Types and Operators in M-Atlas system

Roberto Trasarti, Salvo Rinzivillo, Mirco Nanni, Fosca Giannotti
KDD Lab
ISTI-CNR, Pisa

November 7, 2011

Abstract

In this technical report we illustrate the types managed by the M-Atlas sys-
tem and the operators defined among them. Due to the complexity of spatio-
temporal data, models and patterns, the system is be based on a rich formal-
ism, capable to representing the specificity of movement data. We choose the
object-relational model, which combines the simplicity of the relational data model
and SQL with the basic object oriented capabilities. The main feature of the
object- relational database model is that objects and classes are directly supported
in database schemas supporting the extension of the original types with custom
types representing complex structures. Moreover using a pre-existing GIS tech-
nology developed on the database the new types and operators can be integrated
easily.

1 Introduction

M-Atlas adopts state-of-the-art moving object database design principles for its trajec-
tory store, extended with mechanisms for managing and querying models and patterns.
There are three main object types in M-Atlas: Data, M-model, and M-pattern, depicted
in Figure 1. We distinguish between models and patterns: a pattern is a representation
of a local property that holds over a sub-group of mobility data, e.g., a flock of trajec-
tories; on the other hand, a model is a representation of a global property that holds
over an entire dataset: accordingly, a model is either a global aggregate (e.g., speed
distribution in a trajectory dataset) or a collection of patterns (e.g., the clustering that
partitions an entire dataset into separate clusters).

Practically the system adds new object-relational types to the database in order to
represent the new types of data, patterns and models. The advantage of having an
object-relational representation is threefold: (i) it allows the definition of complex data
such as lists and trees, (ii) yields a compact representation of the data, and (iii) makes
it possible to use classical indexing techniques already in the database on complex
objects. Following we will present the formalism of the data, m-pattern and m-model
types describing how they are represented in the ODBMS, the implementation details
of the types are reported in Appendix A.

" . Te | . .
[Spanalomec(j [%";%f(;a j [MovmgObJectj

E’-Reachabililyj [T—Clusleringj (T»ODMatrixj (T-PTree j [T-Pattern j [T-Flow [T-Cluster j [T-Flock j
S o " 4 ~ i

aggregation of _ __

T 8etOf e e -

Figure 1: The M-Atlas type hierarchy. M-Model, M-Pattern and Data are the basic
types of data. We can notice the relationship between M-Models and M-Patterns. For
example, T-Clustering model is represented by a set of T-Cluster patterns, while T-
PTree model is an aggregation of T-Patterns

2 Data types

M-Atlas supports three types of data: purely spatial data, purely temporal data, and
moving points, or trajectories.

Spatial objects have a geometric shape and a position in space, and are represented as
S = (type, < p1,...,pn >) where type € {point,line, polygon} defines the mean-
ing of the list of points < p1,...,p, >: if type = point then the list is composed by
only one point with its coordinates; if type = line then the list represents a broken
line; if type = polygon then the list represents the contour of the polygon. The repre-
sentation of this object in the ODBMS coincides with the geometry type of the postGIS
extension [7] (allowing the compatibility with all the other functionalities given by it).

Temporal objects are represented as T' = (¢, d) where t is an absolute temporal value
(w.r.t. a time reference system) and d is a duration expressed in seconds. When ¢ is
equal to the special value null, then the temporal object represents a relative time pe-
riod. An inferval object is a pair of temporal objects I = (Tynin, Timaz)- This is
represented in the ODBMS as a new object containing two attributes: a timestamp and
a numeric field.

Moving objects are the spatio-temporal evolution of the position of a spatial object.
There are three different types of moving objects: moving point, moving line and mov-
ing polygon. In this paper we concentrate on moving points, which represent trajecto-
ries. A moving point is defined as Mo =< pq,t1 >,...,< py,t, >, where p; is a
spatial object representing a point, ¢; is a temporal object representing an absolute time
point and ¢; < t; for 1 < i < j < n. To the purpose of this paper, the terms trajectory
and moving point are synonyms. For representation in the ODBMS the 3D linestring
type is used, where the third dimension of the point is the absolute timepoint expressed

in second !.

Data Constructors can be associated with each data type, allowing, e.g., to construct
data objects by acquiring and preprocessing raw data. trajectories need to be created
starting from the time-stamped location observations acquired from external sources;
such pre-processing requires adequate data acquisition mechanisms tailored to deal
with uncertainty, errors and domain-dependent constraints concerning the notions of
travel, stop, movement, time resolution, etc. To this purpose, M-Atlas provides a spe-
cific constructor operator, that builds a set of trajectories from a table of observations
in the form: < d,x,y,t > where id is the identifier of the trajectory, = and y are
the coordinates of an observation and ¢ the time when the observation is taken. As an
example, the following construction query builds a table Travels of reconstructed trav-
els from the raw observations contained in the table RawData. By setting a maximum
space gap (in km) and time gap (in seconds) between any two consecutive observations
in a trajectory, we can specify the end of a travel and the beginning of a new one.

CREATE DATA Travels BUILDING MOVING_POINTS
FROM (SELECT userid, lon, lat,datetime FROM RawData
ORDER BY userid,datetime)
SET MOVING_POINT.MAX_SPACE_GAP = 0.2 AND
MOVING_POINT.MAX_TIME_GAP = 1800

Other data constructors are provided to build spatial objects, such as rectangles and
rectangular grids, and temporal objects, such as intervals and series of consecutive in-
tervals. Although simple data objects, spatio-temporal grids are important ingredients
in the analysis of movements.

3 M-Pattern Types

A mobility pattern, M-Pattern in short, represents the common behavior of a (sub-
)group of trajectories, obtained as a result of a data mining algorithm. The types of
M-Patterns currently supported by M-Atlas are shown in Figure 2.

Figure 2: M-Pattern types: (a) T-Cluster, (b) T-Pattern, (c) T-Flock, (d) T-Flow

T-Cluster. A T-Cluster (Figure 2(a)) is defined as a set S = {(71,1), (72,1),...} of
labelled trajectories, which share the same membership tag . The trajectories of a T-
Cluster are grouped on the basis of their similarity according to a specified similarity
function, chosen from a repertoire of possible choices. In the ODBMS we don’t repli-
cate the data to represent the list of moving points, hence the object is composed by a

lusing the standard transformation which consider as base date the 01/01/1970

list of ids of moving points and the a text field which is the name of the function (in the
M-Atlas system library) which is used to compute it.

T-Pattern: it is represented as tp = (R, T, s) where R =< rq, ..., > is a sequence
of regions, T' =< ty,...,tr > is a sequence of relative time intervals t; = [tj,t;]

associated to each region and s is the support of ¢p, i.e., the number of trajectories that
are compatible with ¢p in space and time. Informally, a T-Pattern can be represented
as 7o 2N ry--e L 7. Originally introduced in [4], a T-Pattern (Figure 2(b)) is a con-
cise description of frequent behaviors, in terms of both space (i.e., the regions of space
visited during movements) and time (i.e., the duration of movements). In the ODBMS
we represent the time intervals as a new object which contains two temporal objects
and we use a spatial objects for the regions, therefore the representation of the whole
T-Pattern is an object by a list of regions, a list of intervals and a numeric value for the
support.

T-Flock. A T-Flock f = (I,r,b) represents a spatio-temporal coincidence of a group
of moving points, where I = [tnin, tmaz] 1S the time interval of the coincidence, b is
the base moving point and 7 is the spatial buffer around b which is used to determine
the coincidence. This spatio temporal coincidence defines a common behavior of the
people which move together for a certain time interval (Figure 2(c)). In the database
we represent it as an object composed by an interval of time (using the same represen-
tation of it introduced for the T-Pattern), a numeric value for the radius and a moving
point for the base.

T-Flow. The T-Flow tf =< R;, Ra,w > represents a flow of w > 0 trajectories
which move from region R; to region Ry (Figure 2(d)). In the ODBMS we represent a
single flow as a row in a table which containing the two spatial objects and a numeric
attribute for the size of the flow.

4 M-Model Types

Mobility models, M-Models in short, are the global models extracted by a data mining
algorithm, where the adjective global indicates the fact that each such model describes
the entire input dataset. Figure 3 illustrates some of the available M-models in M-Atlas;
other M-Models are simply the entire collection of T-Patterns, T-Clusters and T-Flocks
mined over a trajectory dataset.

o

-g
g
g
g

aaueisig

Trajectories

(@)

Figure 3: M-Models types: (a) Reachability plot, (b) T-PTree and (c) T-ODMatrix.

Reachability plot: is a histogram of distances between trajectories, obtained consid-
ering a specific distance function (Figure 3(a)). More precisely, it is a sequence of
pairs Rp =< (t1,d1) ... (tn,d,)) > where t; is a trajectory and d; is the distance
between t; and ¢;1, where ¢, is the nearest neighbor of ¢; which does not occur in
{t1,...,t;}. Using a threshold e for distance, the reachability plot identifies a set of
T-Clusters representing the partition of the whole dataset into labelled groups of similar
trajectories. This model is represented in the database as an object containing a list of
moving object ids (to avoid data replication) with associated to their distances.

T-PTree. A T-Pattern Tree, T-PTree in short, is a compact representation of a set
of T-Patterns (Figure 3(b)). It is a prefix tree PT = {root, N, E}, where N is the
set of nodes of the tree, E is the set of edges and root is the root of the tree. Each
node n; = {r, supp} contains a spatial region r and a support value supp; each edge
€i,j = {tmin,tmaz} connects the nodes i and j specifying a relative time interval.
The support label on the nodes represent the maximum support value of the T-Patterns
which have the path root, ..., n; as prefix. The formal definition of prefix of a T-
Pattern is in [3]; intuitively a T-pattern ¢p; is prefix of another T-Pattern ¢p, if every
region and interval of the first pattern are included in the region and interval of the sec-
ond, in the specified order. In the ODBMS we represent the pattern tree in a recursive
way: a node is described by a spatial region, a numeric value for the support, a list
of its children nodes and a list of time intervals describing the edges labels. With this
representation the root of the tree is a simple node containing the whole tree.

T-O/DMatrix. A T-O/DMatrix (Figure 3(c)) is defined as a labeled graph odm =
{O,D,E} where O = {01 ...0,} are the nodes which identify the origins, D =
{dy ...d} are the nodes which identify the destinations and F are the edges which
connect an origin node with a destination node. Each node (both origins and desti-
nations) contains a spatial region and the label on the edges represent the number of
movements which start in the origin region and end in destination node. This model re-
sults from the composition of a set of T-Flows, each representing the trajectories from
the origin to the destination region. In the ODBMS we represent the T-ODMatrix as
a table of flows, hence this model id represented as a table of rows containing the two
spatial objects and a numeric value as the number of trajectories which move between
the two.

Model and Pattern constructors: a generic constructor for M-Models (and M-Patterns)
is defined as a function Ty — (T}, T,) where T} is a data table, T}, is a model table
(containing a single M-Model object) and 7}, is a table containing a set of M-Patterns
objects. This operator realizes the construction of M-Models and M-Patterns through
the execution of a data mining method with a specified parameter setting. M-Atlas
provides a mining constructor for each method in its data mining library, more details
are presented in [5] and [6]. An example of mining constructor query is the following,
which generates a step of density-based trajectory clusters under specific parameters:

CREATE MODEL ClusteringTable MINE AS T-CLUSTERING

FROM (Select t.id, t.trajobj from TrajectoryTable t)

SET T-CLUSTERING.FUNCTION = ROUTE_SIMILARITY AND
T-CLUSTERING.EPS = 100 AND

T-CLUSTERING.MIN_PTS = 20

5 Spatio-temporal query primitives

The querying primitives over data, models and patterns are summarized in Figure 4;
the upper left square contains the data x data primitives, corresponding to the classical
spatio-temporal primitives defined in [1]. All the other primitives have been specifically
designed for M-Atlas, in that they involve models and patterns (data x model/pattern,
model/pattern x data or model/pattern x model/pattern).

Each primitive is defined as a function r(71,T%) — (Tye1), where Ty and T are
two sets of objects and To; = {(01,02)|01 € Th A 02 € Ty A rel(o1,02)}. Here, rel
is a predicate defined between the types of objects in 77 and 75, which specifies the
relation that should hold over the pairs of objects that are kept in the resulting table
Trel~

Albeit there are apparently only a few kinds of spatio-temporal primitives (con-
tains, intersects, equals), a large variety comes from the different combinations of
types of objects to which such primitives are applied, as illustrated in Figure 4. Each
combination depends on the semantics of movement represented by the types of the
involved objects; for instance, the definition of intersects between a T-pattern and a
Moving Point is completely different from that between a T-Flock and a Moving point.
The expressive power of M-Atlas derives exactly from the comprehensive repertoire
of spatio-temporal primitives over all combinations of data, patterns and models; the
entire repertoire is reported in [6].

A pattern x pattern primitive is the contains relation between two T-Patterns tp! =
(RY, T, s') and tp? = (R?,T?, s%), defined as follows:

contains(tp', tp?) = Ik > 0| contains(R}, Ry)A. . .Acontains(Ry ., RE)\

contains(TH, TZ) A ... A contains(Ty,,,, T,), n = | R?|
where the contains operator between regions and temporal intervals (data X data) is
defined as in [1]. To construct the table of pairs of objects that satisfy a generic relation
we use the query syntax CREATE RELATION, as in the following example, where a
table of pairs of T-patterns (¢p1, tp2) is created, such that ¢p; contains ¢tps:

CREATE RELATION TPatternContains USING CONTAINS

FROM (SELECT tl.id, tl.tpattern, t2.id, t2.tpattern
FROM TPatternTable tl, TPatternTable t2
WHERE tl.id <> t2.id)

A distinctive pattern x data primitive is the entails relation. entails(p, o) holds
if the data object o is an instance of pattern p. The definition of entails is specific for
each M-Pattern, and details are given in Sec. ??. An example of query is the following,
which creates a table containing the trajectories belonging to a specific T-Cluster:

CREATE RELATION TrajectoriesInCluster USING ENTAILS
FROM (SELECT t.id, t.traj, c.id, c.cluster
FROM TrajectoryTable t, ClustersTable c)

Spatial Temporal Moving T-Pattern T-Cluster T-Flock T-Flow Reachability T-PTree T-ODMatrix
Object Object Point Plot
Spatial Object Intersects Intersects Intersects Intersects | Intersects Intersects Intesects
Contains Contains Contains Contains Contains Contains Contains
Equals
Temporal Object Intersects Intersects Intersects
Contains Contains Contains
Equals
Moving Point Intersects Intersects Intersects Intersects Intersects | Intersects Intersects Intersects
Contains Contains
Equals
T-Pattern Intersects Intersects Intersects Intersects | Intersects Intersects Intersects
Contains Contains Contains Contains
Entails Equals
T-Cluster Intersects Intersects Intersects Intersects Intersects | Intersects Contains
Contains Contains Contains
Entails Equals
T-Flock Intersects Intersects Intersects Intersects Intersects Intersects Intersects Intersects
Contains Contains Contains Contains
Entails Equals
T-Flow Intersects Intersects Intersects Intersects | Intersects Intersects Intersects
Contains Contains Contains Contains Contains
Entails Equal
Reachability Plot Contains Contains
T-PTree Intersects Intersects Intersects Intersects | Intersects Intersects Intersects
Contains Contains Contains Contains
Equals
T-ODMatrix Intersects Intersects Intersects Intersects | Intersects Intersects Intersects
Contains Contains
Equals

Figure 4: M-Atlas spatio-temporal primitives

Transformation primitives. Transformations are a class of primitives which uses
external methods to perform complex data pre-processing and model/pattern post-
processing operations in the knowledge discovery process. Among the many trans-
formations available in M-Atlas, T-Anonymization, transforms a set of trajectories into
a new set satisfying K -anonymity, i.e., one where each trajectory is indistinguishable
from at least other K similar trajectories [2]. An example of transformation query
that pre-processes data for anonymity is the following, where the parameter K sets the
minimum anonymity threshold to be guaranteed.

CREATE TRANSFORMATION AnonymizedData USING ANONYMIZATION
FROM (SELECT t.id, t.trajobj FROM TrajectoryTable t)
SET ANONYMIZATION.K = 10

The complete grammar of the DMQL is reported in appendix B.

6 M-Atlas architecture

The architecture of M-Atlas is composed of two main components: the Graphical User
Interface, supporting the visual analytic process, and the M-Atlas Engine, providing the
full power of the data mining query language.

GUI

Controller

> [Controller]<—>E)B Manager (¢———|

i

PostgreSQL +
PostGIS

Data
Types

Model
Types

G

Pattern
Types

Visual
Renderer

&=

Language Algorithm
Parser Manager

Constructor Helatlon Transformation Translation
lerary lerary lerary lerary

b § b b

M-Atlas Engine

Figure 5: M-Atlas system architecture.

In see Figure 5 we provide a schema of the system architecture: a query is sub-
mitted through the graphical interface to the Controller module, which coordinates
the tasks performed by all other modules. The Language Parser analyzes the input
query. Standard SQL queries are directly sent to the Database Manager and executed
by the Object Relational DBMS. All other M-Atlas queries are translated by the Lan-
guage Parser into an execution plan, which combines both DB queries and calls to the
methods provided by the Algorithm Manager. The results of a query is stored into the
ORDBMS and possibly displayed, through the Controller, by the Graphical User In-
terface. The pins represent the modules which can be extended by the plug-in system.

The architecture has been designed as a plug-in environment, where new models
and patterns can be easily added, together with their mining algorithms. Extending
the system requires four steps: (i) the new model/pattern type is introduced in the DB;
(ii) the Translation Library of the DB Manager is extended with the access methods
for the new type; (iii) the mining method associated with the new type is added to
the Constructor Library; (iv) the spatio-temporal primitives associated with the new
type are added to the Relation Library. M-Atlas is being continuously extended with
new functionalities. A basic requirement for the architecture is minimizing memory
usage during query execution. To this purpose, query results are managed, as far as
possible, by reference in streaming fashion, i.e., by processing iteratively one set of
rows of fixed size at a time, both during loading and storing. However, the system
adapts to the memory policy of the various mining algorithms. Therefore, the memory
consumption of most M-Atlas queries is constant, with the remarkable exception of the
mining algorithms, which require multiple passes over data.

7 Conclusions

We can summarize the advantages of having the presented formalism for representing
data, models and pattern and a data mining query language with the following features:

1. the compositionality of the operators allows the user to create their own knowl-
edge discovery process combining the different operators;

2. the iterative querying capability allows the user to apply the data mining algo-

rithms on the data to discover patterns and models, but also apply such patterns
and models to the data for a deeper analysis. This is an iterative process which
allows the user to use the models not only as static knowledge to be presented
as result, but as an active element of the process used to go deeper in the data
understanding.

the repeatability of the process: having a language that supports the steps of
the discovery process allows to materialize the executed process as a language
script. Thus, the output is not only the set of mined patterns, but also the script
storing the process thus making the process repeatable on different datasets.

A full set of applications showing the capability of the language and the system is
presented in [5].

References

(1]

(2]

(5]

[6]

(7]

Giiting, R.H., Bohlen, M.H., Erwig, M., Jensen, C. S., Lorentzos, N.A. , Schnei-
der, M., Vazirgiannis, M. A foundation for representing and querying moving
objects. In ACM Trans. Database Syst. 25(1), pages 1-42, 2000.

Abul, O., Bonchi, F. and Nanni, M. ANever Walk Alone: Uncertainty for
anonymity in moving objects databases. In Proc. of the 24nd IEEE Int. Conf.
on Data Engineering (ICDE’08), 2008.

Monreale, A. Pinelli, F. Trasarti, R, and Giannotti F. Wherenext: a location
predictor on trajectory pattern mining. In /5th ACM SIGKDD Conference on
Knoledge Discovery and Data Mining (KDD’09), 2009.

Giannotti F., Nanni M. Pinelli F., and Pedreschi D. Trajectory pattern mining. In
Proceedings of the International Conference on Knowledge Discovery and Data
Mining , pages 330-339, 2007.

Giannotti F, Nanni M, Pedreschi D., Pinelli F., Renso C., Rinzivillo S. and
Trasarti R. Unveiling the complexity of human mobility by querying and min-
ing massive trajectory data. In VLDB Journal Special issue on Data Management
for Mobile Services (2011).

Trasarti, R. Mastering the Spatio-Temporal Knowledge Discovery Process. PhD
in Computer science, University of Pisa, 2010.

http://www.postgis.org/docs/reference.html

A

Appendix: Types signatures

Here the signatures of the data, m-pattern and m-model data types are presented.

Al

A2

Data type signatures

The spatial object data type is implemented using the GEOMETRY type of Post-
Gis Extension [7].

The temporal object type is defined as:

CREATE TYPE period AS (
timepoint timestamp,
duration double precision

)i

The moving object data type is implemented using the LINESTRING type of
PostGis Extension [7].

M-Pattern type signatures
the T-Cluster object type is defined as:

CREATE TYPE cluster AS (
elements text][],
)

the T-Pattern object type is defined as:

CREATE TYPE tpattern AS (
regions text|[],

min_interval double precision|],
max_interval double precision]],
support numeric

)i
the T-Flock object type is defined as:

CREATE TYPE flock AS (
elements text][],
base text

)i

The T-Flow is represented by a row in a relational table with three attributes:

from_region geometry,
to_region geometry,
num numeric

10

A.3 M-Model type signatures

e The reachability plot is represented as list of reachability plot entries defined as:

CREATE TYPE reach_plot_entry AS (
obj_id text,
rd numeric,
cd numeric,

)i

create TYPE reach_plot as(
entries reach_plot_entryl[]
)

e The TP-Tree object type is defined as:

CREATE TYPE TP-Tree AS (
obj_id text,
parent_id text,
children_id text][],
edges_label periodl[],
region geometry,
support numeric,

)i

e The T-O/D Matrix is represented by a table of T-Flow, hence the definition of the
table is the following:

CREATE TABLE od_matrix AS (
from_region geometry,
to_region geometry,
num numeric

)i

B Appendix: DMQL grammar

The data mining query language provided by the M-Atlas system is able to define
a complete knowledge discovery process trough a script. following we present the
formal grammar of the DMQL:

DMQLCall:=
BuildCall |
RelationCall |
TransfCall |
MiningCall |
SglCall

11

BuildCall:= CREATE OBJECT TableName AS BUILD DataType
FROM (SglCall) [WHERE [ParamBuilder [AND]]*]
RelationCall:= CREATE RELATION TableName USING RelationType
FROM (SglCall)
TransfCall:= CREATE TRANSFORMATION TableName USING TransfType

FROM (SglCall) [WHERE [ParamTransf [AND]]x]
MiningCall:= CREATE MODEL TableName AS MINE MiningAlgorith
FROM (SglCall) [WHERE [ParamAlgorithm [AND]]x]
SglCall:= [SQL standard]
TableName:= [A-Z, 0-9]=%
DataType:= MOVING_POINT |
GEOMETRY |
PERIOD
RelationType:= CONTAINS |
INTERSECTS |
EQUALS |
ENTAILS
TransfType:= INTERSECTION |
ANONYMIZATION |
RESAMPLING |

[...]
MiningAlgorithm:= T-PATTERN |

OPTICS |

FLOCK |

[...]
ParamTransf:= TransformationType . Parameter = Value
ParamBuilder:= DataType . Parameter = Value
ParamAlgorithm:= MiningAlgorithm . Parameter = Value
Parameter := [A-Z, 0-9]x
Value := [A-Z, 0-9]~«

Where [SQL standard] represent the part of grammar where the standard SQL is
recognized and [...] represent the fact that some algorithm and transformation are omit-
ted.

12

