,

the query is first navigated to the peer where the query object would be stored, if

it belonged to the cluster, and then its neighboring peers are accessed. We can tune

the query costs versus the quality of the approximation by specifying the number

(or percentage) of peers visited within each cluster. A thorough experimental analysis

of the M-Chord approximation [19] confirmed a very high performance gain with a

moderate or even no degradation of the answer quality.
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Approximation in M-Tree

The approximation at the M-Chord level allows us to limit the number of peers visited

during a search. We could also decrease the response times of the local search by

exploiting approximate algorithms also in local M-Trees. The strategy [28] is based

on a stop condition embedded into its kNN evaluation strategy. The M-Tree’s kNN

traversal uses a priority queue where the tree nodes are sorted according to their

potential to contain objects satisfying the specified query. The stop condition allows

us to quit the search even if the queue is not empty after a certain portion of data has

been explored.

M-Tree Split

The creation of the peer-to-peer network, i.e., to actually insert the data into the index,

turned out to be a challenge in itself. Building the 1M network from the scratch required

about 40 minutes which is feasible even if the network is recreated repeatedly. However,

more than ten hours required for the 10M was unacceptable, so we have investigated

the building bottlenecks. The network grows as new peers join the network, which

always requires that some peer splits its local data. By now, the M-Tree was split

by deleting objects from the original M-Tree and building a new M-Tree by inserting

the objects one-by-one. We have proposed an algorithm [11] which allows to split an

instance of M-Tree according to a given metric-based condition (either defined by a

generalized-hyperplane or ball partitioning). Basically, the M-Tree is traversed from the

root to its leaves and the partitioning condition is applied to the covering ball regions

(in inner nodes) and to objects (in leaves). As a result, some branches of the tree can

be separated without any computations and some can be split very efficiently using

pre-computed distances already stored in the M-Tree. The experiments confirmed [11]

that the algorithm outperforms the baseline delete and insert strategy about 28 times.

With this optimization, we were able to shorten the building time of 10M network to

about two hours.

Experience

We have shifted the number of stored objects by one order of magnitude, which in

terms of hardware means ten times higher demands on space. Fortunately, our 16-

CPU infrastructure offers 64 GB RAM in total so we can still keep all the 500 peers in

main memory. The M-Chord approximation algorithm picks 1–7 clusters to be accessed

by the query (2.5 clusters on average); we set the percentage of peers visited in each of

these clusters to 40%. The local approximate search in the M-Trees was set to explore

maximally 30% of data.

We have repeated the experiment with the same queries as for the 1M dataset

using both the precise and approximate kNN search. The number of visited peers and

response times are reported in Figure 11. Comparing the precise query results with

the 1M network (in Figure 10 left) roughly six times more peers are visited while the

dataset is ten times bigger – this confirms our expectation that the metric space is

more dense. Moreover, the response times increased only four times (see Figure 8)

even though we are using the same number of CPUs. This is mainly because of some

fixed overhead incurred in each query regardless of the network size. Also the mapping
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of 50 peers to 16 CPUs does not utilize all the CPUs fully in every query evaluation

while the load is more uniformly distributed for 500 peers.

Fact: Approximate similarity queries on the 10M distributed index are answered

in 500ms using 16 CPUs.
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The graphs in Figure 11 also show that the approximated search reduced the num-

ber of visited peers to 25 peers and thus kept the response times about 500 milliseconds.

The quality of the approximate answers is captured in Figure 12. The left graph shows

the recall of the approximation, i.e., the percentage of the precise answer that is re-

turned by the approximate query. We can see that our approximation setting gives

more than 80% of the precise answer.

The right graph in Figure 12 shows another approximation quality measure, the

relative error on position [27], which exposes the positions of objects missed by the

approximation. More precisely, the measure is computed as a sum of differences of

object positions in precise and approximate answers (both ordered by distance from

the query object). The value is normalized by dividing the number by the dataset

size and k. Taking an example of k = 20, a value 40/(20 · 107) = 2 · 10−7 means

that each of the returned object in the approximate answer on a 107 dataset is, on

average, shifted by two positions. We can also see that the most similar objects, i.e.,

k is small, have practically zero error on position thus the approximation always finds

the best-matching objects and make mistakes only on higher positions.
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Fact: Approximate searching cuts the costs by one order of magnitude while pre-

serving a high answer quality.

4.6 50M: Disk-oriented Distributed Searching

Currently, the final scale we have practical experience with is a distributed structure in-

dexing 50 million images. The network consists of 2,000 peers each with approximately

25,000 objects. In order to test the scalability of our system, we temporarily gained

access to a hardware infrastructure five times larger than for the 10M network (i.e.,

80 CPUs and about 250GB RAM). These resources were available for short periods of

time and thus we needed a bulk-loading mechanism for preparation of individual peers

on other resources.

Simultaneously, we experimented with a persistent storage to cut the memory de-

mands. In this implementation, the peers keep the leaf nodes of the M-Trees on disk,

reducing the overall memory usage of the 2,000-peers network to 80GB RAM; recall

that the implementation is written in Java, which is relatively memory demanding and

the programmer does not have a full control over the memory administration. Experi-

ments with the disk-oriented were conducted on infrastructure with 32 physical disks

and 32 CPUs. The objects stored on the disks occupied about 100GB.

Bulk Loading

Because our 50M dataset is known in advance, the partitioning schema can be pre-

computed. Each object from the dataset can be assigned an M-Chord key (see Sec-

tion 4.4) which determines the peer where the object will be stored – recall that each

peer is responsible for an interval of M-Chord keys. The bulk-loading procedure thus

proceeds as follows. First, an M-Chord key is computed for each object from the dataset

and the dataset is sorted according to these keys (a disk-oriented merge sort). Then,

the ranges of M-Chord keys are selected for the peers by splitting the sorted dataset

into 25,000 objects parts. At this stage, each peer knows its M-Chord key range and

we can build the M-Chord navigation structures and establish links between the peers.

Finally, we take the peers one by one and fill their internal M-Trees with data from

the respective dataset part. We are using Java serialization that allows us to store a

running process to disk and restore it later on another computer.

Fact: Bulk loading allows to build networks of practically unlimited size on limited

resources.

Persistence Bucket

In the previous steps, we have used a memory-only implementation, because we had

enough RAM. The MESSIF [8] library offers a file-storage area for objects and our

M-Tree implementation can use this functionality to become fully disk-oriented. On

the other hand, our experiments revealed that the internal nodes of our 25,000-object

M-Trees occupy approximately 8% of the size of the whole M-Tree. Thus, we decided to

keep the inner nodes in memory effectively reducing the disk accesses to only sequential
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scans of the leaf nodes that are hit during the search. Our experiments show that by this

decision, we have gained a noticeable kNN search times boost at the cost of 5–10MB

of RAM per M-Tree.

Experience

As the 50M data space is denser than the 10M set, we can afford to use more restrictive

settings of the approximation – the query visits only 20 % of the most promising peers

of each cluster (the number of clusters is again determined by the same heuristic). The

left graph in Figure 13 depicts the recall of this approximation settings as the k grows.

We can see, that the recalls are only slightly lower than for 10M, where we accessed

40% of each cluster (see left graph in Figure 12). With this settings, we expected the

number of visited peers to be approximately doubled as for the 10M network (see the

approximate line in Figure 11, right graph) as we have four times more peers now and

visit one half of the clusters’ percentage. This expectation has proven true – the queries

visited about 53 peers, on average.
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Fig. 13 Recall and response time for 50M network.

The results of the memory-based and the disk-oriented implementation differ only

in the response times achieved – the comparison is in the right graph in Figure 13. With

the memory-based implementation, we have reached practically the same response

times as with the 10M network (see Figure 11). We can see that the disk-oriented

implementation has approximately triple response times. Let us realize, that these

times can be further improved as they are strongly influenced by the hardware settings

(the number and speed of the disks, usage of disk arrays, etc.) and also by the quality

of the implementation.

Fact: The experiments with the 50M collection confirmed that, having enough

resources, the system is fully scalable.

4.7 The Scalability Story

To summarize our indexing scalability story described in Section 4, we show all the

gathered response times of the various approaches for different dataset sizes in Table 2.

For convenience, we provide also some estimated values (marked with star). These
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are rough lower bound estimates, because these values ignore the additional overhead

incurred by the bigger data as well as memory constraints – in these estimations, we

assume that the whole dataset fits in memory.

Table 2 Response times of kNN (q, 50) using various techniques on different dataset sizes.

Technique CPU 100k 1M 10M 50M

Sequential scan 1 4.3s 43.4s 7.2m∗ 36m∗

M-Tree 1 1.4s 12s 1.8m∗ -
Parallel sequential scan 16 - 2.7s 27s∗ 2.3m∗

80 - - 5.4s∗ 27s∗

M-Chord 16 - 0.45s 1.7s -
M-Chord with approximation 16 - - 0.44s -

80 - - - 0.45s
M-Chord with approximation and disk 32 - - 0.87s 1.4s

We can see that using a naive approach of sequential scan, the 10M dataset would

require more than 7 minutes to process one query. Even a parallel sequential scan,

where the whole dataset is divided into 16 disjoint parts that are searched by one CPU

each, would require 27 seconds to complete assuming that all the data are in main

memory and neglecting the overhead of merging the partial answers. The situation is

even worse for our current 50M dataset, where even parallel work of 80 CPUs would

not evaluate a single query below half a minute. Our experiments have proved that

using a correct technology we can build a working system even on huge database of 50

million images that maintains online response times of about one second.

Contrary to the sequential scan, which fully utilizes all the CPUs for a single query,

the distributed system does not require all of them all the time. Although we have not

thoroughly studied the throughput of the system, i.e., the ability to serve multiple users

at the same time, our experience says that the 10M network on 16 CPUs can answer

up to 10 queries in parallel and the bigger 50M data using 80 CPUs can process more

than 30 concurrent queries per second on average.

5 Conclusions

No doubts that the scalability problem for new digital data types is real, which can be

nicely illustrated by difficulties with the management of the fast growing digital image

collections. In this paper, we focus on two strictly related challenges of scalability: (1)

to obtain a non-trivial collection of images with the corresponding descriptive features,

and (2) to develop indexing and searching mechanisms able to scale to the target size.

We have crawled a collection of over 50 million high-quality digital images, which

is almost two orders of magnitude larger in size than most existing image databases

used for content-base retrieval and analysis. The images were taken from the Flickr

photo-sharing system which has the advantage of being a reliable long-term repository

of images and which offers quite a rich set of additional metadata. Using a GRID

technology, we have extracted five descriptive features for each image. The features are

defined in MPEG-7 standard and express a visual essence of each image in terms of

colors, shape, and texture. This information is kept handy in XML files – one for each
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Fig. 14 Example of three results of kNN (q, 7) query in collections with different data volumes.

image – together with the metadata and links to original images in Flickr. We also

store thumbnails of the original images, so the search engines built for this dataset can

quickly show the overview of the results. This unique collection [1] is now opened to

the research community for experiments and comparisons.

We have also proved that our distributed content-based retrieval system can scale to

tens of millions of objects. The system offers a search for visually-similar images giving

answers typically below one second on the database of 50 million images. An online

demonstration of the system, currently indexing 100 million images, is available from

the MUFIN web page [2]. A demonstration of MUFIN was recently accepted for the

ACM SIGIR conference [20]. The presented technology is highly flexible as it is based

on the metric space model of similarity and on the principles of structured peer-to-peer

networks. In this paper, we report on several technological advances we have employed

and various problems we had to solve on our route to indexing 50 million images. We

provide results of numerous experiments measured on a real hardware infrastructure in

real conditions. In addition, we have also created a Web interface which allows regular

users to interact with the system and actually search for similar images.

An example of three query results is shown in Figure 14. Images similar to the

query image (shown on top) were looked up in 1 million, 10 million and 50 million

datasets. The figure illustrates a noticeable improvement in effectiveness, i.e., the search

quality, whenever the dataset grew by one order of magnitude. We have observed this

improvement practically for any query which can be explained by the fact that the

search space is becoming denser, thus presence of similar (more close) images is more

likely. For this reason, we expect this trend to continue for even bigger files. Another

way of improving the effectiveness is to use more sophisticated image descriptors. Since

we have mainly focused on the scalability problems in this paper, our decision was to

take the descriptors of the well-established MPEG-7 standard.

In the future, we plan to investigate the application of additional descriptive fea-

tures of the images, such as local features, combining visual features and user defined

tags, and research the relevance feedback to further improve effectiveness. In addition,
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we would like to test the technology also on other multimedia types such as video,

speech, and music.
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