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Figure 1: A dataset of a thousand images visualized globally. Near the center, each individual image is visible as a larger
thumbnail. At the side, images far from the area of interest are piled together into increasingly taller stacks. As the area of
interest changes, the thumbnail bar dynamically rearranges accordingly with a smooth animation.

Abstract

We introduce PileBars, a new class of animated thumbnail-bars aimed at easing the browsing of very large image
datasets (thousands of images). Since the bar is meant to be just one element of a GUI, it covers only a small
portion of the screen; yet it provides a global view of the entire dataset, without any scrolling panels. Instead,
thumbnails are dynamically rearranged, resized and reclustered into adaptive layouts during the entire browsing
process. The objective is to make the user able, at the same time, to accurately pinpoint a specific image (even
among semantically close ones), and to jump anywhere to “distant” parts of the dataset. The used thumbnail
layouts also maximize temporal coherence, thus allowing for smooth animations from one layout to the next.
The system is very general: it can be driven by any application-specific image-to-image semantic distance function,
and respects any user-defined total ordering of the images; the ordering can be either inferred from the semantic
or be chosen independently from it, depending on the application.
The applicability of the resulting system is tested in a number of practical applications: browsing image collections
from the web or personal achieves; navigation of 3D virtual scenes based on calibrated pictures; selection of a
frame in a movie. In each test scenario, proper distance and ordering functions are fed to the system.

Categories and Subject Descriptors (according to ACM CCS): H.5.2 [Information Systems]: User Interfaces—
Graphical User Interfaces I.3.6 [Computer Graphics]: Methodology and Techniques—Interaction techniques

1. Introduction

In the aftermath of the explosion of digital imagery, large im-
age datasets are becoming ubiquitous. Datasets composed of
thousands or even several tens of thousands of digital images
are made readily available in scenarios like picture collec-
tions harvested from the web, photographic acquisition cam-
paigns in architectural, cultural heritage, archeological field
(sometimes paired with parallel 3D acquisition of scenes),
personal picture collections, image-based web-search, and
others.

Dealing with image dataset of that size is not trivial. Even
plain browsing becomes a difficult task, e.g. how to let an

user locate one image, or how to visualize the entire dataset
as a whole, or how to navigate thought the dataset.

In this context, thumbnail-bars are a very common brows-
ing GUI mechanism.

A thumbnail-bar is but one element of an interface: only a
small part of the screen space is devoted to it. They are used
in the many end applications where the the main area of the
screen is used for something else (e.g. to display the current
image at full res).
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1.1. Thumbnail-bars and PileBar

In a thumbnail-bar, each image is represented in the GUI by
a smaller version of itself, i.e. a ‘thumbnail’ (a downsized
and/or cropped version of the original image).

Conventional thumbnail-bars display thumbnails over a
panel, laid in a line or in a regular grid. When the panel
size exceed the screen size devoted to the thumbnail-bar, the
panel is made scrollable and scrolling mechanisms are pro-
vided to the user to navigate the dataset.

In presence of thousands of images this type of inter-
face quickly becomes inadequate: either thumbnails are ex-
cessively downsized to be meaningful, or the amount of
scrolling required becomes unfeasible. The problem is only
partially mitigated by statically grouping images e.g. in fold-
ers, which anyway are not always available.

We propose a focus-plus-context oriented, general type of
thumbnail-bar which we term ‘PileBar’, which targets scal-
ability, i.e. which can be used on very large image dataset.

The challenge lies primarily in the conception of effec-
tive, new info-visualization and interaction mechanisms, but
it also embeds a system design one: images in the dataset can
be just too many for their thumbnail to be hosted simultane-
ously in RAM (or in texture RAM); also in cases where the
dataset is hosted in a remote server, e.g. in web applications,
it would be impractical to download the entire dataset before
browsing it.

Often the images come enriched with meta-data, rang-
ing from tagging (e.g. from “semantic web”), to time of
shoot/creation, to per-image extrinsic camera calibration
(position/orientation of the camera), and others yet can be
extracted with various kind of content analysis. PileBars
can take advantage of that by using them either as ordering
functions or as semantic distance functions defined over the
dataset, to aid visualization and navigation.

2. Related work

Image browsers are very common. Every modern Operating
System embeds at least one, and with the ubiquitous diffu-
sion of small digital cameras we can find browsers even in
mobile phones. A conventional solution that image browsers
often adopt is to present images on a linear thumbnail-bar [?]
or arranged in a simple grid layout. As discussed these sim-
ple approaches do not scale up well with the number of im-
ages.

In order to improve the efficiency while presenting a lim-
ited number of images, a trend consists in following hier-
archical approaches by clustering images exploiting some
kind of image semantic, like combining time [?], time and
space [?], color [?], spatial image-distances [?, ?], or a mix-
ture of them [?] to automatically, or interactively [?] com-
pute image-clusters. Most of these works focus on the issue
of finding a good clustering of images, while often consider

less important the actual dynamic presentation and explo-
ration of a clustered dataset. Our approach is orthogonal to
these: we can build over many of these clustering techniques,
while focusing on the issue of compact dynamic presentation
of the hierarchy itself.

Other approaches try to exploit more sophisticated image
arranging schemes like [?, ?, ?] that exploits treemaps-like
techniques, or [?] that uses spiraling arrangements, or [?, ?]
that arrange the images in a 3D space relying on their pre-
vious calibration. With respect to these techniques, our ap-
proach offers a very compact presentation of many thumb-
nails, while retaining a hierarchical organization. It can also
preserve the linear ordering of the images and leaves a sig-
nificant space for the focused image or the presentation of a
3D environment.

In a very recent paper, Brivio et al. [?] presented a Voronoi
based technique to arrange thumbnails that shares some sim-
ilarities with PileBars. In their work, the authors exploit a
total ordering defined over the image set and a Voronoi re-
laxation scheme is used to place thumbnails in a liquid free,
well distributed way. The authors customize the Voronoi
metric such that size and density of the thumbnails follows a
focus+context schema. While the proposed approach shares
some similar basic focusing idea, the PileBars technique
overcomes [?] in a number of ways:

• Efficiency and simplicity - the presented technique does
not have strong computational requirements and is quite
easy to implement.

• Regularity and stability - piles are designed to be stable,
while in [?] even small sideways thumbnails can move as
a consequence of a relaxation process.

• Scalability - PileBars scales better and always present
more informative clusters (i.e. the number of represented
images is represented in the interface).

• Flexible clustering schema - our work supports different
and adaptable clusterings, while in [?] a fixed a-priori
clustering is provided, untied from the dataset image-
features.

3. PileBars overview

In thumbnail-bars (including PileBars), at any given time,
one image of the dataset is the current ‘focus’, selected by
the user. The focus image can be regarded as the current
“position” where the user sits, within the dataset. The ex-
act meaning of selecting a focus depends on the application.
In an image viewer, the focus can be the image being shown
at full resolution in the main area of the screen; in a 3D nav-
igator application, where images (here, pictures) are linked
to viewpoints (the physical camera positions of the shot), the
focus image can determine the position of the virtual camera
used to render the 3D scene inside the main screen area (see
Fig. ??) [?]; and so on.

In a PileBar, thumbnails dynamically change size and po-
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Figure 2: Example of thumbnails piled inside a slot (shown dashed). From left to right: a pile of 1, 2, 4, 12, 100 thumbnails.

sition during the browsing, and can be laid on top of each
other forming ‘piles’, of varying heights. During the brows-
ing, piles dynamically splits into smaller piles or are merged
into larger piles. In a pile, only the top thumbnail is fully
visible to the user. Therefore, it is important that the image
it shows is a good representative of the images shown by
the underlying thumbnails (which are hidden in part, or, de-
pending on the stack size, even totally). Piling is a natural
visual way of clustering similar images together, to make it
possible to view the entire dataset.

The current focus determines the layout of the thumbnail-
bar, i.e. the position, size and piling of every thumbnail in the
dataset (Sec. ??) (see Fig. ??). A browsing session consists
in a sequence of selections of a new focuses, made by the
user. The change of current focus determine the animation
from a layout of thumbnails to the next.

The main idea follows the spirit of “focus-plus-context”
principle: images semantically closer to the current focus
are displayed as larger thumbnails: this constitutes the “fo-
cus” part of the interface, where the user must be able to see,
and tell apart, images close to its current “position” on the
dataset. Conversely, images farther from the focus will be
represented by thumbnails which are smaller and stacked in
taller piles: this is the “context” part of the interface, where
the user is given a global vision of the entire dataset. In the
latter, the images fully visible on top of each pile are but a
sub-sampling of the entire dataset.

A strength of PileBars is that there is a spatial and tempo-
ral continuum going from this “focus” to the “context” part.
Spatially, the change of thumbnail sizes and piling is pro-
gressive, from the central focus thumbnail (large, isolated
thumbnails) to the peripheral parts of the bar (small, piled
thumbnails). Temporally, the transitions between a thumb-
nail disposition and another (triggered by a change of the
current “focus”) are smooth, meaning that the amount of
change in size, position and piling is kept small by de-
sign, and it is also masked by means of smooth animations
(Sec. ??).

4. PileBars

As discussed, thumbnails in a PileBar dynamically change
screen-size and position inside the thumbnail bar during the
browsing. The current focus image determines a configura-
tion (Sec. ??), and as the current focus changes, the system
animates to pass from a configuration to the next (Sec. ??).

The configurations are designed to comply with the focus-
plus-context principle, as described above, but also to meet
the objective of producing the least amount of change from
the previous configuration, to help temporal coherence.

4.1. Assumptions and objectives

Total ordering: PileBars implicitly assume that a total or-
dering is defined over the images: i.e. images in the datasets
are assumed to be (implicitly) numbered from the first I0
to the last IN−1. This is a central choice of our approach,
as navigating a linearized dataset is intrinsically easier and
more intuitive than navigating one disposed over multiple
dimensions; this is especially with thumbnail-bars, whose
shape have a single largely dominant dimension (in this pa-
per, we assume it to be the horizontal one, but vertical bars
are also possible).

A discussion about different possible orderings is in
Sec. ??.

An reason to adopt a total ordering is also that it provides
an intuitive visual aid to the user during the navigation pro-
cess: the total ordering will be reflected in the left-to-right
spatial dispositions of the thumbnails: any image preceding
in the ordering a given image will appear on its left. This is
also valid for the focus image, therefore the left (right) half
of the thumbnail will be covered by thumbnails of images
preceding (following) the current focus in the total ordering.

Semantic distance function: PileBars can take advan-
tage, in a natural way, of any meaningful image-to-image
distance function {(Ia, Ib) available in the context of the
dataset, and use this information as a way to drive thumb-
nail piling. Piling will put together images which are closer
(according to this function) more often than images that dif-
fer much from each other. Images that are detected as differ-
ent can still be piled together, but they must be farther away
from the current focus. This way, the image visible on top of
the pile will be a good representative of the images partially
hidden behind it.

The same objective can also be restated in term of the set
of ‘top-thumbnails’, i.e. the subset of thumbnails which ap-
pear as on top of a pile: while this subset must be sampled
more tightly in proximity of the focus, and more sparsely
away from it (for the focus-and-context principle), we also
want the sampling to be approximatively regular in seman-
tic space, for a given distance from the focus. For example,
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a dozens outlier images must be lodged in a dedicated pile
even in regions where other piles of more common images
are composed of hundreds of images, so that they are still
visible from a distance.

The definition of a image-to-image distance function of-
fers another way to taylor the behavior of a PileBar around
the needs to the application scenario. Several options, both
very general ones and ones useful in specific applications,
will be summarized in Sec. ??. It should be noted that this is
not a requirement for the PileBars: in absence of any helpful
distance metric, images can be simply assumed to be all se-
mantically equidistant. In this case, top-thumbnails will rep-
resent just a sampling which becomes increasingly sparser
farther away from the focus.

4.2. Defining a PileBar shape

A standard thumbnail-bar has a few spatial parameters like
size, thumbnail size, spacing between thumbnails, etc. A
PileBar has many more degree of freedom and it is defined
mainly by a configuration of ‘slots’, which partition the 2D
region of the screen it covers (see Fig. ??). A slot is a fixed
rectangular region that will be occupied by a single pile of
thumbnails.

Figure 4: Another example of layout of slots (as in Fig ??),
this time for a PileBar with a rectangular shape.

Each slot Si has a set of predefined fixed attributes: a 2D
position pi, a size di, and a ‘stacking value’ ki affecting the
height of the piles that will occupy it: specifically, slot Si
is expected to host piles of around 2ki thumbnails. The spe-
cial value ki = −1 is used to impose that slot Si will host
piles consisting of strictly one thumbnail. These values don’t
usually change when the PileBar is used (barring resizing
events, see Sec. ??).

The slots and their attributes defines the shape, the size
and the behavior of the PileBar, and can be designed freely
to fit the needs of the hosting application.

A the slot S0, termed ‘central’ slot, is preposed to con-
tain the focus thumbnail. That slot is maximal in size, cen-
tral in position, and will carry a pile of only one thumbnail
(e.g. it has a stacking value of k0 = −1). Other 2n slots, Si,
i∈{−n+1..n−1}/0, are arranged on both sides (negatively
indexed on the left and positively on the right), so that they
partition the space of the PileBar. As mentioned, these slots
becomes progressively smaller when farther from S0 on the
x axis, and have bigger values of ki, as i increases. Moreover,
consecutive slots on both side are grouped into a number of

side-to-side ‘columns’; each column is composed of a num-
ber (usually 1 to 5) of vertically aligned slots of the same
size and screen x positions.

Arrangements of slots following the above rules, like the
ones depicted in Figs. ?? and ?? can be easily constructed
procedurally, by selecting a few parameters determining the
shape (height as a function of position), number of columns,
number of slot per column and k values as a function of col-
umn index, etc.

4.3. Arranging and piling thumbnails into slots

In a preprocessing stage, each image Ii in the dataset, i ∈
{0..N−1}, is assigned to a integer number σi, which repre-
sents its 1D position into a ‘linear semantic space’; the val-
ues are such that, for two consecutive images in the dataset
(in the total ordering), the difference of their σ is propor-
tional to their image-to-image distance (up to the rounding),
like in the following pseudo-code:

σ0← 0
foreach i in {0..N−2} :

σi+1← σi + dK · {(Ii, Ii+1)e

where F is the image distance function, and K is an arbitrar-
ily chosen variable, used to make F map to different integer
values. The ceiling function returns at least 1 (distances are
always positive for different images), ensuring that no two
images will have the same value of σ.

At runtime, each thumbnail Ti of image Ii is assigned to a
slot S j. The linear semantic space is subdivided into chunks
of increasing sizes, and thumbnails of consecutive images
with σ values falling into the same chunk are piled into the
same slot. Images are processed from the focus image I f ,
whose thumbnail Tf is assigned to the central slot S0, to the
last image N−1. Every time an image is found to belong to
a different chunk of semantic space than the previous image,
the next slot gets used. The size of the chunk depends on the
clustering factor k j of the currently slot S j.

p r o c e d u r e Arrange :
j← 0
clast ← C l u s t e r ( σ f ,k j )
foreach i in { f ..N−1} :

cnow← C l u s t e r ( σi,k j )
i f cnow 6= clast t h e n j← j + 1
Ass ign Ti t o S j
clast ← cnow

where Cluster is a function returning an unique index of a
chunk of semantic space, given a position in linear semantic
space σ and the clustering factor k, as described below. The
process is repeated backward to assign all thumbnails for Tf
to T0 to a left-hand slot.

f u n c t i o n C l u s t e r ( σ,k ) :
i f k =−1 re turn σ
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Figure 3: An example of the arrangement of slots for a PileBar. Below each column of slots we report the value of k for all the
slots in that column. Each slot will host a pile of, on average, 2k thumbnails (or exactly one when k =−1).

e l s e re turn σ >> (norm + k)

where >> is the right shift operation in base 2. In the k =
−1 case, a cluster will span exactly one value of the linear
semantic space, meaning that, as expected, the slot contains
exactly one image. The integer value norm is a normalization
factor used so that, when k = 0, there is approximately one
cluster of semantic space per image in the dataset: norm =
log2(σN−1/N), rounded to the closest integer. For any k 6=
0, the semantic space will be clustered into approximatively
N/2k chunks, resulting on an average of around 2k images
per slots. Note that a slot with k = 0 will usually contain one
image, but could also contain many semantically close ones,
whereas with k =−1 a slot will contain exactly one image.

Procedure Arrange (and function Cluster) are designed so
that top-images are always be selected consistently, in the
following sense: consider the set of top-thumbnails, i.e. the
set of images that, being on top of their own pile, are fully
visible (that set is composed of the images which are the
first to be assigned to a new slot in procedure Arrange); if
one image belongs to this set when it is at a certain distance
from the focus, it will always belong to this set if the focus
is moved closer. This is important in order to achieve better
transition between thumbnail layouts.

Sort among y: while, as mentioned, the total ordering of
images will be reflected by the ordering of thumbnails on
the x screen axis, the distribution of thumbnails on the y
screen axis, which is not attached to any semantic, is used
to maintain temporal coherence as much as possible, i.e. to
maximize the similarity with the last computed thumbnail
distribution. To achieve this, we kee[ track of the xy position
that each thumbnail had in the last frame (Sec. ??). Within
each column of slots, slots are re-sorted vertically accord-
ing to ordering on the last y values of the thumbnail on top
of that slot. This simple heuristic ensures that, when, as a
consequence of a new focus selection, piles divide/merge,
they rearrange in a way that minimize the total magnitude of
movements (see attached videos).

Determining position/size of thumbnails: once every
thumbnail has been assigned to a slot, the ‘Status’ of each
must be determined: the Status of a thumbnail encompasses
its xy position in screen space, its screen size, and its z-
order. In a slot which ended up with just one thumbnail,

that thumbnail simply inherits status values from the slot at-
tributes (size, position).

When multiple thumbnail end up in a slot, they are stacked
into a pile, with the 1st one on top and the other ones behind
it, following the total order. The entire pile fits into the slot
(see Fig. ??): thumbnails are slightly reduced in size by a
factor r, determined by the number np of thumbnail in the
pile (r = 1− r0 ln(np), with r0 = 0.3). The upper left border
of the slot (or upper right, on the left-sided slots) is used to
space equally the np thumbnails.

4.4. Transitions

Change in thumbnails disposition induced by choice of new
focus is performed through an animation which interpolates
smoothly between the old and the new layout. This is trivial
to do, because the layout consist is a Status per each thumb-
nail, and Statuses can be linearly interpolated by linearly in-
terpolating all their attributes.

For each thumbnail, the current Status sc
i and the new Sta-

tus sn
i are kept for each thumbnail. A new disposition in-

duced by a focus change reassigns all sn
i . At every frame,

we simply perform sc
i = h ∗ sc

i + (1− h) ∗ sn
i , with a speed

parameter h (we use h = 0.9). This results in a natural ex-
ponential movements that start fast and end slow, and the
speed is nicely proportional to the traveled distance (when
the distance between sc

i and sn
i is below a small threshold, sc

i
is snapped to sn

i ).

Animations of this kind also overlap in a simple and clean
way: if, before the previous animation finishes, a new user
interaction triggers a new layout, a new sn

i is recomputed
and the animation start from the current sc

i , as normal.

4.5. Liquid PileBar shapes

Even if the layouts and attributes of the slots are kept
fixed during normal data-set navigation, they can be easily
readapted dynamically to accomodate, for example, a resiz-
ing of the PileBar shape.

Resizes which preserve aspect ratios of the PileBar do not
affect anything else. The effect of changing the aspect ratio
of the PileBar, instead, has a potentially useful and intuitive
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effect: if the pile bar is reduced only vertically, and slot lay-
out and aspect ratio is kept fixed, then the slot sizes will re-
duce so that they can fit vertically in the new shape. This will
make more slots columns appear at the sides.

The values of slot attribute k can be made adaptive: if
empty slot columns are detected on either size, the values
of k of a few slots are automatically decreased so that the
piles will partially unfold and spread into more slots, cover-
ing the empty space. Conversely, if slots inside screen space
are not enough to hold the piles, the values of k are increased
to produce taller and fewer slots, and so on until necessary.

The net effect is that, making the PileBar thinner will be
reduced the thumbnail size, but result in less piling, thus
revealing more images. Conversely, widening the bar ver-
tically causes less slots to be visible at sides, thus resulting
if larger but more clustered PileBar (see attached Video 5).

5. Interacting with the pileBar

The system provides several natural interaction mechanism
with the pileBar.

A few of them require the user to pick a thumbnail with
the pointer (e.g. mouse). Note that, thanks to the way thumb-
nails are arranged into piles (see Fig. ??), not only the top
thumbnail of each pile can be picked, but also to the ones
behind it, by selecting their smaller area which is left visible
at their sides.

The main interaction happens by changing the current fo-
cus.

Focus changes Ways to change the current focus include:

• pointing and clicking on an thumbnail anywhere in the
pileBar. Selected thumbnails becomes the new focus;
• dragging a thumbnail with the pointer over the x axis into

a new position causes the focus to change so that the user
selected x position is matched by the layout induced by
the new focus. This is the user action corresponding to a
scroll action in a conventional thumbnail bar.
• next and prev keys (or the mouse wheel) cause the focus

to change by one image in either direction.

The dragging action is very general: bringing a thumbnail
in the place of the current focus is will make it the new fo-
cus; dragging a thumbnail away in the peripheral region of
the pileBar causes the focus to change drastically, because
of the exponential piling factor. The next and prev keys al-
low a fine tuning. However, enabling key auto-repeat, the
focus can change by as many as 60 unit per seconds (e.g. a
dataset of 1.5 thousands images in under 30 seconds): thanks
to the animation technique (Sec. ??), the net effect is a very
fast douse of thumbnails seamlessly passing though the fo-
cus images (see attached video 4).

Additional application specific mechanisms (e.g. return-
ing to a previously bookmarked thumbnail, image searches,
etc) can be added to change the current focus.

Whatever is the reason that triggered the change of fo-
cus, the effect is that, due exponential effect of the piling
nature, the small piles close to the focus will move very fast,
while the taller piles at the borders will move at a much lower
speed; all piles will progressively split into smaller piles (as
the get closer to the focus), or merge into taller piles (as they
get farther from the focus). Importantly, small changes of
focus will cause correspondingly small layout changes.

5.1. Other interactions

Figure 5: A screenshot of the effect of “peeking” at a
thumbnail inside a pile.

Peeking: The user can peek at thumbnails, even if they
are far away from the focus, by positioning the pointer over
them, while (for example) pressing the right mouse button.
A peeked thumbnail image will be shown above the pileBar
fully unoccluded and at maximal thumbnail size, regardless
of its position and size (see Fig. ?? and Video 3). This can be
useful to enlarge small thumbnails at PileBar periphery, and
to reveal thumbnails partailly-hidden behind other in piles.

Vertical drags: the effect of dragging a thumbnail solely
along the y screen direction is simply to change the position
of the moved pile from a slot to another in the same column.
As mentioned, the y positioning of piles inside one column
is arbitrary

Reordering: When more than one total ordering among
images is available and meaningful (Sec. ??), the user can
be allowed to switch dynamically from an ordering to an-
other, e.g. by the click of a button, similarly to what happens
a traditional image or file browsers (where all data is dis-
played on a grid, with one raw per item, and one column
per attribute, and clicking on the causes items to be sorted
according to the corresponding attribute). The new ordering
will automatically induce a new disposition of thumbnails
inside the bar (position, sizing, piling of thumbnails): tempo-
ral coherence can be maintained, as the current disposition
animates as normal (see Sec. ??) to reach the newly induced
one. The net effect is that the focus thumbnail remains fixed,
and the other thumbnails redispose around it. The change in
layout here is much more drastic than with respect to the
ones triggered by focus changes.

Resizing: as mentioned in Sec. ??, the pileBar is liquid in
the sense that it is capable of gracefully adapting to different
sizes and aspect ratios. This happens when the entire appli-
cation embedding the pileBar is resized, but the user can be
also be given the opportunity to directly reshape the PileBar,
redistributing screen space within the application GUI.
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6. Image Ordering and Image Distance Functions

As mentioned, an image-to-image distance function is used
in the system in order to visually cluster thumbnails relative
to “close” images in piles. That function is used to capture
some aspects of the semantics in the images, to drive the
image piling in a meaningful way.

A strength of our approach is that any distance function
defined between images can be profitably employed for this
purpose, regardless of the range, the scale, and the distribu-
tions of the returned values. Computational time is not cri-
tique here either because the distance will be pre-computed
only for pairs of images that are consecutive in the total or-
dering, which is feasible even for the largest image datasets
(Sec. ??).

There are plenty image distance metrics readily available,
and it is easy to conceive new ones tailored around specific
needs. For example, we found the following distance func-
tions to be useful:

1. time (the distance in seconds between the shot times);
2. shot positions (the distance in cm between the shot posi-

tions);
3. shot directions (the angle between the two shot directions

— note that, conversely, the rotation of the camera around
the shot direction is usually not meaningful);

4. view frustum similarity (the number of feature points
present in only one of either images);

5. average color (distance between average colors of im-
ages);

6. color distribution (distance between normalized color
histograms);

7. color spatial distribution (averaged per-pixel distance be-
tween severely downsized versions of the two images);

8. tagging distance (distance in tag space).

Other image content-based distances can also be used.
Clearly, not every measure is available in every dataset.
For example, shot-positions and shot-directions are avail-
able when per image camera calibration data is available,
as in datasets resulting from photographic campaigns pro-
cessed with 3D photo recostruction techniques [?,?,?]. Such
images are commonly reciprocally calibrated by identifica-
tions of common feature-points. In these cases, the number
of feature-points shared by two images can also provide an
additional measure of image similarity (the 4th item in the
above list). Spatial measures result in intuitive pilings, as
images shot from the same locations are piled together, and
further from the focus images shots from larger regions are
piled together.

Most photographic collections (including most personal
image collections) come with per-image time-of-shot data,
which can be retrieved from the file system or from exif
metadata. Time distances can range from a few millisec-
onds to several months, within the same dataset. This is not
a problem, thanks to the normalization described in Sec. ??.

Time distances are often a very natural choice, as it results in
images being piled (and dynamically re-piled) per hour, day,
week, month, etc. (according to the distance from the focus).

The color based metrics (distances 5, 6, 7) are the sim-
plest content-based distance functions, but clearly any higher
level metric could be plugged in. The ones listed are always
available, on any image dataset, and they are usually good
indicators of image semantic similarity. Note, however, that
while the system can accommodate for any image-to-image
distance function, it does not need one: if no meaningful dis-
tance is available, a constant image-to-image semantic dis-
tance semantic can be assumed. In that case, images will be
piled solely according to distance from the focus, and images
appearing on top of piles will constitute a regular sampling
of the images (but increasingly sparser the further the images
are from the current focus).

Color metric distances are useful, for example, to pile to-
gether images belonging to the same shot in datasets featur-
ing one image per frame of a movie.

Regardless of its origin, each distance function results in
a scalar positive quantity returned for an image pair. There-
fore, different distance functions can be blended together to
form new mixed distance functions, weighting each compo-
nent arbitrarily. For example, shot position and shot direction
can be blended together into a measure taking in account
both factors. Color metrics can be blended with spatial met-
rics so that, for example, images taken at night time will not
be piled with images taken at daytime even if the shot posi-
tion matches. In the final interface, the GUI designer can pre-
set blended image distance-functions that are ready to use.

6.1. Examples of image ordering functions

As mentioned, a total ordering is assumed to be defined over
the images.

Many applicative contexts come with one (or more) “nat-
ural” image orderings: e.g. a photographic campaign can use
the ordering induced by the time of shot; web search results
can be ordered by relevance; tagged images can be ordered
alphabetically by tags, etc.

Useful orderings can also be inferred from any of the se-
mantic function described above (including the mixed ones):
the image dataset can be considered a weighted fully con-
nected graph, and the (approximatively) minmal Hamilto-
nian path will define a linear ordering of the images. The
fastest heuristic that can be employed to find these paths
(the task is well known to be NP-complete) are require a
quadratic number of image-to-image distance computations,
and are too computationally demanding to be performed on
the fly on very large datasets, so we have chosen to precom-
pute the resulting ordering(s) and stored them for later use.
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7. Implementation issues

Since the focus of PileBars is scalability with data-set size,
implementation efficiency is crucial. Not only real time per-
formances must be reached, but system resources must be
left untapped for the rest of the application where the Pile-
Bar is embedded in.

Arranging thumbnails according to a new focus Sec. ?? is
very efficient, and must be performed once per focus change.
Animating the thumbnail layout Sec. ?? must be done once
per frame, but is an even less demanding operation, boiling
down to interpolation of a few scalar parameter per image.
Tests show that both tasks present no performance hit even
for the datasets with 106 images.

More care must be used with rendering performance, and
memory/bandwith requirements.

7.1. Rendering system

PileBars can take advantage of basic rendering mechanisms
hardwired (and heavily optimized) in any GPU card. A
thumbnail is simply a textured quad, with a low resolution
texture (not higher than the pixel size largest slot in the bar).
Isotropic MIP-mapping works very well to achieve accept-
able quality, continuous image reduction. Depth test can be
easily employed to implement occlusions between thumb-
nails in a pile (z-sorting could be easily adopted as well).

However, plain rendering of several thousands of textured
quads can still downgrade system performance. Technically,
the problem is tied to the extreme depth complexity reached
in piles holding hundreds of images, which tend to make the
application fill limited (even if the per-fragment workload is
very small). For example, a rendering of 105 thumbnails as
small as 64× 64 pixels results in more than 40 MegaPix-
els, which is as many pixels as in 40 full screens. Another
problem is that displaying each thumbnail require a context
switch to enable to correct texture.

Both issue are solved by keeping track, for each thumbnail
Ti, of the index of the thumbnail Tj directly above it in the
current layout (if any). At rendering time, we discriminate
three cases:

1. Tj exists and covers Ti fully (in this frame);
2. Tj exists and leaves only at most one pixel of Ti visible

(in this frame);
3. none of the above.

In the first case (which for example happens if Tj is
fully aligned with Ti and same size) rendering of Ti can be
skipped. In the second case, only a row and a column of pix-
els of Tj is rendered (with line primitives). In the third case,
the thumbnail is fully rendered. In a very tall pile, static or
moving, most rendering can be skipped; a minority will be
rendered producing few fragments; only one will be fully
rendered. Only form piles that are folds or unfolds during

animation, and for the few very short piles, thumbnail will
fall in the third case.

7.2. Cache system

A technical issue accompanying large dataset visualization
is tied to the need of keeping in memory a very large num-
ber of thumbnails. Even considering that they can be much
smaller than the real images they represent, the memory re-
quirement quickly surpasses RAM and texture RAM capac-
ities.

For example, a dataset composed of 105 images, with
thumbnail sized 2562 RGB pixel, will require 20 GBytes
of raw pixel data in texture memory. Adding the require-
ment of prefiltering (MIP-mapping), the requirement rises
to 27 GBytes. Adopting a texture compression scheme
(DXT1, [?]) takes that number down to 4.8 GBytes, which is
still too much, especially considering that the thumbnail bar
is, likely, but one component of the application that embeds
it. Additionally, in a distributed application, as a web ap-
plication, it would be unpractical to exchange large amount
of data between the server originally hosting the thumbnails
and the client before the dataset can be browsed.

To address both issues, we adopt a strictly inclusive, mul-
tilevel, multithreaded cache system, similarly to [?], con-
sisting of four layers: (1) remote server (in remote applica-
tions); (2) local disk; (3) RAM; (4) texture RAM, on board
of graphic card. Each stage of the cache is executed in its
own thread to avoid stalling the system on load/download.

In layers (1) and (2) thumbnails are stored in the com-
pact JPG format. In layers (3) and (4) they are stored in the
less compact but GPU friendly DXT1 compression. When
passing objects from (2) to (3), fast JPG compression (lib-
jpeg_simd) and fast DXT recompression [?] libraries are
used; they are both capable of performing at about 100
MPixels/sec (meaning that computational resources are left
untapped).

The total ordering of the thumbnails is used to assign a
priority to each thumbnail equal to the image pixels actually
shown on screen, computed as in Sec. ??. The cache dynam-
ically manages the available memory so to keep the highest
priority thumbnails as close as possible to the last stage.

Thumbnails not fitting in memory, or not being download-
ed/loaded yet, are shown as rectangles colored as the average
color of the given thumbnail (which is pre-computed and fits
into main memory). Given the priority function used, and
assuming sufficient band and low network lag, this happen
only where it is not visually distracting.

8. Application scenario examples

We tested PileBars in a number of application scenario.

1. Cavalieri square, Archeo01, Arche02: three sets of cali-
brated images resulting from a photographic campaign;
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2. Pumpkin: set of images resulting from a Google search;
3. Toy: set of frames of a movie.

In table 1, we show data relative to each dataset, including
ordering functions used (Sec. ??), metric distance function
used (Sec. ??), and links to images in the paper and attached
videos.

In Fig. ?? an prototypal application is shown using Pile-
Bars [APP NAME REMOVED FOR BLIND REVIEW].

Figure 6: An application using the PileBar (Cavalieri
Square dataset). The main area of the screen depicts a 3D
scene, navigable in 3D. Selecting a focus image on the bar
causes the viewpoint to jump of the corresponding virtual
camera.

Results: Fig.?? shows an example of a thumbnail ar-
rangement produced by PileBars. However, a still image is
inadequate to show its effect and the reader invited to see the
attached video. Performance-wise, the system always goes
at (60fps) performance on off the shelf computers, leaving
RAM, CPU and texture memory untapped.

9. Conclusions

We have introduced PileBars, a scalable technique to effec-
tively navigate, browse, and compactly visualize very large
image datasets. The technique offers various advantages that
have never been simultaneously present in previous tech-
niques:

• in its basic form it is very easy to be implemented and can
scale up to several thousands of images;
• it exploits clustered hierarchies to summarize set of im-

ages, but the approach is inherently independent of them
and simply relies on a plain image-to-image distance def-
inition;
• it is able to preserve the natural ordering of the images, so

that during the browsing the user always knows where in
the dataset he is focusing;
• it is designed to be visually compact, thanks to a clean

regular image arrangement;
• it is dynamic yet as much as stable as possible: when focus

shifts the changes to the arrangements are minimized in
order to do not introduce distracting elements.

Moreover, thanks to all the above features, the proposed
techinque implements in a GUI element that is well suited
to be integrated as a non intrusive image browsing compo-
nent within complex software applications.

9.1. Limitations and Future Work

Clearly, there are also a few limitations that, for sake of clar-
ity, we want to mention. First of all the technique is tailored
for images with a constant aspect ratio, so, when a signif-
icant portion of the images has an extreme aspect ratio, the
proposed approach can waste some interface space. Then we
realize that a thorough user evaluation is strongly needed in
order to assess the actual impact of these methods on com-
mon image-related workflows, but we feel that such a study
is beyond the scope of this paper and it will be the subject of
our future work.
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