
Quality Assurance of Outsourced Outlier Mining

Yongjin Zhang1, Ruilin Liu1, Hui (Wendy) Wang1,Anna Monreale2, Dino
Pedreschi2,Fosca Giannotti3, Wenge Guo 4

Stevens Institute of Technology1, University of Pisa2, ISTI CNR3, New Jersey Institute of Technology4

Hoboken, NJ, USA1, Pisa, Italy 2,3, Newark, NJ, USA4

{rliu3,yzhang21,Hui.Wang}@stevens.edu1,{annam,
pedre}@di.unipi.it2,fosca.giannotti@isti.cnr.it3,wenge.guo@njit.edu4

ABSTRACT
Spurred by developments such as in cloud computing, there
has been considerable recent interest in the paradigm of data
mining-as-service. A company (data owner) lacking in ex-
pertise or computational resources can outsource its mining
needs to a third-party service provider. However, as the
service providers may not be fully trusted, a dishonest ser-
vice provider may return inaccurate mining results to the
database owner. In this paper, we study the problem of pro-
viding quality assurance for outsourced outlier mining. We
propose an efficient and practical auditing approach that can
verify (1) whether the service provider returns the outliers
originated from the hosted database, and (2) whether the
service provider returns correct and complete outlier mining
results. The key of our approach is to insert a small amount
of artificial tuples into the outsourced database; the mining
results of the service provider will be audited by analyzing
the inserted tuples in the returned results with probabilistic
guarantee. Our empirical results demonstrate the effective-
ness and efficiency of our method.

1. INTRODUCTION
Outlier mining has been in critical need in many real ap-

plications, such as credit card fraud detection, discovery of
criminal activities, weather prediction, marketing and cus-
tomer segmentation. The task of outlier mining is to find
the data objects that do not comply with the general pattern
of the majority. The problem of outlier detection has been
widely studied in the data mining community [3, 5, 6, 10,
17]. These work has shown that detecting outliers in gen-
eral is of high computational complexity [6, 10]. Such com-
putational complexity gets even prohibitive for the datasets
of high dimensionality [3]. Although a variety of methods
have been proposed to improve the efficiency of outlier detec-
tion, these methods require either the availability of indexes
[11] or the delicate design and implementation of mining al-
gorithms [11, 17]. It is difficult for the data owners (e.g.,
credit card companies) who lack professional expertise to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

Figure 1: System Architecture

implement these techniques. Therefore, the data owners,
especially the ones with large volume of data but limited
budget for fulfilling analysis on these data, would outsource
their datasets to third-party professionals. This is the data
mining-as-service paradigm that grows popular recently [16,
20]. Cloud computing, an emerging trend of provisioning
scalable and reliable computing services, provides a natural
solution for the mining-as-service paradigm. Indeed, there
has been much effort in industry to realize the paradigm. For
example, Oracle has installed its data mining tools on the
Amazon Cloud [2], while Microsoft has enabled data mining
services in its cloud named DMCloud [1].

Although outsourcing is advantageous for data owners
with limited abilities to achieve sophisticated analysis on
its large volume of data, it triggers serious issues in the
quality assurance of the mining results. The server may
return wrong mining results either intentionally or acciden-
tally for various reasons (e.g., it may only analyze part of
the database to reduce the computation cost). In this pa-
per, we focus on outlier mining. We consider three types
of erroneous mining results by the server: (1) the returned
outliers do not exist in the original database, (2) the re-
turned outliers are indeed non-outliers, and (3) some of the
outliers were not returned. With awareness of possibily in-
accurate mining results, the client needs to ensure that the
service provider indeed returns authentic, correct and com-
plete results. By authenticity, we mean the server will return
outliers that indeed exist in the hosted database. By cor-
rectness, we mean the server only returns true outliers. By
completeness, we mean the server returns all true outliers.

A seemly straightforward solution to provide assurance on
mining results is to allow the client to verify the outliers re-
turned from the server against the original database. This
solution has a few deficits. First, the data owner may not
have sufficient computational power and expertise to accom-

plish such costly auditing task. Second, the client may not
possess the original database after she sent the dataset to
the server. Third, the client cannot verify the completeness
by herself without computing all outliers. Therefore, our
goal is to design practical and efficient techniques that pro-
vide assurance guarantees to the data owner, while keeping
the resource requirements under control.
The architecture behind our model is illustrated in Figure

1. The data owner (client) sends her dataset to a third-party
service provider (server), and requests the server to report
the outliers in the dataset, if there is any. After sending the
database, the client does not keep the database at her side.
Instead, she maintains a small piece of auxiliary information
for verification purpose. The server applies outlier mining
on the hosted database and returns the resulted outliers to
the client. After receiving the results, the client will feed the
auditor module, which can be essentially treated as a “black
box”, with the returned outliers. The auditor module will
provide the quantified assurance guarantee of the mining
results to the client.
The core of our auditing procedure is a novel artificial tu-

ple injection (ATI) technique that we proposed. ATI provide
probabilistic guarantee for both completeness and correct-
ness auditing; incorrect and incomplete answers from the
server can be caught with high confidence. In particular,
the auditor module constructs a set of artificial tuples that
consists of two types of data, artificial outliers (AOs) and
artificial non-outliers (ANOs). ATI plants both AOs and
ANOs into the original database and sends them together to
the service provider. The auditor module ensures that these
counterfeit tuples are indistinguishable from the true ones.
When validating the completeness of the outlier results, the
auditor module analyzes the returned outliers against AOs
and ANOs, and quantifies the probabilistic guarantee of the
completeness and correctness. A nice property of our ATI
techniques is that the original database is not needed for au-
diting; instead, only a small piece of auxiliary information
(including a hash function, three constants, and the number
of AOs and ANOs) will be used.
The problem of providing assurance to data-mining-as-

service is initialized by [21]. However, it only focuses on
frequent pattern mining outsourcing. To our best knowl-
edge, we are the first to investigate the problem of provid-
ing assurance for outlier mining outsourcing in clouds. Our
contributions are as follows.

• We identify three possible erroneous ming results, namely
the fabrication error, the falseness error, and the con-
cealment error, of outsourcing of outlier mining by the
malicious server. To provide auditing mechanisms for
these errors, we aim at providing assurance guaran-
teed for authenticity, completeness and correctness of
the outlier mining results.

• We propose a signature-based scheme that can provide
authenticity guarantee. The signatures also serve the
purpose of verifying both completeness and correctness
by distinguishing artificial tuples from the original ones
efficiently.

• We propose a probabilistic approach that can pro-
vide both correctness and completeness guarantee with
high confidence. We formally quantify the probability
of both correctness and completeness, and show that

the targeted malicious behaviors by the server can be
caught with high probability with a small number of
artificial tuples. We further define the α-completeness
and β-correctness models that assign bounds for the
completeness and correctness guarantee.

• We propose efficient approaches to construct artifi-
cial outliers and non-outliers, without validating them
against the original database. We discuss how to de-
sign these artificial tuples so that: (i) they preserve
the required (non)outlierness when they were put to-
gether with the original database, and (ii) they satisfy
the required α-completeness and β-correctness.

• We complement our analytical results with an exten-
sive set of experiments. The results demonstrating the
efficiency and the effectiveness of our approach.

The paper is organized as following. Section 2 discusses
the related work. Section 3 introduces the preliminaries of
our work. Section 4 discusses our signature scheme for verifi-
cation of authenticity. Section 5 introduces our probabilistic
approach for verification of both completeness and correct-
ness. Section 6 presents our solutions of efficient construc-
tion of AOs and ANOs. Section 7 introduces the verification
procedure at the client side. Section 8 presents our experi-
mental results. Section 9 concludes the paper.

2. RELATEDWORK
In this section, we briefly summarize related work.

Data and pattern security in data outsourcing. Pro-
tection of data and data mining results of outsourced databases
is another security issue that was caught much attention re-
cently. A few work [8, 13, 19, 20] have been done under this
theme. Wong et al. [20] consider utilizing a one-to-n item
mapping together with non-deterministic addition of cipher
items to protect the identification of individual items in the
scenario that frequent pattern mining task is outsourced.
Unfortunately, this work has potential privacy flaws; Mol-
loy et al. [13] show how privacy can be breached in the
framework of [20]. Tai et al. [19] consider the same sce-
nario and proposed a database transformation scheme that
is based on a notion of k-support anonymity. To achieve
k-support anonymity, they introduced a pseudo taxonomy
tree; the third party server will discover the generalized fre-
quent itemsets instead. Giannotti et al. [8] define a similar
privacy model as k-support that requires each item must be
indistinguishable from the other k− 1 items regarding their
frequencies. They provide formal privacy analysis of their
k-privacy model on both items and frequent patterns. Al-
though these works focus on frequent pattern mining, their
encryption techniques can be applied to our work to provide
further protection on data and mining results.
Assurance of outsourced query evaluation. The issue
of providing assurance for database management was ini-
tially raised in the database-as-service paradigm [9]. In this
paradigm, the focus is on the evaluation of SQL queries over
hosted relational databases. [9, 7, 14, 12, 15, 18, 22] study
and propose a few techniques to provide assurance for SQL
query evaluation. For example, [7, 14, 12] propose to use
Merkle hash trees to audit the completeness of the query
answers. Pang et al. [15] introduce a scheme to verify com-
pleteness by assigning signatures on a chain of paired tuples.
Sion [18] proposes a challenge token mechanism and uses

it as a probabilistic proof that the server has executed the
queries over the entire database. Xie et al. [22] insert a small
amount of counterfeit records (via both randomized and de-
terministic approaches) into the outsourced databases; the
completeness and correctness can be audited by analyzing
the inserted records in the query results. We follow the sim-
ilar idea of using artificial tuples for quality verification of
data mining results.However, our problem is more challeng-
ing as our artificial tuples should present outlierness/non-
outlierness property. It is not clear how to easily adapt
these aforementioned techniques to our problem.
Assurance of outsourced data mining. The problem of
assuring the quality of data mining results in the outsourcing
paradigm has been rarely studied. To our best knowledge,
Wong et al. [21] are the first (and the only) work under
this theme. In this work, they propose auditing techniques
for outsourcing of frequent itemset mining. Essentially they
generate a (small) artificial database such that all itemsets in
the database are guaranteed to be frequent and their exact
support counts are known. By hosting the artificial database
with the original one and checking whether the server has
returned all artificial itemsets, the data owner can verify
whether the server has returned correct and complete fre-
quent itemsets. As their focus is on frequent itemset mining,
while ours is on outlier mining, their techniques cannot be
directly applied to our problem.

3. PRELIMINARIES
3.1 Outlier Mining Task
A variety of definitions of outliers, including distance-

based outliers [10] and density-based outliers [6], have been
proposed recently. In this paper, we focus on distance-based
outliers. The definition of distance-based outliers is the fol-
lowing [10]:

Definition 3.1. [(p, d)-outlier] An object O in a
dataset D is a (p, d)-outlier if at least p% of the objects in
D lies greater than distance d from O. Otherwise, O is a
non-outlier with regard to (p, d) setup.

For simplicity, we say O is a non-outlier if it is not a (p, d)-
outlier. We assume p% ∗ |D| always returns an integer, as it
indicates the number of tuples. We use Euclidean distance
to measure the distance between two tuples. In particular,
given two tuples t(a1, . . . , ak) and t′(a′

1, . . . , a
′
k), dist(t, t

′) =
√

∑k
i=1(ai − a′

i)
2.

3.2 Assurance Goal
We assume the service provider (server) can return in-

accruate outlier mining results. We consider the following
types of erroneous behaviors that the server can conduct:
(1) Fabrication behavior: the server returns outliers that do
not exist in the hosted database; (2) Falseness behavior: the
server returns non-outlier tuples as outliers; and (3) Con-
cealment behavior: the server retains some true outliers and
do not include them in the returned results.
To address these erroneous behaviors, we aim to designing

an auditing environment for outsourcing of outlier mining.
The auditing framework will provide the following assurance
guarantees: (1) Authenticity guarantee that defends against
the fabrication behavior; (2) correctness guarantee that de-
fends against the falseness behavior; and (3) completeness
guarantee that defends against the concealment behavior.

4. AUTHENTICITY GUARDS
Before the data owner sends out her dataset, the auditor

module (at the data owner side) will sign each tuple with
a cryptographic signature. The signature consists of two
sub-signatures: Siga and Sigt. Siga provides authenticity
guarantee, so that any modification on the original tuples
can be caught, while Sigt is used to distinguish the true
tuples from the artificial ones that will be inserted for verifi-
cation of completeness and correctness. In particular, given
a tuple t(a1, . . . , an),

Siga = H(a1 ⊕ . . . an),

and

Sigt =

H(Siga ⊕ c1), If t is a true tuple in D;
H(Siga ⊕ c2), If t is an artificial outlier;
H(Siga ⊕ c3), If t is an artificial non-outlier.

The auditor module pre-defines three constants c1, c2, and
c3, for the true tuples, the artificial outlier tuples, and the
artificial non-outlier tuples. It stores the three constants
and the hash function H locally. We require that the hash
function H is an efficiently computable collision-resistance
hash function [4]. It takes a variable-length input and re-
turns a fixed length binary sequence. Furthermore, in case
of malicious server it should be difficult for the attacker to
reverse the hash value, i.e., given H(x), it is computational
infeasible to compute x. Therefore, the server cannot easily
modify the signature.

After the auditor module completes the computation of
signatures, the data owner sends the dataset to the server.
Each tuple in the dataset is associated with its two sig-
natures Siga and Sigt. These two signatures will not be
taken into consideration for distance computation. When
the server returns the outlier tuples to the client, he is re-
quired to return the two signatures of these tuples too. How
the auditor module will use the signatures for audting will
be explained in Section 7.

5. COMPLETENESSANDCORRECTNESS
GUARANTEE

Overview. The core of our auditing framework is the arti-
ficial tuple injection (ATI) technique. ATI provides proba-
bilistic guarantee for both completeness and correctness au-
diting; incorrect and incomplete answers from the service
provider can be caught with a high confidence. In partic-
ular, ATI generates a set of artificial outliers (AOs) and
artificial non-outliers (ANOs). ATI inserts these AOs and
ANOs into the original database and sends them together
to the server. Since AOs are indistinguishable from the true
outliers, if the server is honest, it should return all AOs as
part of the mined outliers. Thus during the auditing process,
the auditor module will verify whether the outliers returned
from the server contain all AOs, and obtain a probabilistic
guarantee of the completeness accordingly. Similarly, to ver-
ify the correctness, the auditor module verifies whether the
service provider has returned any ANO, and concludes the
correctness with a probabilistic guarantee. The probabilities
of both completeness and correctness are quantified below.

Theorem 5.1. (Completeness Guarantee) : Given
a database D, let AO be the set of artificial outliers that
is inserted into D. Let O be the set of outliers that is re-
turned by the service provider. Let m be the number of

 0

 5

 10

 15

 20

 25

 0 50 100 150 200 250 300 350 400

A
c
c
u
ra

c
y
 E

rr
o
r

(%
)

Estimated number / Real number (%)

Pm

 0
 1e-008
 2e-008
 3e-008
 4e-008
 5e-008
 6e-008
 7e-008
 8e-008
 9e-008
 1e-007

 0 50 100 150 200 250 300 350 400

A
c
c
u
ra

c
y
 E

rr
o
r

(%
)

Estimated number / Real number (%)

Pr

Figure 2: Accuracy error by estimated # of outliers

true outliers, and k be the number of true outliers that are
retained by the server. Then the probabilistic guarantee pm
that the server will be caught when he returns incomplete
outlier mining result is

pm =

1 If AO $⊆ O

1− (mk)
(|AO|+m

k)
Otherwise;

Proof: The service provider will get caught if at least one
of the k deleted outliers is faked. Thus the probability =

1 − Prob(all k deleted outliers are true) = 1 − (mk)
(m+|AO|

k)
.

Similarly,

Theorem 5.2. (Correctness Guarantee) : Given a
database D, let ANO be the set of artificial non-outliers
that is inserted into D. Let O be the set of outliers that is
returned by the service provider. Let k be the number of
true non-outliers that are returned as outliers, and m be the
number of true outliers. Then the probabilistic guarantee
pr that the service provider will be caught when he returns
incorrect answers is

pr =

1 If ANO ∩O $= Null

1− (|D|−m

k)
(|ANO|+|D|−m

k)
Otherwise;

where k is the number of true non-outliers that are returned
as outliers, and m is the number of true outliers.
Proof: The service provider will get caught if at least one
of the returned outliers is indeed an artificial non-outlier.
Thus the probability = 1 − Prob(all k returned non −

outliers are true) = 1− (mk)
(m+|AO|

k)
.

In both Theorem 5.1 and 5.2, it is essential to value the
number of outliers in the original database. We assume the
data owner has prior estimation of the number of outliers.
Our empirical study shows that the inaccuracy of the estima-
tion does not affect the probabilistic guarantee significantly.
For example, Figure 2 shows that for the KDDCUP dataset
1 that contains 494K tuples and 100 outliers (according to
our (p, d) configuration), the estimated number of outliers
(varying from 10% to 400% of the real number) only incur
at most 20% accuracy error in Pm, and neglible error in Pr

(at most 0.00000001%).
In general, there exists a trade-off between the probabilis-

tic guarantee that can achieve and the number of artificial

1http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

t1

(b) After insertion

t1

(a) Before insertion

o1o1

Figure 3: An example to show that insertion of new
tuples can change outlierness; Black and white cir-
cles represent original and inserted tuples.

tuples that have to be inserted to achieve the required guar-
antee. Better probabilistic guarantee can be achieved by in-
serting more artificial tuples, which may lead to higher over-
head. To address this issue, we require that the probabilistic
guarantee of both correctness and completeness should be no
less than a given threshold. To address this requirement, we
define α-completeness and β-correctness.

Definition 5.1. [α-completeness & β-correctness] Given
a database D, let F be the set of artificial tuples that are in-
serted into D. We say that F can verify α-completeness
(0 ≤ α ≤ 1) if pm > α, and can verify β-correctness
(0 ≤ β ≤ 1) if pr > β.

Challenges. Inserting tuples (as verifiers) into databases
may change the (non)outlierness of some tuples in the orig-
inal dataset. Example 5.1 gives more details.

Example 5.1. Consider the dataset shown in Figure 3
(a) that contains 5 tuples in total. The tuple o1 is a (50%, d)-
outlier in the dataset, and the tuple t1 is not. However, after
inserting four artificial tuples into the database (shown in
Figure 3 (b)), o1 is not a (50%, d)-outlier anymore, while t1
turns to a (50%, d)-outlier now.

The change of (non)outlierness can happen on both orig-
inal and artificial tuples. Preserving the (non)outlierness of
original and artificial tuples is essential to integrity auditing.
We say the artificial tuples are valid if the (non)outlierness
of both original and artificial tuples are well preserved after
inserting artificial tuples into the original database.

Therefore, our goal is that given a dataset D, generate a
set of valid AOs and ANOs that can verify α-completeness
and β-correctness.

6. THE QUALITY ASSURANCE METHOD

6.1 Artificial Outlier Construction
A naive way to construct artificial outliers is that the au-

ditor module randomly creates tuples, and checks whether
these artificial tuples are outliers. This can be prohibitively
expensive. Our goal is to construct artificial tuples that are
guaranteed to be (p, d)-outliers with low computational cost.
In the following, we discuss the details of how to efficiently
construct such tuples.

Our construction procedure is based on the definition of
distant tuples.

Definition 6.1. [Distant Tuple] Given the database
D and a set of tuples S ⊆ D, let n be number of attributes of
S (and D), and mini and maxi the minimum and maximum
value of the i-th (1 ≤ i ≤ n) attribute of S. Then for any

S
d

|S|=p%|D|, S: sample
: Artificial Outlier
: True Tuples

(a) AO construction

d

: t
Artificial Non-outlier

: True Tuples

_avg
:

min((-d)/2,(d -)/2)d db a

da

db

(b) ANO construction

Figure 4: Artificial Tuple Construction

tuple o(a1, . . . , an) $∈ S, if it has k (1 ≤ k ≤ n) attributes
such that on each attribute Ai, ai < (mini − d√

k
) or ai >

(maxi + d√
k
), then we call o a distant tuple of S.

Next, we show that (p, d)-outliers can be generated from
the distant tuples.

Theorem 6.1. Given the database D, let S be a subset
of D such that S takes p% tuples of D. Then any distant
node o of S must be a (p, d)-outlier in D ∪ {o}, and any
distant node o of D must be a (100%, d)-outlier in D ∪ {o}.
Proof. First, we prove that o is a (100%, d)-outlier to S. Let
t′(a′

1, . . . , a
′
n) be a tuple in S. We prove that dist(t, o) > d

always holds. We have:

dist(t, o) =

√

√

√

√

n
∑

i=1

(ai − a′
i)

2

Since there are k attributes A whose value is out of the
boundary (i.e., less than the minimum or greater than the
maximum of values on A). On the i-th attribute of A, a′

i <
mini − d/

√
k or a′

i > maxi + d/
√
k, then it must be true

that (ai − a′
i)

2 > d2/k. Thus

dist(t, o) >
√

k ∗ d2/k = d.

Then we prove that o is a (p, d)-outlier to D. This is
straightforward as o is of distance at least d to all tuples of
S. Since S takes p% tuples of T , o must be a (p, d)-outlier
in T . It is straightforward that if S = D, then o must be a
(100%, d)-outlier. Then the theorem follows.

Based on Theorem 6.1, we design the AO construction
procedure as follows. First, the auditor module randomly
picks p% of tuples fromD as a sample S. Second, the auditor
module treats S as an n-dimension hypercube H. In H, the
edge at the i-th dimension represents the range [mini,maxi]
of the data values in S. Then the auditor module randomly
picks k dimensions (possibily k = 1) of H. Last, the auditor
module expands the k dimensions by d√

k
(i.e., change the

minimum and maximum value of the i-th attribute to be
mini − d√

k
and maxi + d√

k
). Let the expanded hypercube

be H′. Then any tuple O that is created out of H′ must be
a (p, d)-outlier of D. Figure 4(a) illustrates the construction
procedure in a 2-dimension.
The pseudo code of our AO construction procedure is

shown in Algorithm 1. The complexity of the algorithm
is O(nk), where n and k are the number of the tuples and
the number of attributes of the dataset.
To construct valid AOs (i.e., with outlierness of AOs and

true outliers well preserved when AOs are put into the database),

we require that the distance between every two AOs must be
less than d. We also construct a few (100%, d)-outliers (i.e.,
the distant tuples of the database D) that take k% of AOs.
More details of how these requirements can achieve validity
of AOs will be in Section 6.3. We also will show that k must
be greater than p in Section 6.3. It is true that the attacker
is able to identify (100%, d)-outliers as AOs. To achieve the
same degree of integrity guarantee, we can add |AO| ∗ k%
artificial outliers that are (p, d)-outliers, so the total number
of AOs that are (p, d)-outliers does not decrease.

Algorithm 1 AO Construction

Require: The database D, the parameters p, d for (p, d)-
outliers;

Ensure: Construct m artificial (p, d)-outliers
1: Output = {}; o = {}.
2: Randomly pick p% of tuples of D. Let the picked tuples

be S.
3: Randomly pick k attributes of D.
4: repeat
5: for all the i-th picked attribute Ai of S do
6: Find min and max, the min and max values of A

in S.
7: if Coin tossing returns positive then
8: randomly generate a value vi such that vi <

(mini − d/
√
k) or v > (maxi + d/

√
k);

9: Store min and max in synopsis.
10: else
11: randomly generate a value vi ∈ [mini,maxi];
12: o[i] = vi;
13: if ∃o′ ∈ Output s.t. dist(o, o′) ≤ d then
14: Add o to Output;
15: until |Output| = m

6.2 Artificial Non-Outlier Construction
Our ANO construction procedure is based on the concept

of close tuples.

Definition 6.2. [Close Tuple] Given the database D
and a tuple t ∈ D, let ta ∈ D be a tuple whose distance to t
is the largest out of all tuples whose distance to t is less than
d, and tb ∈ D be a tuple whose distance to t is the smallest
out of all tuples whose distance to t is greater than d. Let
da and db be the distance between t and ta and the distance
between t and tb. Let P be a partition that uses t as the
centroid, and r = min(d−da

2 , db−d
2) as the radius. Then we

call any tuple t ∈ P a close tuple to t.

Next, we prove that the close tuples always have the same
distance property as t.

Lemma 6.1. Given a tuple t and its close tuple tc, for
each tuple t′ $= t, it must be true that:

1. if dist(t, t′) > d, then dist(tc, t
′) > d;

2. if dist(t, t′) < d, then dist(tc, t
′) < d;

Proof: We have dist(t, t′) ≤ da < d, and dist(t, tc) <
d−da

2 , leading to dist(t′, tc) < dist(t, t′) + dist(t′, tc) < da +
d−da

2 = d+da
2 . Since da < d, then it must be true that

dist(t′, tc) < d. Similarly, we have dist(t, t′) ≥ db > d,
and dist(t, tc) ≥ dist(t, t′) − dist(t′, tc) ≥ db−d

2 . Thus,

dist(tc, t
′) ≥ dist(t, t′)−dist(t, tc) ≥ db − (db −d)/2 = (db +

d)/2. Since db > d, then it must be true that dist(t′, tno) >
d.

Based on Lemma 6.1, we show that the close tuples of
tuple t always have the same (non)-outlierness property as
t.

Theorem 6.2. Given a tuple t, if it is a (non)outlier, all
of its close tuples must be (non)outliers.
Proof: Let tc be a close tuple of t. First, we prove that if
t is a non-outlier, then tc is a non-outlier, i.e., there exist
at least (1 − p%) ∗ |D| tuples in D whose distance to tc is
less than d. Since t is a non-outlier, there exist at least
(1− p%) ∗ |D| tuples T in D whose distance to t is less than
d. Now we prove each tuple t′ ∈ T whose distance to tc is
also less than d. This is straightforward from Lemma 6.1.

We make use of Theorem 6.2 to construct the non-outlier
tuples. We pick a seed tuple tseed that is a non-outlier,
and create its close tuples as ANOs. Figure 4(b) illustrates
the construction procedure of ANOs. We require that the
distance between each pair of ANOs must be less than d.
The reasoning behind these requirements will be explained
in Section 6.3.
Seed Tuple. A naive approach to identify a seed tuple is
to repeatly pick a tuple from the database randomly, and
verify its non-outlierness against the original database, until
a non-outlier tuple is reached. Such approach can be com-
putationally complex and time costly. Therefore, we aim at
constructing a non-outlier tuple, instead of picking a tuple
from the original database, as the tseed. In particular, we
compute a tuple tavg(a1, . . . , an), where ai(1 ≤ i ≤ n) is
valued as the average of the data values at attribute Ai in
the original database. To compute the average, we can use
the arithmetic mean for numerical values, and the mode for
categorical values.
We evaluated the non-outlierness of tavg by using the Let-

ter dataset from UCI machine learning dataset repository 2.
The dataset contains 20K tuples. We used p = 50%, 60%,
70%, 80% and 90%. For each p value, we decide appropriate
d values that return 0.1%, 0.5%, 1%, 5%, and 10% tuples of
the original database as outliers. Our results show that for
these 25 setting of (p, d) values, tavg is always a non-outlier.
This gives us more confidence of using tavg as the seed for
the construction of ANOs.
The computation of tavg needs to traverse the whole database

once. The computation of the radius of partition P needs
another traversal of the database. Therefore, we can con-
struct ANOs with two passes of the original databases.
To construct valid ANOs, we require that the distance be-

tween every two ANOs must be less than d, and the distance
between every pair of AO and ANO must exceed d. The
former requirement can be easily achieved when construct-
ing AOs and ANOs. To achieve the latter requirement, we
slightly modify the construction procedure of AOs as fol-
lowing: the sample S in the AO construction procedure will
include all tuples in the partition P used in the ANO con-
struction procedure. By doing this, as AOs are guaranteed
to be of the distance greater than d to all tuples in P , these
AOs must be of the distance greater than d to all ANOs.

2http://archive.ics.uci.edu/ml/datasets/Letter+Recognition

6.3 Preservation of (non)outlierness
Our construction procedures in Section 6.1 and 6.2 only

ensure the (non)outliers of the artificial tuples if they are in-
serted into the original database alone. Next, we discuss how
to satisfy the validity requirement, i.e., the (non)outlierness
is still well preserved for both artificial and real tuples after
the artificial tuples are inserted together into the original
database.
Preservation of Outlierness of AOs. To preserve the
outlierness of AOs, we have:

Theorem 6.3. Given a database D, let AO and ANO be
the set of AOs and ANOs that are inserted into D. Then if
|ANO| ≥ p%−k%

1−p% ∗ |AO|, each outlier in AO is still an outlier
in D ∪AO ∪ANO.
Proof: For each artificial outlier o ∈ AO, we define three
types of tuples in D ∪AO ∪ANO.

• The set of tuples D′ in D whose distance to o is greater
than d. Let m = |D′|. It is straightforward that
m/|D| ≥ p%.

• The set of tuples AO′ ⊆ AO whose distance to o is
greater than d. Since we require that the distance be-
tween each pair of AOs that are not (100%, d)-outliers
is less than d, |AO′| = k% ∗ |AO|, where k is the per-
centage of (100%, d)-outliers that are AOs, because ac-
cording to our construction procedure, the distance be-
tween AOs that are not (100%, d)-outliers and (100%, d)-
outliers must be greater than 0.

• The set of tuples ANO′ ⊆ ANO whose distance to o
is greater than d. Since we require that the distance
between o and any ANO always exceeds d, |ANO′|
=|ANO|.

Therefore in D ∪AO ∪ANO, there are x ∗ |D|+ k ∗ |AO|+
|ANO| number of tuples whose distance to o is greater than
d. To help explanation, we denote |D| = n, |D′| = m,
|AO| = f1, and |ANO| = f2. Our goal is to make

m+ f2
n+ f1 + f2

≥ p%. (1)

It is straightforward that

m+ f1 ∗ k%+ f2
n+ f1 + f2

≥ p%

→ (1− p%)f2 ≥ n ∗ p%−m+ (p%− k%) ∗ f1

To ensure Formula 1 holds even in the worst case that n ∗
p% = m, it must be true that |ANO| > |AO| ∗ p%−k%

1−p% .

Preservation of Outlierness of True Outliers. To pre-
serve the outlierness of true outliers, we have:

Theorem 6.4. Given a database D, let AO and ANO be
the set of AOs and ANOs that are inserted into D. Then
if |ANO| ≤ (k%−p%)|AO|

p% , each (p, d)-outlier in D is still a
(p, d)-outlier in D ∪AO ∪ANO.
Proof: Given a true outlier o ∈ D, we define three types of
tuples:

• The set of tuples D′ in D whose distance to o is greater
than d. Since t is a (p, d)-outlier in D, |D′|/|D| ≥ p%.

• The set of tuples in AO whose distance to o is greater
than d. We assume it takes x% of tuples in AO. Since
there are k% tuples of AO that are (100%, d)-outliers,
k% ≤ x ≤ 100%.

• The set of tuples in ANO whose distance to o is greater
than d. We assume it takes y% of tuples in ANO.

Therefore in D∪AO∪ANO, there exist |D′|+x%|AO|+
y%|ANO| of tuples whose distance to o is greater than d.
We denote |D| = n, |D′| = m, |AO| = f1 and |ANO| = f2.
We discuss two possible cases of the tuple o. Let tavg be

the seed tuple that is used for ANO construction.

1. If dist(o, tavg) ≥ d. In this case, following Lemma 6.1,
the distance between all ANOs and t must be greater
than d. Therefore, y = 100%. Thus we need to ensure
that m+x%f1+f2

n+f1+f2
≥ p%. We can infer that it must be

true that (1− p)f2 ≥ np−m+ (p− x)f1 even for the
worst case that n∗p% = m and x = k%, the percentage
of (100%, d)-outliers in AOs. Then we can infer that

|ANO| ≥ (p%−k%)|AO|
1−p% .

2. if dist(o, tavg) < d. In this case, following Lemma 6.1,
the distance between all ANOs and o must be less than
d. Therefore, y = 0%. Thus we need to ensure that
m+x%f1
n+f1+f2

≥ p% even for the worst case that n∗p% = m.

Then we can infer that |ANO| ≤ (k%−p%)|AO|
p% .

If the condition of Case 2 holds, then k > p. Thus, the
condition of Case 1 is also automatically satisfied. Therefore,
the result follows.

Theorem 6.4 shows that it must be true that k > p, i.e.,
the percentage of (100%, d)-outliers out of AOs must exceed
p%. This confirms the need of (100%, d)-outliers.
Preservation of non-outlierness of ANOs. To preserve
the non-outlierness of ANOs, we have:

Theorem 6.5. Given a database D, let AO and ANO be
the set of AOs and ANOs that are inserted into D. Then if
|ANO| > (1−p%)|AO|−1

p% , each non-outlier in ANO is still a
non-outlier in D ∪AO ∪ANO.
Proof: For each artificial non-outlier t ∈ ANO, we define
three types of tuples in D ∪AO ∪ANO.

• the set of tuples D′ in D whose distance to t is greater
than d. Since t is not a (p, d)-outlier in D, it must be
true that |D′|/|D| < p%.

• the set of tuples AO′ ⊆ AO whose distance to t is
greater than d. Following our artificial non-outlier and
outlier construction procedure, the distance between
t and any tuple in AO always exceeds d, i.e., |AO′|
=|AO|.

• the set of tuples ANO′ ⊆ ANO whose distance to t
is greater than d. Since we require that the distance
between each pair of artificial non-outliers is less than
d (Section 6.2), |ANO|′ = 0.

In D∪AO∪ANO, there are |D′|+ |ANO| number of tuples
whose distance to f is greater than d. To help explanation,
we define |D| = n, |D′| = m, |AO| = f1, and |ANO| = f2.

Note that m < n ∗ p%. Our goal is to make m+f1
n+f1+f2

< p%
hold. It is straightforward that

m+ f1
n+ f1 + f2

< p% (2)

→ m+ f1 < p% ∗ (n+ f1 + f2)

→ m− p% ∗ n+ (1− p%) ∗ f1 < p% ∗ f2

Since m/n < p%, it must be true that (m−p%∗n)max = −1
(we assume that p% ∗ n always returns an integer, as it
indicates the number of tuples). Thus m − p% ∗ n + (1 −
p%)∗f1 ≤ (1−p%)∗f1−1. Then if p%∗f2 > (1−p%)∗f1−1
always holds, then the inference in Equation 2 must be true.
It is easy to infer that f2 > (1−p%)∗f1−1

p% .

Preservation of non-outlierness of true non-outliers.
To preserve the non-outlierness of true non-outliers, we have:

Theorem 6.6. Given a database D, let AO and ANO be
the set of artificial outliers and non-outliers that are inserted
into D. Then if |ANO| ∈ ((1−p%)|AO|−1

p% , (p%−1)|AO|+1
1−p%),

each tuple that is not a (p, d)-outlier in D is not a (p, d)-
outlier in D ∪AO ∪ANO.
Proof: Given a true non-outlier t ∈ D, we define three
types of tuples:

• The set of tuples D′ in D whose distance to t is greater
than d. Since t is not a (p, d)-outlier in D. |D′|/|D| <
p%.

• The set of tuples in AO whose distance to t is greater
than d. We assume it takes x% of tuples in AO.

• The set of tuples in ANO whose distance to t is greater
than d. We assume it takes y% of tuples in ANO.

Therefore in D∪AO∪ANO, there exist |D′|+x%|AO|+
y% ∗ |ANO|) of tuples whose distance to t is grater than d.
We denote |D| = n,|D′| = m, |AO| = f1 and |ANO| = f2.

We discuss two possible cases of the tuple t. Let tavg be
the seed tuple that is used for ANO construction.

• If dist(t, tavg) ≥ d. In this case, following Lemma 6.1,
the distance between all ANOs and t must be greater
than d. Therefore, y = 100%. Thus we need to ensure
that m+x%f1+f2

n+f1+f2
< p%. We can infer that it must be

true that (1− p)f2 < n ∗ p%−m+ (p− x)f1 even for
the worst case that p% ∗ n − m = 1 (we assume that
p% ∗ n always returns an integer, as it indicates the
number of tuples) and x = 100%. Then we can infer

that |ANO| < (p%−1)|AO|+1
1−p% .

• if dist(t, tavg) < d. In this case, following Lemma 6.1,
the distance between all ANOs and t must be less than
d. Therefore, f2 = 0. Thus we need to ensure that
m+x%f1
n+f1+f2

< p% even for the worst case that n∗p%−m =
1 (we assume that p% ∗ n always returns an integer,
as it indicates the number of tuples) and x = 100%.

Then we can infer that |ANO| > (1−p%)|AO|−1
p% .

By further inference on Theorem 6.6, to ensure that
(p%−1)|AO|+1

1−p% > 0, it must be true that |AO| > 1
1−p% .

Putting all together. Based on Theorem 6.3, 6.4, 6.5, and
6.6, we can quantify the relationship between the number of

AOs andANOs. In particular, to preserve the (non)outlierness
of AOs and ANOs when they are put together, their sizes
must satisfy the following:
Based on Theorem 6.3, 6.4, 6.5, and 6.6, we can quantify

the relationship between the number of AOs and ANOs. In
particular, we have the following theorem:

Theorem 6.7. Given a database D, let AO and ANO be
the AOs and ANOs that are inserted into D. Let k be the
percentage of AOs that are (100%, d)-outliers. Then if: (1)

|AO| > 1
1−p% , (2) k ≥ p, and (3) |ANO| ∈ ((1−p%)|AO|−1

p% , (p%−1)|AO|+1
1−p%),

the (non)-outlierness of all tuples, including tuples in D and
tuples in AO and ANO, is preserved in D ∪AO ∪ANO.
Proof: Condition (1) comes from Theorem 6.6. Condition
(2) comes from Theorem 6.4. The lowerbound of |ANO| in
Condition (3) is straightforward from Theorem 6.5 and 6.6.

To infer the upperbound of |ANO|, we compare (k%−p%)∗|AO|
p%

(in Theorem 6.4) and (p%−1)|AO|+1
1−p% (in Theorem 6.6). As

|AO| ≥ 1
1−p% and k > p, we can easily prove that 1

1−p% >
p%

k%(1−p%) . Therefore, it must be true that (k%−p%)∗|AO|
p% >

(p%−1)|AO|+1
1−p% . The results then follow.

6.4 α-completeness and β-correctness
To satisfy α-complete, it must be true that 1− (mk)

(x+m

k)
> α,

where m is the number of true outliers in D, x is the num-
ber of AOs, and k is the number of true outliers that are not
included in the returned answer by the service provider. Ob-
viously k ≤ m. Now we want to quantify the value of x, the
number of AOs that are needed to satisfy α-completeness.
It is equivalent to

(1− α)

(

x+m
k

)

>

(

m
k

)

. (3)

Define

g(x) = (1− α)

(

x+m
k

)

−

(

m
k

)

.

Obviously, g(x) is an strictly increasing function with re-
spect to x. Then, we define

x∗ = min{x : g(x) > 0}.

Thus, the range of x value satisfying Equation 3 should
be all positive integers that are greater than or equal to x∗.
In the following, we discuss how to calculate x∗. Define

bi = m+i−k
m+i

for each positive integer i. Thus, when x = 1,

Equation 3 is equivalent to 1 − α > m+1−k
m+1 = b1. For the

worst case that k = m (i.e., the service provider returns none
of the true outliers), b1 = 1

m+1 . When x = 2, Equation 3 is

equivalent to 1−α > (m+2−k)(m+1−k)
(m+2)(m+1) = b1b2. Again, for the

worst case that k = m, 2
m+2 = b2. Generally, when x = j,

Equation 3 is equivalent to 1 − α > Πj
i=1bi. Therefore, x∗

satisfies the following

x∗ = min{j : Πj
i=1bi < 1− α}. (4)

It is easy to see that x∗ in Equation 4 can be calculated
iteratively.

Similarly, we can compute the number y of ANOs that are
needed to satisfy β-correctness, i.e.,

(1− β)

(

|D|−m+ y
k

)

>

(

|D|−m
k

)

. (5)

To make the explanation easier, we use n to denote the
size of the original database.

We define

g(y) = (1− β)

(

y + n−m
k

)

−

(

n−m
k

)

.

As g(y) is an strictly increasing function with respect to
y, we define

y∗ = min{y : g(y) > 0}.

Thus, the range of y value satisfying Equation 5 should
be all positive integers that are greater than or equal to y∗.

To calculate y∗, we define bi = n−m+i−k
n−m+i

for each positive
integer i. Similar to the reasoning of α-completeness, we
have

y∗ = min{j : Πj
i=1bi < 1− β}. (6)

Obviously, y∗ in Equation 6 can be calculated iteratively.

7. VERIFICATION AT CLIENT SIDE
Auxiliary information at client Side. The auditor mod-
ule will maintain the following auxiliary information for in-
tegrity auditing: (1) the size of the database D, (2) the
hash function H and the three constants c1, c2, and c3 used
to construct the signatures, and (3) the number of AOs and
ANOs. It is straightforward that the space overhead of these
auxiliary information is negligible.
Verification procedure. After the service provider re-
turns the outlier mining results to the data owner, the au-
ditor module will run the 2-phase verification procedure as
following:
Phase-1. For each returned outlier tuple t, the auditor
module will re-compute the signature Siga by applying the
stored hash function H (Section 4) on t. If the computed
signature does not match the one that is attached to t, the
auditor module will conclude that the server has returned
tuples that do not exist in the hosted database, and thus
fails to pass authenticity auditing.
Phase-2. If the server passed the phase-1 auditing, the au-
ditor module will further compute three signatures: Sig1t =
H(Siga⊕c1), Sig

2
t = H(Siga⊕c2), and Sig3t = H(Siga⊕c3),

by using the three constants c1, c2, and c3 that the mod-
ule has used and stored locally. The auditor module will
compare these three signatures with the attached Sigt, and
identify whether the returned tuple is a true tuple (a true
outlier), an artificial outlier, and an artificial non-outlier.
After the auditor module identified all returned tuples, it
will compute the probabilistic guarantee of both complete-
ness and correctness as explained in Section 5.

8. EXPERIMENTAL EVALUATION
We ran an extensive set of experiments to evaluate both

the assurance guarantee and performance of our approach.
In particular, we measured: (1) the completeness and cor-
rectness guarantee, (2) the verification overhead at the client

side, including the construction time and space of AOs and
ANOs, and (3) the mining overhead at the server side.

8.1 Setup
All of our experiments are evaluated on a desktop with a

3GHz Intel Core i7 CPU and 8GB RAM runningWindows 7.
We implemented the algorithm in Java. For each experiment
that measured the time performance, we ran 5 times and
took the average.

8.2 Dataset
We experiment with two datasets, Letter dataset 3 from

UCI MLC++ Library that contains 20k tuples, and KD-
DCUP dataset 4 that contains 494k tuples. Letter dataset
has 16 numerical (integer) attributes, and KDDCUP dataset
contains 41 (numerical or categorical) attributes. In our
experiments, we used all 16 attributes of Letter dataset,
and used only five numerical attributes, including dura-

tion, dst_bytes, flag, count, and serror_rate, of KD-
DCUP dataset, when we measured the distances for outlier
mining.

8.3 Probablistic Guarantee
Completeness Guarantee. Figure 5 (a) and (b) show
that even if the service provider removes a small portion of
original outliers from the result, there is a high probability
to catch him/her with a small number of artificial outliers
needed. For example, removing 5% of true outliers from
Letter dataset can be caught with 82% belief probability
by inserting artificial outliers that take 0.5% of the original
database. The same observation also holds for KDDCUP
dataset that is of larger size; the action of removing 0.1%
of true outliers can be caught with more than 95% proba-
bility by inserting AOs whose size takes 1% of the original
database. For both datasets, inserting more AOs will in-
crease the completeness probability. After AOs take 2% of
the original dataset (for both Letter dataset and KDDCUP
dataset), our approach can reach 100% probability of com-
pleteness guarantee.
Correctness Guarantee. We also measured the correct-
ness guarantee probability Pr. Figure 5 (c) and (d) il-
lustrate the results. We observe that even if the service
provider inserts a small portion of non-outliers as outliers,
we still have a high probability to catch the cheating be-
havior by injecting a small portion of ANOs. For example,
for KDDCUP dataset, inserting non-outliers that take 10%
of true outliers can be caught with 87% probability by in-
serting ANOs that take 2% of the original database. The
correctness guarantee probability increases when inserting
more ANOs. This trend holds on both datasets. When the
number of ANOs reaches 5% of original databases for both
Letter and KDDCUP datasets, we can archieve 100% prob-
ability of correctness guarantee.

8.4 Cost Analysis at Client Side
Construction Time. We first measure the construction
time of the AOs at the client side. Figure 6 (a) and (b)
illustrate the AO construction time (excluding the time to
calculate the number of outliers to satisfy α-completeness
guarantee) regarding various percentages of AOs compared

3http://www.sgi.com/tech/mlc/db/letter.all
4http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

 84
 86
 88
 90
 92
 94
 96
 98

 100

 5 10 15 20 25 30

P
m

 (
%

)

|RO|/|TO| (%)

|AO|/|D|
0.50%
1.00%
2.00%
5.00%

 86

 88

 90

 92

 94

 96

 98

 100

 0.1 0.15 0.2 0.25 0.3 0.35

P
m

 (
%

)

|RO|/|TO| (%)

|AO|/|D|
0.50%
1.00%
2.00%
5.00%

(a) Letter dataset (b) KDDCUP dataset

Completeness guarantee

 60
 65
 70
 75
 80
 85
 90
 95

 100

 10 50 100 150 200 300

P
r

(%
)

|RNO|/|TO| (%)

|ANO|/|TNO|
2.00%
3.00%
4.00%
5.00%

 86

 88

 90

 92

 94

 96

 98

 100

 10 50 100 150 200 300

P
r

(%
)

|RNO|/|TO| (%)

|ANO|/|TNO|
2.00%
3.00%
4.00%
5.00%

(c) Letter dataset (d) KDDCUP dataset

Correctness guarantee

Figure 5: Probablistic Guarantee (RO: removed out-
liers; TO: true outliers; TNO: true non-outliers (as out-
liers); D: original database)

with the number of true outliers. The results show that the
construction time increases as the number of AOs increases.
However, even if the number of AOs is large (111K as the
maximum in our experiments), the construction time is still
less than 0.25 seconds.

Next, we measure the construction time of the ANOs at
the client side. Figure 6 (c) and (d) illustrate the per-
formance results. The observation is similar to AO con-
struction; the construction time increases with larger ANOs.
However,the construction time is always negligible (within
1.3 seconds) even the ANOs size is very large (120K as max-
imum).
α-completeness and β-correctness. We also measured
the time to generate AOs and ANOs to achieve given α-
completeness and β-correctness requirements. It turned out
that the generation time is always negligible; for α = 0.95,
the generation time of AOs for both Letter dataset and KD-
DCUP dataset is 0.15 seconds and 1.3 seconds, while for β =
0.95, the generation time of ANOs is at most 0.29 seconds
and 2.9 seconds for Letter dataset and KDDCUP dataset
respectively. We omit the results due to the space limit.

Next, we measured the number of AOs and ANOs accord-
ing to various α and β requirements. Figure 7 illustrates the
number of AOs that are needed to achieve α-completeness
for both datasets. We varied p and d values and repeated
the measurement. The results are similar. We observe that
higher α values requires more AOs. However, even for the
largest α value 0.95, the number of needed AOs only takes
at most 0.4% of the original database. This shows that our
auditing approach is lightweight, as it does not require large
amounts of AOs to achieve high α completeness guarantee.

Figure 8 illustrates the number of ANOs needed to satisfy
β-correctness. Similar to the case of AOs, higher β values
need more ANOs. We also observe that the needed ANOs
is significantly larger than that of AOs, given α and β being
assigned the same values. This is because the number of true
non-outliers (that the attacker can pick and pretend as out-
liers) are dramatically larger than the true outliers; there-

 0.01
 0.015
 0.02

 0.025
 0.03

 0.035
 0.04

 0.045
 0.05

 0.055
 0.06

 10 50 100 150 200 250

T
im

e
 (

S
e
c
o
n
d
)

|AO|/|TO| (%)

|TO|/|D|
1.50%
3.00%
4.50%
6.00%
7.50%
9.00%

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 10 50 100 150 200 250

T
im

e
 (

S
e
c
o
n
d
)

|AO|/|TO| (%)

|TO|/|D|
1.50%
3.00%
4.50%
6.00%
7.50%
9.00%

(a) Letter dataset (b) KDDCUP dataset

 0.09
 0.095

 0.1
 0.105
 0.11

 0.115
 0.12

 0.125
 0.13

 0.135
 0.14

 1 5 10 15 20 25

T
im

e
 (

S
e
c
o
n
d
)

|ANO|/|TNO| (%)

|TO|/|D|
1.50%
3.00%
4.50%
6.00%
7.50%
9.00%

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1 5 10 15 20 25

T
im

e
 (

S
e
c
o
n
d
)

|ANO|/|TNO| (%)

|TO|/|D|
1.50%
3.00%
4.50%
6.00%
7.50%
9.00%

(c) Letter dataset (d) KDDCUP dataset

AOs ANOs

Figure 6: Construction Time (RO: removed outliers; TO: true outliers; TNO: true non-outliers (returned as outliers);
D: original database)

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45

75.0% 80.0% 85.0% 90.0% 95.0%

|A
O

|/
|D

|
(%

)

Alpha Value (|TO|=0.5%|D|)

|RO|/|TO|
5.0%

10.00%
15.00%
20.00%
25.00%

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

75.0% 80.0% 85.0% 90.0% 95.0%

|A
O

|/
|D

|
(%

)

Alpha Value (|TO|=1%|D|)

|RO|/|TO|
5.0%

10.00%
15.00%
20.00%
25.00%

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

80.0% 85.0% 90.0% 95.0%

|A
O

|/
|D

|
(%

)

Alpha Value (|TO|=5%|D|)

|RO|/|TO|
0.14%
0.07%
0.05%
0.04%
0.03%

(a) Letter dataset

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

75.0% 80.0% 85.0% 90.0% 95.0%

|A
O

|/
|D

|
(%

)

Alpha Value (|TO|=0.2%|D|)

|RO|/|TO|
5.0%

10.00%
15.00%
20.00%
25.00%

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

75.0% 80.0% 85.0% 90.0% 95.0%

|A
O

|/
|D

|
(%

)

Alpha Value (|TO|=0.5%|D|)

|RO|/|TO|
5.0%

10.00%
15.00%
20.00%
25.00%

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

75.0% 80.0% 85.0% 90.0% 95.0%

|A
O

|/
|D

|
(%

)

Alpha Value (|TO|=1%|D|)

|RO|/|TO|
5.0%

10.00%
15.00%
20.00%
25.00%

(a) KDDCUP dataset

Figure 7: Number of AOs and ANOs to satisfy α-completeness (RO: removed outliers; TO: true outliers; TNO: true
non-outliers (returned as outliers); D: original database)

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

75.0% 80.0% 85.0% 90.0% 95.0%

|A
N

O
|/
|D

|
(%

)

Beta Value (|TO|=0.5%|D|)

|RNO|/|TNO|
5.0%

10.00%
15.00%
20.00%
25.00%

 0

 5

 10

 15

 20

 25

 30

 35

75.0% 80.0% 85.0% 90.0% 95.0%

|A
N

O
|/
|D

|
(%

)

Beta Value (|TO|=1%|D|)

|RNO|/|TNO|
5.0%

10.00%
15.00%
20.00%
25.00%

 0

 1

 2

 3

 4

 5

 6

75.0% 80.0% 85.0% 90.0% 95.0%

|A
N

O
|/
|D

|
(%

)

Beta Value (|TO|=5%|D|)

|RNO|/|TNO|
5.0%

10.00%
15.00%
20.00%
25.00%

(a) Letter dataset

 0

 1

 2

 3

 4

 5

 6

 7

75.0% 80.0% 85.0% 90.0% 95.0%

|A
N

O
|/
|D

|
(%

)

Beta Value (|TO|=0.2%|D|)

|RNO|/|TNO|
5.0%

10.00%
15.00%
20.00%
25.00%

 0

 0.5

 1

 1.5

 2

 2.5

75.0% 80.0% 85.0% 90.0% 95.0%

|A
N

O
|/
|D

|
(%

)

Beta Value (|TO|=0.5%|D|)

|RNO|/|TNO|
5.0%

10.00%
15.00%
20.00%
25.00%

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

75.0% 80.0% 85.0% 90.0% 95.0%

|A
N

O
|/
|D

|
(%

)

Beta Value (|TO|=1%|D|)

|RNO|/|TNO|
5.0%

10.00%
15.00%
20.00%
25.00%

(a) KDDCUP dataset

Figure 8: Number of AOs and ANOs to satisfy β-correctness (RO: removed outliers; TO: true outliers; TNO: true
non-outliers (returned as outliers); D: original database)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

0.75 0.8 0.85 0.9 0.95

O
v
e
rh

e
a
d
 (

%
)

Alpha Value

|RO|/|TO|
5%

10%
15%
20%
25%

 0
 10
 20
 30
 40
 50
 60
 70
 80

0.75 0.8 0.85 0.9 0.95

O
v
e
rh

e
a
d
 (

%
)

Beta Value

|RO|/|TO|
5%

10%
15%
20%
25%

(a) Various α values (b) Various β values

Figure 9: Mining overhead

fore verifying correctness with the same amount of guarantee
needs more ANOs.

8.5 Overhead at Server Side
In our experiment, we gauged the additional time for the

service provider to apply outlier mining on the dataset D′

that contains both AOs and ANOs. In this experiment,
we only used Letter dataset. The overhead is measured as
|TD′−TD|/TD, where TD′ and TD are the time of mining out-
liers from the original database D and the dataset D′. Fig-
ure 9 (a) shows that it takes at most additional 0.9% of the
original mining time for datasets that satisfy α-completeness
requirement, with α varies from 0.75 to 0.95. On the other
hand, Figure 9 (b) shows that the time overhead for datasets
that satisfy β-correctness is considerably large; it takes at
most additional 70% of the original mining time when β is
equal to 0.95. Since such overhead occurs only at the server
side, it will not bring burden to the framework, especially
to the data owner.

9. CONCLUSION
Outsourcing of outlier mining arises serious concern on

quality assurance of mining results. In this paper, we pro-
posed a lightweight signature scheme that can verify the
authenticity of the returned outlier tuples. We also pro-
posed a practical scheme that can verify the correctness and
completeness of the outlier mining results with probabilistic
guarantee. We designed efficient approaches of constructing
artificial tuples for verification purpose, and discussed how
to achieve both requirements of validity of the artificial tu-
ples and bounded completeness and correctness guarantee.
In the future, we will work on updates on the databases.

We will also extend our work to cover other types of outliers,
e.g., density-based outliers [6].

10. REFERENCES
[1] Microsoft inc., data mining in dmcloud.

http://www.microsoft.com/azure/mining.mspx.
[2] Oracle inc., oracle data mining in the cloud.

http://www.oracle.com/technetwork/database/options/odm/odm-
education-101260.html.

[3] C. C. Aggarwal and P. S. Yu. Outlier detection for
high dimensional data. In SIGMOD, 2001.

[4] S. Bakhtiari, R. Safavi-naini, J. Pieprzyk, and
C. Computer. Cryptographic hash functions: A survey.
Technical report, University of Wollongong, 1995.

[5] V. Barnett and T. Lewis. Outliers in Statistical Data.
John Wiley and Sons, 1994.

[6] M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander.
Lof: Identifying density-based local outliers. In
SIGMOD, 2000.

[7] P. T. Devanbu, M. Gertz, C. U. Martel, and S. G.
Stubblebine. Authentic third-party data publication.
In Proceedings of the IFIP TC11/ WG11.3 Fourteenth
Annual Working Conference on Database Security:
Data and Application Security, Development and
Directions, 2001.

[8] F. Giannotti, L. V. Lakshmanan, A. Monreale,
D. Pedreschi, and H. Wang. Privacy-preserving mining
of association rules from outsourced transaction
databases. In The workshop on Security and Privacy
in Cloud Computing (SPCC2010).

[9] H. Hacigümüş, B. Iyer, C. Li, and S. Mehrotra.
Executing sql over encrypted data in the
database-service-provider model. In SIGMOD, 2002.

[10] E. M. Knorr and R. T. Ng. Algorithms for mining
distance-based outliers in large datasets. In VLDB,
1998.

[11] E. M. Knorr, R. T. Ng, and V. Tucakov.
Distance-based outliers: Algorithms and applications.
In VLDB Journal, volume 8, pages 237–253, 2000.

[12] F. Li, M. Hadjieleftheriou, G. Kollios, and L. Reyzin.
Dynamic authenticated index structures for
outsourced databases. In Proceedings of the 2006 ACM
SIGMOD international conference on Management of
data, SIGMOD, 2006.

[13] I. Molloy, N. Li, and T. Li. On the (in)security and
(im)practicality of outsourcing precise association rule
mining. In ICDM, 2009.

[14] E. Mykletun, M. Narasimha, and G. Tsudik.
Authentication and integrity in outsourced databases.
Trans. Storage, 2, May 2006.

[15] H. Pang, A. Jain, K. Ramamritham, and K.-L. Tan.
Verifying completeness of relational query results in
data publishing. In SIGMOD, 2005.

[16] L. Qiu, Y. Li, and X. Wu. Protecting business
intelligence and customer privacy while outsourcing
data mining tasks. Knowledge Information System,
17(1), 2008.

[17] S. Ramaswamy, R. Rastogi, K. Shim, and Aitrc.
Efficient algorithms for mining outliers from large data
sets. In SIGMOD, 2000.

[18] R. Sion. Query execution assurance for outsourced
databases. In VLDB, 2005.

[19] C.-H. Tai, P. S. Yu, and M.-S. Chen. k-support
anonymity based on pseudo taxonomy for outsourcing
of frequent itemset mining. In SIGKDD, 2010.

[20] W. K. Wong, D. W. Cheung, E. Hung, B. Kao, and
N. Mamoulis. Security in outsourcing of association
rule mining. In VLDB, 2007.

[21] W. K. Wong, D. W. Cheung, B. Kao, E. Hung, and
N. Mamoulis. An audit environment for outsourcing of
frequent itemset mining. In PVLDB, volume 2, pages
1162–1172, 2009.

[22] M. Xie, H. Wang, J. Yin, and X. Meng. Integrity
auditing of outsourced data. In VLDB, 2007.

