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Abstract

We present the Permutation Prefix Index1 (PP-Index), an index data structure that supports efficient
approximate similarity search.

The PP-Index belongs to the family of the permutation-based indexes, which are based on representing
any indexed object with “its view of the surrounding world”, i.e., a list of the elements of a set of reference
objects sorted by their distance order with respect to the indexed object.

In its basic formulation, the PP-Index is strongly biased toward efficiency. We show how the effectiveness
can easily reach optimal levels just by adopting two “boosting” strategies: multiple index search and multiple
query search, which both have nice parallelization properties.

We study both the efficiency and the effectiveness properties of the PP-Index, experimenting with col-
lections of sizes up to one hundred million objects, represented in a very high-dimensional similarity space.

Keywords: approximate similarity search, metric space, scalability

1. Introduction

The similarity search model (Jagadish et al., 1995) is a search model in which, given a query q and a
collection of objects D, all belonging to a domain O, the objects in D have to be sorted by their similarity
to the query, according to a given distance function d : O × O → R+ (i.e., the closer two objects are, the
most similar they are considered). The k top ranked objects are returned (k-NN query), or those within a
maximum distance value r (range query).

The k-NN query model is the most frequently adopted in similarity search, because of (i) the ability
to control the result set dimension, which is a very desirable property of the retrieval process (Patella and
Ciaccia, 2009), and (ii) the fact that in most of the similarity search applications in which objects are
distributed in a high-dimensional space, the definition of a meaningful distance range r is not obvious.

One of the main research topics on similarity search is the study of the scalability of similarity search
methods when applied to high-dimensional similarity spaces. The well known “curse of dimensionality”
(Chavez et al., 2001) is one of the hardest obstacles that researchers have to deal with when working on this
topic. Over the years, such obstacle has been attacked by many proposals, using many different approaches.
The earliest and most direct approach to the problem consisted in trying to improve the data structures used
to perform exact similarity search. Research moved then toward the exploration of approximate similarity
search methods, mainly proposing variants of exact methods in which some of the constraints that guarantee
the exactness of the results are relaxed, trading effectiveness for efficiency.

Approximate methods (Patella and Ciaccia, 2009) that are not derived from exact methods have been
also proposed. One successful contribution of this kind is the Local Similarity Hashing (LSH) model proposed

1This work is a revised and extended version of Esuli (2009b), presented at the 2009 LSDS-IR Workshop, held in Boston.
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by Indyk and Motwani (1998), followed in the years by a number of interesting extensions (Bawa et al.,
2005; Lv et al., 2007). More recently, the recent research on permutation-based indexes (PBI) (Amato and
Savino, 2008; Chávez et al., 2008; Skala, 2009) has shown another promising direction toward scalable data
structures for similarity search.

In this work we present the Permutation Prefix Index (PP-Index), an approximate similarity search
structure belonging to the family of the PBIs. We test the PP-Index on data sets containing up to 100
million objects, distributed on a very high-dimensional similarity space. Experiments show that the PP-
Index is a very efficient and scalable data structure both at index time and at search time, and it obtains
high effectiveness values. The PP-Index has also nice parallelization properties that support the distributed
execution of both the index and the search processes in order to further improve efficiency.

1.1. Outline

Section 2 describes the works that are most closely related to PP-Index, also introducing some of the
concepts at the base of our work. Section 3 describes the PP-Index. Experiments and results are reported
in Section 4. Section 5 concludes.

2. Related works

The PP-Index belongs to the family of the permutation-based indexes, a recent family of data structures
for approximate similarity search, which has been independently introduced by Amato and Savino (2008)
and Chávez et al. (2008). The following sections describe such works and also introduce more formally
the concepts at the base of PBIs. For a more detailed review of the most relevant methods for similarity
search in metric spaces we point the reader to the book of Zezula et al. (2005). The recent work of Patella
and Ciaccia (2009) more specifically analyzes and classifies the characteristics of many approximate search
methods.

2.1. Ordering permutations

Chávez et al. (2008) present an approximate similarity search method based on the intuition of “predicting
the closeness between elements according to how they order their distances towards a distinguished set of
anchor objects”.

A set of reference objects R = {r0, . . . , r|R|−1} ⊂ O is defined by randomly selecting |R| objects from D.
Every object oi ∈ D is then represented by Πoi , consisting of the list of identifiers of reference objects, sorted
by their distance with respect to the object oi. More formally, Πoi is a permutation of 〈0, . . . , |R| − 1〉 so
that, for 0 < i < |R| it holds either (i) d(oi, rΠox (i−1)) < d(oi, rΠox (i)), or (ii) d(oi, rΠox (i−1)) = d(oi, rΠox (i))
and Πox(i− 1) < Πox(i), where Πox(x) returns the i-th value of Πox .

Figure 1 shows the permutation-based partitions of the two-dimensional space generated by a set of
randomly picked reference points, using the Euclidean distance as the similarity measure.

Given a query q, all the indexed permutations are sorted by their similarity with Πq, using a similarity
measure defined on permutations, e.g., the Spearman Footrule Distance (Diaconis, 1988):

SFD(ox, oy) = Σr∈R|P (Πox , r)− P (Πoy , r)| (1)

where P (Πox , r) returns the position of the reference object r in the permutation assigned to Πox .
The real distance d between the query and the objects in the data set is then computed by selecting the

objects from the data set following the order of similarity of their permutations, until the requested number
of objects is retrieved.

Chávez et al. (2008) hold all the full length permutations into the main memory and the authors do not
discuss the applicability of the method to very large data sets, i.e., when the permutations cannot be all
kept in main memory.
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Figure 1: Permutations generated by a set of reference points on a plane, using the Euclidean distance as the similarity measure,
and the relative space partitions generated by choosing a permutation prefix length l = 3.

2.2. Metric Inverted File

Amato and Savino (2008), independently of Chávez et al. (2008), propose the Metric Inverted File, an
approximate similarity search method based on the intuition of representing the objects in the search space
with “their view of the surrounding world”.

For each object oi ∈ D, they compute the permutation Πoi in the same manner as Chávez et al. (2008).
All the permutations are used to build a set of inverted lists, one for each reference object. The inverted list
for a reference object ri stores the position of such reference object in each of the indexed permutations. The
inverted lists are used to rank the indexed objects by their SFD value (equation 1) with respect to a query
object q, similarly to Chávez et al. (2008). In fact, if full-length permutations are used to represent the
indexed objects and the query, the search process is perfectly equivalent to the one of Chávez et al. (2008).
Amato and Savino (2008) propose an efficiency optimization based on indexing in the inverted lists only the
information related to Πki

oi , i.e., the part of Πoi including only the first ki elements of the permutation, thus

reducing by a factor |R|ki
the size of the index. A similar processing is applied to queries, by using a ks prefix

length. The intuition, confirmed by their experiments, is that the information about the order of the closest
reference objects is more relevant than the information about distant ones.

2.3. Theoretical properties of permutation-based space

Skala (2009) presents a study on the space-partitioning properties of permutation-based indexes. The
main hypothesis on which permutation-based indexes are based is that a relatively small number of reference
objects can produce a very high number of permutations, following the exponential growth properties of
permutations. However, the permutations used in similarity search problems are connected to regions of a
similarity space, and not all permutations are deemed to exist in such space.

Skala proves a number of theoretical results that provide bounds on the number of possible permutations
with respect to the number of reference objects, the distance measure (L1, L2, Linf), and the dimensionality
of the similarity space. Although Skala’s work does not directly affect our work, we regard it as a first
interesting investigation toward a better theoretically-founded model for permutation-based indexes.

2.4. M-Index

Novak and Batko (2009) propose the M-Index, a similarity search data structure that uses a universal
mapping schema to map the elements of a metric space U to a numeric domain. The mapping method is
based on the use of pivots, i.e., reference points, and a normalized metric distance function d : U×U → [0, 1).
The output of the mapping function for an object o is directly related to the permutation describing the
pivots sorted by their relative distance with respect to o.
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M-Index provides both exact search, that exploits the various metric-based principles of data partitioning,
pruning and filtering, an approximate search, that uses a search method similar to multi-probe LSH (Lv
et al., 2007). Novak et al. (2010) prove that the M-Index satisfies all the properties required by LSH methods
(Indyk and Motwani, 1998).

2.5. LSH methods

The configuration of data structures of the PP-Index is interestingly similar to the one proposed by Bawa
et al. (2005) for the LSH-Forest, however, it is relevant to note that two works are based on completely
different approaches to the problem.

The LSH-Forest is an improvement of the LSH-Index (Indyk and Motwani, 1998). The LSH-Index is
based on the notion of locality-sensitive hash function family H.

A family H of functions from a domain O to a range U is called (r, ε, p1, p2)-sensitive, with r, ε > 0,
p1 > p2 > 0, if for any p, q ∈ O:

• if d(p, q) ≤ r then P[h(p) = h(q)] ≥ p1

• if d(p, q) > r(1 + ε) then P[h(p) = h(q)] ≤ p2

for any hashing function h randomly selected from H.
Intuitively, two objects hashed by a LSH function have a higher probability (at least p1) to “collide” if

they are closer than r, and a lower probability (at most p2) if they are more distant than r(1 + ε).
The LSH-Index uses j randomly chosen functions hi ∈ H to define a hash function g(x) = (h1(x)

h2(x) . . . hj(x)). Thus, if two distant objects have a probability p2 to collide for a single hi function, such

probability is significantly lowered to pj2 by using the g function. In order to maintain a relatively high
probability of producing a collision between nearby objects, t different hash tables are built, based on
randomly generated g1 . . . gt functions.

Given a query object q, the various gx(q) hashes are computed and all the objects in D that have at
least a matching hash are considered for the computation of the real distance with the query.

Bawa et al. (2005) extend the LSH-Index by proposing the LSH-Forest, in which the hash keys are
indexed by a prefix tree (LSH-Tree). Many LSH-Tree are created, each one based on a different hash
function, forming the LSH-Forest. Given a query, the length of the hash key is shortened, from the original
length of j elements, until at least z candidate objects in the hash table have a prefix match with gx(q).

An efficient implementation of an LSH-Tree is almost equivalent to the one used for the PP-Index
(described in Section 3). However, there are relevant differences to be noted.

The LSH-Forest, like the other LSH methods, is based only on probabilistic considerations, while the
PP-Index, like the other PBI methods, relies on geometrical considerations. Shortening the prefix match
on permutation prefixes in the PP-Index means releasing some geometrical constraints and retrieving more
candidates, but that added candidates are still guaranteed to be relatively close to the query, given that the
remaining matching reference objects in the prefix are those which are closer to both the query and each
candidate. In the LSH-Forest a shorter prefix match results only in a decreased probability of candidates
being related to the query, with the increased probability of inclusion of very distant candidates.

The hash functions of the LSH methods are solely derived from the similarity measures in use, indepen-
dently of the way the indexed objects are distributed in the similarity space, while in the PBI methods the
reference objects provide information about this aspect.

A relevant point in favor to PBI methods is their black box use of the distance function. This, for example,
makes possible to use a distance function that is a linear combination of other distance functions2, even of
different kind3. The locality-sensitive hash function family H of LSH methods relies instead on processing
the actual data representing the indexed objects, e.g., sampling bits from the vector of features, and it is not
possible to handle non-basic distance functions, e.g., there is no LSH function family for non-trivial linear
combination of metrics.

2Note that a linear combination of metric distances is still a metric distance.
3In our experiments we combine L1 and L2 metrics of different dimensionality
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3. The PP-Index

Esuli (2009b) describes the PP-Index giving relevance to the algorithmic/technical details necessary to
realize an efficient implementation of the PP-Index. This paper describes it at a higher level of abstraction,
devoting more space to the comparison with similar data structures.

3.1. Data structures and basic search function

Given a collection of objects D to be indexed, and the similarity measure d, a PP-Index is built by
specifying a set of reference objects R, and a permutation prefix length l. The PP-Index represents each
indexed object oi with a very short permutation prefix woi = Πl

oi , with l� |R|.
The PP-Index data structures consists of a prefix tree kept in main memory, indexing the permutation

prefixes and keeping pointers to a data storage kept on disk, which stores data blocks that contains (i) the
information required to univocally identify any object oi ∈ D and (ii) the essential data used by the function
d in order to compute the similarity between the object oi and any other object in O.

Data blocks are sequentially sorted in the data storage by the alphabetical order of their permutation
prefixes, where the alphabet is defined by the identifiers of the reference objects, ordered by their natural
value, i.e., the first letter of the alphabet is 0 and the last is |R| − 1.

Given a k-NN query for an object q ∈ O, the basic search function of the PP-Index consist of computing
the permutation prefix wq and searching for the longest prefix match in the prefix tree whose subtree points
to at least z candidate objects. Then the k-NN result is computed on such subset of z′ ≥ z candidate objects,
using the distance function d. Given the order of the data blocks in the data storage, the z′ objects are all
stored in adjacent positions of the data storage, resulting in an extremely efficient sequential access to data.

Making an analogy with the inverted list indexing model for text, we can consider each indexed object oi
as a document composed by a single word woi . The data storage holds the posting lists that, in the PP-Index
case, are sequences of data blocks related to objects that are represented by the same permutation prefix
w. The prefix tree in memory indexes the lexicon of permutation prefixes, i.e., all the distinct permutation
prefixes extracted from the indexed objects, in order to optimize the prefix queries performed on the lexicon
by the PP-Index search function.

From this analogy it is easy to see how the indexing process of the PP-Index can be efficiently paral-
lelized and distributed over multiple processors/machines using, e.g., a MapReduce framework (Dean and
Ghemawat, 2008). In the MapReduce model, the indexing process is composed by:

• a Map function that generates the permutation prefix for each object being indexed (the generation of
a permutation prefix for an object is completely independent from any other object in the collection);

• a Reduce function that sorts and merges the data blocks with respect to the associated permutation
prefix, e.g., using an m-way merge sorting method (Knuth, 1998).

Figure 2 shows an example list of permutation prefixes generated for a set of objects and the resulting
PP-Index data structures.

The key difference between the PP-Index and previously presented PBI methods is that the PBI methods
of Amato and Savino (2008) and Chávez et al. (2008) use permutations in order to estimate the real distance
order of the indexed objects with respect to a query, while the PP-Index uses the permutation prefixes in
order to quickly retrieve, in a hash-like manner, a reasonably-sized set of candidate objects that are likely
to be at close distance to the query, then leaving to the original distance function the selection of the best
elements among the candidates.

3.2. Improving the search effectiveness

The “basic” search function described in Section 3.1 is strongly biased toward efficiency, treating effec-
tiveness as a secondary aspect. With the PP-Index it is possible to tune effectiveness/efficiency trade-off,
and effectiveness can easily reach optimal levels just by adopting the two following “boosting” strategies:
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Figure 2: Sample data and resulting PP-Index data structures.

Multiple index : t indexes are built, based on different R1 . . . Rt sets of reference objects. This is based on
the intuition that different reference object sets produce many differently shaped partitions of the similarity
space, resulting in a more complete coverage of the area around queries.

The multiple index strategy obviously results in a lot of data replication. This could be considered
a waste of disk space when implemented on a single machine and on a relatively small sized collection.
However, it has to be considered that PP-Index is designed for very large collections, in which a single data
storage could potentially require the entire disk space of a single machine. In this case data replication
among multiple machines could be a positive plus, providing data redundancy and fault tolerance.

A search process using the multiple index strategy can be parallelized by distributing the indexes over
multiple machines, or just on different processes/CPUs on the same machine, thus maintaining almost the
same performance of the basic search function, with a negligible overhead for merging the t k-NN results,
as far as there are enough hardware resources to support the number of indexes involved in the process.

Multiple query : at search time, p additional permutation prefixes from the query permutation prefix
wq are generated, by swapping the position of some of its elements. The geometric rationale is that a
permutation prefix w′ differing from another permutation prefix w′′ for the swap of two adjacent/near
elements identifies an area Vw′ of the similarity space adjacent/near to Vw′′ . Performing a search additional
“swapped” permutation prefixes results in extending the search process to areas of the search space that are
likely to contain relevant objects. For example, the permutation prefixes 〈2, 3, 5〉 and 〈3, 2, 5〉, which differ
by the swap of the identifiers 2 and 3, identify two adjacent regions in Figure 1.

In our experiments the swapping heuristic consists in sorting all the reference objects pairs appearing in
the permutation prefix by their difference of distance with respect to the query object. Then the swapped
permutation prefixes are generated by first selecting for swap those pairs of identifiers that have the smallest
distance difference.

4. Experiments

The experiment section is divided into two parts. The first part extends the results already presented in
Esuli (2009b), which are focused on testing the effectiveness and efficiency of the PP-Index on a very large
and high dimensional collection. The second part reports on various comparison experiments with other
methods.
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Descriptor Type Dimensions Weight

Scalable Color L1 64 2

Color Structure L1 64 3

Color Layout sum of L2 80 2

Edge Histogram L1 62 4

Homogeneous Texture L1 12 0.5

Table 1: Details on the five MPEG-7 visual descriptors used in CoPhIR, and the weights used in the linear combination. The
“Dim.” column refers to the dimensionality of visual descriptors adopted by the CoPhIR data set.

4.1. The CoPhIR data set

The CoPhIR4 (Bolettieri et al., 2009) data set has been recently developed within the SAPIR project5,
and it is currently the largest multimedia metadata collection available for research purposes. It consists of
a crawl of 106 millions images from the Flickr6 photo sharing website.

The information relative to five MPEG-7 visual descriptors (MPEG-7, 2002) have been extracted from
each image, resulting in more than 240 gigabytes of XML description data. As detailed in Bolettieri et al.
(2009), the cost of extracting the MPEG-7 features from a single image is about four seconds, resulting in
about twelve years to extract the features for all the images in the CoPhIR data set7.

We have randomly selected 100 images from the data set as queries, and excluded them from indexing.
We have run experiments on three index sizes, selecting for indexing the first million (1M), ten millions
(10M), or 100 millions (100M) images from the data set. We have used the remaining six million images,
never included in any index, as held-out data for some preliminary experiments.

We have run experiments on a linear combination of the five distance functions for the five descriptors.
As the weights for the linear combination we have adopted those proposed in Batko et al. (2008b), listed in
Table 1.

4.2. Configurations

We have explored the effect of using different sized R sets, by running the experiments using three R set
sizes consisting of 100, 200, 500, and 1, 000 reference objects. We have adopted a random selection policy of
objects from D for the generation of the various R sets, following the results of Chávez et al. (2008), which
reports the random selection policy as a good performer.

In all the experiments we have used a fixed value of l = 6. As the results show, the determination of the
value l is not a critical choice, as long as it is large enough to produce a detailed partitioning of objects in
the permutation prefix space.

We have tested a basic configuration based on the use of a single index and the basic search function
described in Section 3, i.e., an efficiency-aimed configuration. We have tested the relation of the parameter
z with the other parameters of the problems, i.e., |R| and the dataset size.

We have tested the use of multiple indexes (see Section 3.2), on configurations using 2, 4 and 8 indexes,
and also the multiple query search strategy by using a total of 2, 4, and 8 multiple queries, i.e., generating 1,
3, and 7 additional queries from the original query permutation prefix. We have also tested the combination
of the two multiple index/multiple query strategies.

The experiments have been run on a desktop machine running Windows XP Professional, equipped with
a Intel Pentium Core 2 Quad 2.4 GHz CPU, a single 1 TB Seagate Barracuda 7,200 rpm SATA disk (with 32
MB cache), and 4 GB RAM. The PP-Index has been implemented in c#8. All the experiments have been
run in a single-threaded application, with a completely sequential execution of the multiple index/query
searches.

4http://cophir.isti.cnr.it/
5http://www.sapir.eu
6http://www.flickr.com
7A grid infrastructure composed of 73 nodes has been in used to perform image download and features extraction, which

has been able to process about half million images a day.
8The implementation is able to run also on Linux+Mono.
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Figure 3: Indexing time and search time w.r.t. to the size of R and the data set size (search with z = 1, 000 and k = 100, single
index, single query).

|D| indexing prefix tree size data l′

time (sec) full comp. storage

1M 419 7.7 MB 91 kB 0.34 GB 2.1

10M 4385 53.8 MB 848 kB 3.4 GB 2.7

100M 45664 354.5 MB 6537 kB 34 GB 3.5

Table 2: Indexing times (with |R| = 100), resulting index sizes, and average prefix tree depth l′ (after prefix tree compression
with z = 1, 000), for the various data set sizes.

4.3. Evaluation measures

We have evaluated the effectiveness of the PP-Index by adopting a ranking-based measure and a distance-
based measure, recall and relative distance error, which are defined as (Patella and Ciaccia, 2009):

Recall(k) =
|Dk

q ∩ P k
q |

k
(2)

RDE(k) =
1

k

k∑
i=1

d(q, P k
q (i))

d(q,Dk
q (i))

− 1 (3)

where Dq is the list of the elements of D sorted by their distance with respect to q, Dk
q is the list of the k

closest elements, P k
q is the list returned by the algorithm, and Lk

q (i) returns the i-th element of the list L.
In order to evaluate the efficiency of the PP-Index we have measured: the indexing time, the main memory

and disk occupation, the search time, the number of data blocks read from disk, and the sequentiality of
disk accesses.

4.4. Results

Figure 3 shows the almost linear proportion of the index time cost with respect to both the size of the
reference object set size and the data set size.

Table 2 reports the indexing times for the various data set sizes (|R| = 100), showing the almost perfect
linear proportion between indexing time and data set size. With respect to the indexing times we note that:

• the twelve hours time, required to build the 100M index for the |R| = 100, is comparable with the
fourteen hours we have measured to build a text search index on the descriptions and the comments
associated with the indexed images;

• the 120 hours time, required to build the 100M index for the |R| = 1000 is a relatively long time, but
it is still a very fast performance considering that it is about 900 times faster than the time required
to extract the visual descriptor from the images (see Section 4.1);
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Figure 4: Effectiveness with respect of the size of R set, for k = 100 and z = 1, 000 (single index, single query).

• this time refers to a completely sequential indexing process, not leveraging on the parallelization
possibilities mentioned in Section 3.1;

• we have not explored the possibility of using a similarity search data structure in order to answer l-NN
queries on the R set necessary to build the permutation prefix.

This is a worst-case configuration, involving all the five descriptors. Among the descriptors, the distance
function associated with the HT descriptor is the one that has the highest computational cost, requiring
about the 40% of the total time. The rest of the time is almost equally distributed among the other
descriptors. In fact, building a 100M index with |R| = 1, 000 for one of the non-HT descriptors requires
about eighteen hours.

The table also shows the resulting memory occupation of the prefix tree before and after the application
of the compression strategies described in Esuli (2009b) (e.g., pruning of subtrees pointing to less than z
objects). The values show how the optimization produce a reduction by orders of magnitude of the main
memory space occupation (at least by a factor fifty in our case) without affecting the quality of the results,
making the PP-Index a truly effective solution for working on very large data sets.

As expected, the disk occupation is perfectly linear with respect to the data set size, given that the data
store on disk contains only a sequential serialization of data blocks9.

The last column of Table 2 reports the average depth of the leaves of the prefix tree, after the compression.
The l′ values show that the l value is not crucial in the definition of a PP-Index, given that the only
requirement is to choose a l value large enough in order to perform a sufficient differentiation of the indexed
objects. For example, when z = 1, 000, the choice of the value l = 6 has been sufficient to create a prefix
tree capable of distributing the indexed objects in the permutation prefix space in groups composed of less
than 1, 000 objects.

The graph of Figure 3 plots the search time with respect to the size of R and the data set size, for
k = 100 (single index, single query). For the worst case, with |R| = 100, we have measured an average 0.239
seconds search time on the 100M index, with an average of less than eight thousands candidates retrieved
from the data storage (see Table 3). The search time decreases in a direct proportion the decrease of the z′

value (z′ ≥ z is the number of candidates actually retrieved from the data storage, see Section 3.1), which
follows from the more detailed partitioning of objects into the permutation prefix space, determined by the
increase of |R|.

Figure 4 shows the effectiveness of the PP-Index with respect to the size of the R and the data set size,
using a single-index/single-query configuration, for k = 100.

Effectiveness values improve with the increase of |R| for the 10M and 100M data sets, while the 1M
data set shows the inverse tendency. This confirms the intuition that larger data sets requires a richer
permutation prefix space (generated by a larger set R) to better distribute their elements, until a limit is
reached and objects became too sparse in the permutation prefix space and the effectiveness worsen.

9The serialization of a data block on disk requires 375 bytes.
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Figure 5: Effectiveness of the multiple index search strategy on the 100M index, using |R| = 1, 000 and z = 1, 000.

Figure 6: Effectiveness of the multiple query search strategy on the 100M index, using |R| = 1, 000 and z = 1, 000.

For |R| = 1, 000 we observe almost the same relative error (∼ 8%), for the three data set sizes. With
respect to recall it is interesting to note the 100M curve is very close to the 10M curve, with an average
difference of 3%.

The maximum-efficiency (0.210 seconds answer time) configuration of PP-Index has obtained a 18.3%
recall and 8.1% RDE on the 100M data set, for k = 100. Effectiveness values improve for smaller k values,
as it is shown in the Figures 5 and 6.

On the single index/single query configuration, we have studied the impact of the z on search effectiveness
and the relation between the z value and the z′ value, by running experiments using different z values in
combination with different |R| values.

Table 3 reports the z′ values measured when using z values of 100, 1, 000 and 10, 000 on the 1M, 10M
and 100M indexes, and various sizes of the R set (100, 200, 500, and 1, 000). The average z′ values are
all substantially larger than the relative z value, however we have never observed extremely high z′ values,
e.g., the highest z′ value for a query is 187, 032 on the z = 10, 000, |R| = 1, 000, 100M configuration. For
z = 1, 000, the experiments the z′ value has never been a critical factor with respect to efficiency, and no
query has required more than a single read operation from disk to retrieve all the candidate objects (e.g.,
retrieving 10, 000 data blocks from the data storage involves reading only 3.7 MB from disk).

From the values in Table 3 two trends clearly emerge:

• the z′ value increases as D gets larger. The increase of z′ is largely sub-proportional to the growth of
D. For example, when D grows by a factor 100, z′ increases at worst by a factor 6.6, when z = 1, 000.

• the z′ value gets closer to the z value as R gets larger. This is related to the more detailed partitioning
of the similarity space that a larger R set generates.

Figure 7 shows the recall and RDE values obtained for the above mentioned configurations, limited to
the 100M index, for k = 100. As one might expect, a larger z value results in better recall and RDE values.
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Figure 7: Effectiveness with respect of the z an |R| values, for k = 100, on the 100M index (single index, single query).

z = 100 z = 1, 000 z = 10, 000
|D| |D| |D|

|R| 1M 10M 100M 1M 10M 100M 1M 10M 100M
100 320 1,230 1,926 4,075 5,817 7,941 15,300 50,231 80,890
200 256 1,078 1,653 3,320 5,571 7,302 13,120 47,342 73,332
500 194 723 1,295 1,803 5,065 6,853 11,921 35,321 61.231

1,000 130 624 1,032 1,091 4,748 6,644 11,203 31,201 54,302

Table 3: Average z′, i.e., average number of retrieved candidate objects for a query, value measured for various values of z, R,
and different index sizes.

However, a ten-fold increase of the z value results in a limited increase of recall, specially between the 1, 000
and the 10, 000 values. Other search strategies, such as using multiple queries, obtain a larger increase of
recall with respect to the increase of number of candidates been retrieved from the index. Thus, the use
of large z values is not a viable strategy to improve effectiveness in an efficient way. Among the three
tested values, z = 1, 000 seems to achieve the best overall effectiveness/efficiency trade-off on the various
test configurations.

Figures 5 and 6 show respectively the effects on effectiveness of the multiple index and multiple query
strategies, for three k values. With respect to the multiple index strategy we have measured a great
improvement on both measures reaching a 74% recall (four times better than the single-index case) and a
0.7% RDE (eleven times better) for the eight index case. Just by adding a single index to the original one
we have measured a factor two improvement of both measures.

The search cost for the multiple index strategy is exactly proportional to the number of explored indexes.
For the eight index configuration we have measured an average 1.72 seconds search time, for a completely
sequential search process. The four index configuration reaches a 52% recall (67% for k = 10) and just a
2.2% RDE with a sub-second answer time.

It is relevant to note that, given the small memory occupation of the compressed prefix tree, we have
been able to simultaneously load eight 100M indexes into the memory, thus practically performing search
on an 800 million objects index, though with replicated data, on a single computer.

The multiple query strategy also shows relevant improvements, though of minor relevance with respect
to the multiple index strategy. This is in part motivated by the fact that many of the queries, generated by
permuting the elements of the original query permutation prefix, actually resulted in retrieving the same
candidates of other queries10. On the 100M index, when |R| = 1, 000, only 1.92 distinct queries (on average)
are effectively used to retrieve candidates for the two queries configuration. The average number of effective
queries is 3.18 for the four queries configuration, and 5.25 for the eight queries configuration. These values
directly reflect the average search cost with respect to the single query configuration, i.e., only the effective

10Such candidates are read only once from the data storage.
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Figure 8: Effectiveness of the multiple index search strategy on various index sizes, using k = 100, |R| = 1, 000, and z = 1, 000.

Figure 9: Effectiveness of the multiple query search strategy on various index sizes, using k = 100, |R| = 1, 000, and z = 1, 000.

queries produce a disk access to sequentially read candidates from data store.
Figure 10 and 11 show the effectiveness of the combined multiple query and multiple index search

strategies, using eight queries and eight indexes, respectively for |R| = 100 and for |R| = 1, 000. We have
measured almost the same search times, for a completely sequential search process, for the two cases (12.45
seconds for |R| = 1, 000). The case |R| = 100 produces a 82.5% recall and a RDE < 0.1% on the 100M
index, while the smaller data set sizes it scores almost exact results (recall > 96%). The case |R| = 1, 000
produces almost exact results, with a recall > 97% and a RDE < 0.01%.

In this latter case we have measured, on the average, a total of 370, 000 data blocks retrieved from
the data storage among the average 44.5 queries being effectively used to access the data storages for each
original query. Although this z′ value is relatively high, it just represents the 0.3% of the whole collection.
For the four index/single query case the average percentage of objects being accessed is 0.03%. These are
very low values considering, for example, that Lv et al. (2007), proposing a similar multiple query strategy
for the LSH-Index, have measured a percentage of distance computations with respect to the data set size,
in order to obtain a 96% recall, of 4.4% on a 1.3 million objects data set and of 6.3% on a 2.6 million objects
data set.

4.5. Comparison experiments

It is a hard task to run comparative experiments on novel and very large data sets, such as CoPhIR, due
to many reasons:

• lack of previous results on the same data set;

• lack of a publicly available implementation for many of the methods involved in the comparison;

• difficulty and high cost, both in human and hardware resources, to develop and run a precise imple-
mentation of the proposed methods, and also to optimize each of them for the new data type;
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Figure 10: Effectiveness of the combined multiple query and multiple index search strategies, using eight queries and eight
indexes, on various data set sizes, using |R| = 100, and z = 1, 000.

Figure 11: Combined multiple query and multiple index strategies, using eight queries and eight indexes, using |R| = 1, 000
and z = 1, 000.

• when an implementation is available, it is typically a not an “industrial strength” version, i.e., it is
not designed to scale to very large data sets but just a proof of concept;

• moreover, the implementation is usually designed to take in input only a specific data type/format,
which makes it difficult to port the application to different data types.

For this reasons, in order to present a broad comparison with related methods, we have adopted a different
experimental setup for each compared method, adapting the experimental setup to the available material,
e.g., the availability of software implementations or results of previous experiments on publicly available
data sets.

4.6. LSH-Forest, comparison on the CoPhIR data set

Given the strict similarity between the data structures of the PP-Index and those of the LSH-Forest
it has been possible for us to produce a reliable implementation the LSH-Forest (Bawa et al., 2005). As
pointed out in Section 2.5, there is currently no evident way in the LSH model to define a LSH family H for
a weighted linear combination of metric distances of different nature, we have thus limited our comparison
to the Color Structure visual descriptor of each CoPhIR image (see Table 1).

The Color Structure visual descriptor uses a L1 norm distance function applied to a 64 dimensions space.
Following Datar et al. (2004), we have generated the hashing functions by randomly sampling from a family
of hash function of the form h(v) =

⌊
a·v+b

r

⌋
, where v is the vector with the values of visual descriptor, a

a vector of randomly sampled values from a Cauchy distribution (which is 1-stable), r = 5 (optimized with
experiments on held out data), and b is randomly sampled with uniform distribution from [0, r].

With respect to LSH-Forest parameters we set the maximum depth l = 6 (the same value used for the
PP-Index), thus each hashing function is composed by six hashing function, g(v) = h1(v) . . . h6(v). Each
h(v) function returns an integer number, which is indexed by the nodes of the prefix tree.
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Figure 12: Comparison between PP-Index and the LSH-Forest, varying k, on the 10M data set.

Figure 13: Comparison between PP-Index and the LSH-Forest, varying k, on the 100M data set.

We compared the LSH-Forest and the PP-Index by varying the number of LSH-Trees/PP-Indexes from
1 to 8, setting z = 1, 000 (and |R| = 100, for the PP-Index).

Figures 12 and 13 show the comparison of the recall and RDE, averaged on 100 random queries, for
various data set sizes, varying the k value, respectively on the 10M and the 100M data sets. The PP-Index
obtained, on average, a 6.68% better recall and a 15.98% better RDE with respect to the LSH-Forest,
obtaining a maximum recall on the 100M data set, k = 100, of 79.7% (76.0% for the LSH-Forest).

These values, specially the RDE improvement, indicate how the criterium of closeness to the reference
objects adopted by the PP-Index prefixes produces a better grouping of similar objects, improving the
chance of finding the true k most similar objects and also improving the overall similarity of the retrieved
objects for those retrieved objects that do not belong to the set of the true k most similar objects.

The PP-Index selected on average 1.12% less candidates than the LSH-Forest, however the high variance
in this value (±6.32) does not allow us to consider this value as statistically relevant.

4.7. M-Chord, comparison on the CoPhIR data set

Batko et al. (2008a) have run experiments using an early release of the CoPhIR data set, with data
set sizes of 1, 10 and 50 millions images. As the similarity function we suppose they use the same linear
combination of visual descriptors of our experiments, given that two authors are also the authors of Batko
et al. (2008b), from which we take our weights. The similarity search method they use is M-Chord, a P2P
data structure for metric-based similarity search. M-Chord uses a one-dimensional P2P protocol in order to
distribute the indexed objects among peers. Differently from multiple index PP-Index, the indexed data is
only distributed and not replicated among peers, thus requiring less space resources. In M-Chord, multiple
queries can be simultaneously processed by the peers, as long as the search process for the queries involves
different peers.

In Batko et al. (2008a) the network of peers is deployed over various cluster configurations with variable
resources. For the 10M data set they use a 16-CPU infrastructure with 64 GB RAM, keeping all the index
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data in memory, obtaining a 0.44 seconds answer time, with k = 50. For the 50M data set they test
both a 80-CPU infrastructure with 250 GB RAM, keeping all the index data in memory, and a 32-CPU
infrastructure with 32 disks storing the index data, obtaining a 0.45 seconds answer time for the memory-
based solution and 1.4 seconds for the disk-based one. They report an 80% recall level for 50-NN queries on
both collection.

Given the very different nature of the two approaches, it has been difficult to set up an experimental
comparison based on the use of similar data structure-specific parameters, thus, thank also to the hardware
details reported in Batko et al. (2008a), we chose to compare the methods based on the hardware resources
they use.

We have distributed the eight PP-Indexes on 16 CPUs, i.e., eight distinct computers (a total of 32 GB
RAM) each one with dual core processors, executing four queries on each CPU (the pair of CPUs on the
same computer accessed the same PP-Index stored on a single disk), measuring the query answer time as
the time of the slowest of the 16 processes plus the time to merge the sixteen 50-NN intermediate results.
This configuration, which uses about half of the resources of the disk-based M-Chord configuration on the
50M data set, has obtained, on 100 random queries, an average 1.02 second answer time and a 95.3% recall
on the 50M data set. Table 4 summarizes the results of the comparison.

search time (seconds) recall RDE
method CPU 1M 10M 50M 1M 10M 50M 1M 10M 50M
M-Chord (exact results) 16 .45 1.70 - 100.0% 100.0% 100.0% 0.00% 0.00% 0.00%
M-Chord with approximation 16 - .44 - - >80.0% - - - -
M-Chord with approximation 80 - - .45 - - ≈80.0% - - -
M-Chord with approximation and disk 32 - .87 1.40 - - ≈80.0% - - -
PP-Index 16 .37 .77 1.02 99.2% 97.7% 95.3% 0.02% 0.03% 0.07%

Table 4: Comparison between PP-Index and the M-Chord, with k = 50, varying the data set size. M-Chord values are reported
from Batko et al. (2008a). Recall values for M-Chord have been derived from Figures 2 and 3 of Batko et al. (2008a).

4.8. Metric Inverted File, comparison on the Corel data set

In order to compare the PP-Index with Metric Inverted File we decided to replicate the experiments
of Amato and Savino (2008) on the Corel data set, which is publicly available from the UCI Knowledge
Discovery in Database Archive11.

The data set consists of 50, 000 32-dimensions color HSV histograms extracted from the images. The
HSV color space is divided into 32 subspaces (using 8 ranges of hue and 4 ranges of saturation). The value
in each dimension in the HSV histogram of an image is the density of each color in the entire image. The
distance function used to compare the histograms is L1.

Replicating Amato and Savino (2008), we have selected 50 random objects as queries, and indexed the
rest of the collection. Given the small size of the data set, the PP-Index has been configured with |R| = 50,
with reference objects randomly selected from the indexed objects, and l = 6. As summarized in Table 5, in
Amato and Savino (2008) the Metric Inverted File index structure is reported to require 20 MB. This value
does not include the HSV histograms, which are required if one wants to reorder the retrieved objects by
their true similarity. The time required for generating the PP-Index is 4.9 second, with a disk occupation
of 13 MB (including HSV histograms) and a memory occupation of 450 kB.

The maximum recall level obtained in Amato and Savino (2008) for k = 50 is 54%, requiring to read 2.4
MB of inverted list data from disk (600 blocks of 4 kB size). The PP-Index, in a single-index/single-query
configuration (z = 500) obtains a 66% recall (k = 50), requiring to read just 230 kB of data from disk, always
with a single sequential read access to disk. Average search time is 0.01 seconds. In a single-index/four-query
configuration (z = 500), the PP-Index obtains a 89.6% recall (k = 50), reading about 575 kB of data from
disk, requiring an average of 2.5 sequential reads from disk. Average search time is 0.02 seconds.

Figure 14 compares the recall levels obtained by the Metric Inverted File and the two PP-Index config-
uration with respect to various k values. It is relevant to note the different trend in recall of the PP-Index

11http://kdd.ics.uci.edu/databases/CorelFeatures/CorelFeatures.html

15



Figure 14: Comparison between PP-Index and the Metric Inverted File, on the Corel Data Set. Recall values for Metric
Inverted File are taken from Amato and Savino (2008).

method # indexes index size indexing multiple search data read from disk sequential disk
on disk time queries time (secs) disk blocks z’ bytes read accesses

MIF 1 20 MB (w/o HSV data) ≈1 min no - 600 (ki = 100, ks = 50) - 2.4 MB 50
PP-Index 1 13 MB (w/ HSV data) 4.9 sec no 0.01 - 898 230 kB 1
PP-Index 1 13 MB (w/ HSV data) 4.9 sec 4 0.02 - 2246 575 kB 2.5

Table 5: Comparison between PP-Index and the Metric Inverted File, on the Corel Data Set. Recall values for Metric Inverted
File are taken from Amato and Savino (2008).

with respect to the Metric Inverted File. The recall of the PP-Index improves as k gets smaller, this is
motivated by the fact that the set of z′ candidates does not change for the various k values and thus it is
slightly more probable to find the 1-NN object from such set than all the 50-NN objects. The recall of the
Metric Inverted File instead gets worse as k gets smaller, this is motivated by the fact that the ranking by
similarity of the retrieved objects is done only by the estimated SFD (see Section 2.2) not reranking object
by their real distance. The estimated SFD is a relatively coarse-grained measure and thus it is very hard
to correctly identify the k closest objects, from the set of objects retrieved by scanning the inverted lists,
when k is very small.

Using real distances in the Metric Inverted File would have improved the results but also would have
required to read also the HSV vectors from disk in order to compute the real distances, increasing the
amount of data read from disk and the also sparseness of disk accesses, given that the Metric Inverted File
does not provide any policy for the organization and the optimization of access to the data representing the
indexed objects.

5. Conclusions

We have presented the PP-Index, an approximate similarity search data structure based on the use of
short permutation prefixes.

In its basic formulation, the PP-Index is strongly biased toward efficiency. We have shown how the
effectiveness can easily reach optimal levels just by adopting two “boosting” strategies: multiple index
search and multiple query search, which both have nice parallelization properties.

We have evaluated the PP-Index on a very large and high-dimensional data set. Results show that it is
both efficient and effective in performing similarity search, and it scales well to very large data sets.

We have shown how a limited-resources configuration obtains good effectiveness results in less than a
second, and how almost exact results are produced in a relatively short amount of time. Moreover, the
parallel processing capabilities of the PP-Index makes possible to distribute the search process in order to
further improve its efficiency.

The implementation of the multiple index strategy we have adopted in this work consists of building
each index independently of the others, with its own data storage, thus replicating t times on disk each
data block. An alternative implementation could have one main index with its own data storage, and other
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t − 1 indexes with data storages just containing pointers to the main data storage. The first solution is
designed to preserve the maximum effectiveness while the second solution trades disk space for efficiency. If
implemented naively, the second solution could result in an uncontrolled number of random accesses to the
data storage. In future work we will investigate the possibility to build a “smart” plan of accesses to the
data storage once all pointers, resulting from searching the t prefix trees, have been collected, in order to
reduce the sparseness of accesses.

The comparison with experimental results published for some related methods, which are among the
top-performers on the task, shows that the PP-Index compares well against them, specially in the ability of
accessing a very small part of the entire collection to produce almost exact results.

We have compared the PP-Index with the LSH-Forest on the entire CoPhIR data set, showing how the
locality information encoded into the PP-Index prefixes results in the selection of a set of candidates that
are more related to the query, as reflected by the improvement in the RDE values.

Only one (Batko et al., 2008a) of the previous works we compare with used in the original version a data
set of a size comparable to our largest one. We plan to extend the comparison with the other competing
methods (e.g., Novak and Batko (2009)) which have shown to scale to very large data set sizes.

The PP-Index has been already used to build a performing similarity search system12 (Esuli, 2009a). By
mining the query log of the service we plan to investigate alternative policies to the random selection for the
definition of the R set, e.g., clustering queries and selecting the most representative ones of each cluster.

Among the many other possible directions of investigation we mention the formulation of alternative
multiple query generation methods, and extending the experiments to different types of content, e.g., textual
data.
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