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Abstract—A fundamental problem for the development of
P2P Distributed Virtual Environments is the definition of an
overlay supporting interest management, i.e. determining all
the entities of the virtual world that are relevant for a given
peer. To this end, we propose a gossip-based approach that
considers the coverage of the Area Of Interest of a peer as
the guiding principle for the definition of the overlay and its
maintenance. The resulting overlay provides a support for a best-
effort resolution of interest management, so that it can be mostly
supported through communications on the P2P overlay, with
minimal intervention of a centralized entity. The paper presents
a set of extensive simulations based on realistic mobility traces.
The experimental results show the effectiveness of gossip for the
construction of a best-effort Interest Management overlay.

I. INTRODUCTION

Distributed Virtual Environments (DVEs), like massively
multiplayer games or distributed training simulations, acquired
lots of popularity in the last years from both commercial
enterprises and research communities. The reason behind
DVEs success is their ability to provide a shared sense of
space to their users, whether they are players in a multiplayer
game or soldiers in a military simulation. In this work we
refer mostly to application like Multiplayer Online Games, as
they are one of the leading sectors in the digital entertainment
industry.

To enable the engaging experience typical for these applica-
tions, information about the entities in the virtual environment
has to be replicated in users machines. This issue is referred to
as Interest Management (IM) [1] and it can be abstracted using
a publish-subscribe model [2]. Publishers perform actions (e.g.
they move) and subscribers should receive the result of these
actions (i.e. their local replica should change accordingly).
In this work we consider avatars and objects as publishers.
Avatars are the virtual representations of the users participating
to the DVE. Objects are entities that are not directly controlled
by human users, but that can possibly move and be interacted
with (e.g. a computer controlled enemy). Through this paper
we mostly examine movement as the action performed by
avatar and objects. However, our reasoning can be extended
to other types of actions.

Whenever an avatar (or an object) changes its position it

generates an event that should be propagated to all other users
in the DVE. In fact, IM poses well recognised scalability
challenges, due to the number of participants and the fast-
pace nature of the DVEs. A plethora of approaches have
been proposed to efficiently support IM (see [3], [4] for a
comprehensive list). One of the main strategies to address IM
is to replicate only the entities in the visual/interaction area of
players, which is called Area of Interest (AOI) and is typically
a circular area whose center is the avatar position.

Many DVE architectures [5], [6], [7] strive to resolve IM
with Peer-To-Peer (P2P) principles, in order to cope with
the limited scalability and flexibility of centralized solutions.
Several solutions (like [7]) exploit structured overlay, com-
monly referred to as Distributed Hash Tables (DHTs), to store
the entities in the virtual environment. Peers perform range-
queries on the DHT to subscribe to the resources in their AOI
in order to receive an update when their state changes. These
approaches offer guarantees in terms of availability (i.e. if an
entity is stored in the DHT, it will be found) and embedded
failure recovery mechanisms. However, range-queries have
usually high latency due to the possibly large number of
nodes that may contain relevant information. To address this
limitation query-caching and pre-fetching mechanisms have
been studied [7], [8]. Even if they work in principle, they
introduce overhead in terms of complexity of the approach
and make strong assumptions on the capability of peers.

Compared to structured approaches, unstructured P2P solu-
tions focus on building the overlay according to the spatial
proximity of the peers [9], [10]. In order to perform IM,
each peer connects with a subset of its neighbours. In this
way, neighbour peers may warn each other both about their
movements and about new peers entering their AOI. These
approaches naturally adapt to the rapid evolving scenarios of
DVEs and allow the system for large scalability. However,
when the number of peers in the AOI is very high due to hot
spots, i.e. areas of the DVE of particular interest for the peers,
a multi-hop communication using peers as relays is required.
Even if multi-hop approach successfully bounds the number
of connections per peer, it may incur in high latency when
the number of hops becomes large. Unstructured networks



also make complex the IM of the objects. A natural solution
would be to assign objects to peers according spatial proximity.
Even if several approaches adopt advanced version of this
technique ([11], [12], [13]), this solution still requires a lot of
objects migration among peers, which causes a high amount
of overhead.

For different reasons, both structured and unstructured P2P
overlays present weak points depending on some of their
features. Several solutions strive to cope with these drawbacks,
but even if they might work in principle, they introduce
overhead in the IM mechanisms that may compromise the
interactiveness of the application. Note that IM is a core and
frequently executed component of a DVE so that its support
must be simple as much as possible.

A. Contribution and Paper Structure
To avoid these drawbacks, we propose an IM approach that

is lightweight, simple and scalable. To meet these require-
ments, our solution is based on a combination of a centralized
server and a best-effort mechanism providing support for IM.
With this combination we are able to reduce consistently the
load on the central server. In the best-effort mechanism each
peer exploits of local knowledge of its neighbours to discover
as much entities as possible belonging to its AOI.

To achieve this task, we use a gossip-based protocol that
allows each peer to connect to a relevant subset of its nearby
peers. In order to select the relevant peers, our approach
defines a spatial ranking function that, based on the local
knowledge of each peer, selects the best neighbours according
to the portion of the AOI they are able to cover.

We have tested our protocol by a set of traces derived
from Second Life, one of the most popular DVE. The results
we have obtained are encouraging, as, on the average, the
80% of entities in the AOI of a peer may be retrieved by
exploiting our technique. Due to the best effort nature of our
approach, a further mechanism should be paired with it, to
support all the scenarios where it is not able to fully resolve
IM. The best-effort nature of our approach pairs seamlessly
with the hybrid DVEs architecture [14], [15] which combines
centralized and P2P solutions to create effective and economic
architectures for DVEs. For example, in the context of on-
demand computing, our approach can be used to query servers
only when necessary, thus to further reduce the economical
cost of maintaining a DVE platform.

The paper is structured as follows. In Section II we sum-
marize the related work in the field of IM for DVEs, and we
underline the principal differences with our work. A detailed
description of the overall mechanism is presented in Section
III, whereas Section IV discuss and evaluate two different
ranking functions. Section V discusses a selection of our
extensive experimental evaluation that shows the encouraging
results obtained by our approach. Finally, Section VI con-
cludes the paper.

II. RELATED WORK

Interest Management (IM) solutions proposed in the liter-
ature can be classified according to degree of separation in

the roles played by the nodes of the infrastructure. On one
hand there are hierarchical approaches, in which IM is realized
through a set of (super)nodes with enhanced knowledge with
respect to regular player’s nodes. On the other hand, we have
flat approaches, where there is no neat distinction between
super and regular nodes.

Hierarchical approaches are essentially of two types: server-
based and supernodes-based. Server-based approaches exploit
full-blown servers with global knowledge of the virtual en-
vironment. They periodically inform players’ nodes about
relevant entities. This approach is naturally used by centralized
and distributed server infrastructures [5], [6].

Supernodes-based solutions exploit free user-provided re-
sources to realize IM. Similarly to server-based approaches,
the VE is divided into disjoin regions and each region is paired
with a supernode that periodically informs the peers about their
neighbours. Several supernodes-based approaches have been
proposed, as for example [16], [17], [12]. In order to cope
with the unreliability that comes with user resources, these
approaches have to perform a careful supernode selection,
set up failure recovery mechanisms and provide adaptive
mechanism for region sizing.

For their intrinsic nature, flat approaches pairs with DVE
that are realized in pure P2P fashion. In this kind of solutions,
neither supernodes or servers are considered to support IM.
One (or more) overlay is constructed and maintained in order
to deliver the communication for IM. This overlay can be
either structured (in case of Distributed Hash Tables) or
unstructured. Colyseus [7] uses a DHT to store the state of
the entities. IM is realized by periodically performing multi-
attribute range queries on the DHT to subscribe to relevant
entities. Whenever these entities modify their state, all the
subscribers are informed about the changes. Colyseus proposes
two approaches in order to guarantee low latency of lookup
queries. First, it exploits spatial and temporal locality in
object movements in order to predict possible queries. This
allows speculative pre-fetching of replicas. Second, it enables
soft caching of recent queries, which makes it possible to
immediately reply to a query.

The use of DHT yields concrete advantages, as it offers a
stable and reliable platform for distributed indexing. However,
in spite of optimizations like caching and pre-fetching, latency
may still represent an issue. For this reasons we argue that
DHT should be used as a backup or a backbone mechanism,
and must be queried only when really necessary. Compared
with DHTs, unstructured overlays give more emphasis to
the dynamic grouping of peers. In fact, unstructured overlay
are often built according virtual proximity of the avatars, by
choosing the neighbours as a subset of closer peers. Various
techniques have been proposed in order performs this choice.
The most straightforward and easy-to-implement strategy is to
build the overlay considering direct connections from all the
closer peers [16], [18]. This strategy assures low values for
messages latency, since each recipient is always one hop away
from the source. However, as the number of recipient nodes
grows, this method may oversaturate the bandwidth capability



of the source.
To overcome these limitations, various forwarding ap-

proaches has been proposed for IM. Forwarding-based solu-
tions use subset of the peers as relay, whose task is to forward
events to other possible interested recipient. These solutions
have usually high scalability, since the necessary bandwidth
to deliver events is split among a number of nodes. On the
other hand, forwarding-based solutions may increase latency
since event source and recipient may be separated by multiple
hops.

Other approaches [9], [10], [21], [22] exploit the position of
the players to define a Voronoi partition of the virtual world.
The Delaunay Triangulation corresponding to the Voronoi
Diagram defines the overlay connections.

pSense, [23] maintains both a list of near nodes and a list
of sensor nodes to manage the P2P overlay. The near nodes
list contains peers that are within the vision range of the local
node and supports IM. The local node attempts to keep its list
as accurate as possible. The sensor node list contains nodes
that are outside the AOI of a peer, but close to its borders.
The sensor nodes of a node notify it of the presence of new
nodes entering its AOI so to avoid network partitioning. Sensor
nodes must be distributed as evenly as possible around a node
to guarantee uniform connections with the rest of the world.
A localized multicast is exploited to spread position updates
to the peers belonging to the AOI.

III. BEST-EFFORT OVERLAYS FOR IM

This section discusses the first core contribution of the
paper, that is the gossip-based mechanism to build the IM
overlay. We start by describing the system model and the
assumptions in our approach, then we discuss the overlay
construction with gossip mechanism,

A. System model

We consider a set of players participating to the same
instance of a DVE. Each player has a virtual representation,
called avatar, that can move around the virtual environment
and interact with other avatars or with objects. Each avatar
has associated an Area of Interest (AOI) that is enclosed by
a circle whose center is the avatar position. Each player runs
its own instance of the DVE on a proprietary machine (e.g.
a desktop workstation) that we refers to as node or peer. We
assume nodes to have ordinary network capabilities, such as
the ability to send and receive messages from the Internet.

In order to resolve IM, each node is connected with two
infrastructures. The first infrastructure is a centralized server,
which maintains all the position of the entities in the virtual
world. Nodes communicate their position to the server, which
updates the information in its state. The server periodically
communicates to each node the entities in its AOI. The interval
between two consecutive message from the server, TS , is
common for all the nodes.

Besides the server, nodes are also connected to a custom
overlay. Each node has associated a profile that contains the
node network address (which is also used as unique identifier)

and the position in the DVE. Nodes maintain a set of profiles
that represents their partial view of the network. When a node
n has another node m in its view, a connection between n
and m exists in the overlay, but this does not imply that the
reverse connection exists. Nodes periodically query the overlay
to learn about the entities in their AOI.

By exploiting the overlay, it is possible to increase TS

and, as a consequence, reduce the load imposed to the server.
The next section describes in details the construction and the
effectiveness of the overlay.

B. The Interest Management Overlay

IM is a core DVE operation, since it must guarantee to a
peer the complete knowledge of the entities it may interact
with. These may include further peers, objects and computer-
controlled entities.

In this paper, the construction of a best-effort overlay
for Interest Management has been inspired by T-Man [24].
Similarly, the effectiveness of our approach depends on the
definition of a set of proper ranking functions. In our case,
these should favour neighbours which may offer a larger
number of entities in the interest set of a peer. To this end, we
will consider the spatial coverage of the AOI of a peer offered
by its neighbours. However, unlike most existing T-Man-like
approaches, our goal is to build a continuing evolving overlay
rather than a predefined one. The view of a peer changes
continuously in order to reflect the position updates of the
peers in the virtual space. In our case, instead of evolving
toward a predefined target topology, peer continuously gossip
to each other to support the retrieval of new avatars and objects
in their AOI.

Our technique to build an overlay supporting IM is based
on the following reasoning. Let us consider a given peer P .
At an arbitrary point in time it has in its local representation
of the environment the replicas of the entities that belong
to its AOI. When P moves, its AOI changes accordingly.
Hence, to maintain its local representation up-to-date P must
discover the new entities belonging to the new AOI. In order
to dynamically acquire this information, P builds an overlay
by considering a set relevant neighbours. The creation of the
overlay poses two issues. First, P needs to know the identifier
of its candidate neighbours; second, P needs a mechanism
to discriminate among peers, in order to choose the more
promising neighbours from the set of candidates.

The first issue is resolved continuously refreshing candidate
knowledge by means of two gossip protocols. The first gossip
protocol is a random peer sampling, enabling each peer to
maintain a set of long range links that guarantee the connec-
tivity of the overlay. These links are exploited in situations
where a peer have few knowledge about its nearby candidate
neighbours and must incrementally acquire new information.
These situations include the bootstrap phase and when an
avatar is ”teleported” form one place to another of the DVE.
In the second gossip protocol each peer chooses its neighbour
configuration by exploiting a ranking function based on spatial
AOI coverage. Since the selection of the neighbours is done



according the proximity, entities are progressively discarded by
a peer when they disappear from its AOI. Note that the two
protocols work at the same rate. For each gossip iteration,
a instance of random peer sampling and one of coverage
sampling are executed.

The second problem considers the AOI coverage offered by
the neighbours of a peer. To this end, each peer should choose
the best configuration of its neighbours in order to optimize
the number of entities which may be retrieved from them.
At each iteration the peer adapts its overlay neighbours set
by providing a partial order from multiple configurations of
neighbour sets. To maximize the area coverage, considering
each peer one at time is simply not feasible. The choice of
the best neighbour set is realized by means of multiple ranking
functions, which are discussed in detail in the next section.

Since avatars are continuously moving, a large part of the
IM performances depends on the freshness of peers knowl-
edge. In order to maintain the selection of the neighbours as
fresh as possible, each entry in the view of the peers is marked
with a time-stamp. The time-stamp gives an estimation on the
freshness of the entry. Our mechanism considers the age of the
entries in two situation during the execution. First, before to
rank the neighbour candidates, all the candidates whose age is
greater than a certain threshold are not considered. Second,
during the ranking, fresh configurations are favoured with
respects to the stale ones. In principle, the internal clock of the
peers can be used as the source for the time stamp. However,
for simulation purposes, we model the time as a discrete
successions of iterations. The simulation starts at iteration zero
for all the nodes, and for each gossip-cycle iteration count is
increased by one. When an entry is created, the iteration count
is used as time-stamp for such entry.

From an application point of view, our approach builds a set
of neighbours to query in order to possibly retrieve the most
entities in a peer’s AOI. The application level should query
these peers to actually perform the retrieval. For example, the
application level can periodically ask to the neighbour peers
to pull fresh data. We do not provide further details on the
this mechanism since is is very dependant on the application
level requirements and it has little impact on the underlying
gossip protocols.

C. Server Bandwidth Reduction

The main goal of the proposed mechanism is to reduce the
bandwidth consumption of the server. To measure the reduc-
tion of outgoing bandwidth at the server, we have performed
several tests by varying TS , which is the distance in time
between two consecutive communications from the server. We
have considered networks with 200, 500, and 1000 peers.
Results are presented in Figure 5.

As expected, the amount of outgoing data transfer is greatly
reduced by increasing the time. With this reduction, the DVE
operator is able to evaluate alternative choices regarding the
deployment of the IM server. For instance, let us consider
an operator willing to deploy the IM server on a on-demand
platform. With 1000 nodes, and Ts = 0.25 the bandwidth
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Fig. 1: Server outgoing bandwidth

requirements are 3MB/s. Using the prices of a current com-
mercial on-demand platform 1, the deployment would cost 30$
per day only considering bandwidth. With Ts = 1 the cost
would be reduced to 10$ per day.

IV. AOI COVERAGE RANKING FUNCTIONS

In this section we explore in details the aspect of AOI
coverage, which is the main principle behind our ranking
functions. This aspect poses two distinct challenges: (i) to
measure the amount of area covered by neighbours peers
and (ii) to determine the best subset of neighbour peers that
maximize the area coverage. In the rest of this section we
formalize these two problems and we provide a description of
the adopted solutions.

A. Measuring Coverage

Definition 1 (AOI coverage). Given a set of AOIs N =
{N1...Nn} and an AOI P such that P /∈ N we define as
the coverage of P given N , c(P,N ), as the area of P that
is overlapped by the AOIs contained in N .

Computing c(P,N ) requires to compute all the unique
intersections of AOIs in N with P ’s AOI and to evaluate
their area. In trivial situations this is easy to compute, as it is
just the sum of the intersection of the AOIs. However, in real
situation, computing the AOI coverage is far from a trivial
problem. For instance, in the case depicted by Figure 2 we
show that c(P,N ) = (P ∩B−P ∩B ∩A) + (P ∩B ∩A) +
(P ∩A− P ∩B ∩A).

In complex situations, when many peers are close to each
other, to compute the effective coverage may be prohibitively
expensive in terms of computational effort. Practically, this
happens for two reasons. First, the number of the intersections
grows quadratically with the number of peers. Second, it
might be computationally costly to evaluate the area of an
intersection resulting from many AOIs. For this reasons, we
approach this issue considering an approximation. The idea is
to approximate the continuous surface of the AOI as a grid
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of disjoint tiles. In this way, instead of dealing with custom-
shaped areas, we consider the tiles as the units to compute
the coverage. This approximation reduces the complexity of
the problem, since it makes easy to compute the area of each
tile. Moreover, the amount of tiles is a parametric value and
does not depends on the number of peers. Figure 2 shows an
example on how to compute the coverage of a given AOI
(P in the figure) considering a 3x3 approximation. In this
case, the coverage of P is 5/9. The number of tiles varies
proportionally with the degree of the approximation. A high
number of tiles leads to higher precision, which in principle
increment the performance of our mechanism. Besides, since
the AOI to approximate is a circle, tiles at the corners of the
approximation square might be out of the actual AOI area. In
this case we do not consider such tiles for the coverage area
estimation.

In order to compute the coverage, we consider the following
steps. For each AOI ∈ N and for each tile, we check whether
the AOI intersects with the tile. If it is, we check the counter
associated to the tile. If the tile counter is zero, it means the
tile is overlapped for the first time so we increase the number
of covered tiles. If the tile counter is greater than zero, we
just increment it. Besides the number of the tiles covered, this
function also counts the number of AOIs that cover each tile. It
is easy to show that the complexity of the function is O(n×t),
where n is the cardinality of N and t is the number of tiles.
Since t is a parameter that is fixed during the execution, we
consider the complexity of coverage() as O(n).

B. Maximizing AOI Coverage

The aim of the network is to discover the highest amount
of objects around the peer (possibly all of them). The straight-
forward solution is to to keep links with the neighbours that
maximizes the coverage. This indeed requires peers to make
a choice, due to the bound imposed by the gossip view size.
Hence, very often a peer needs to choose what is the best
subset of peers to keep in its cache. This subset is defined as
follows:

Definition 2 (Maximum AOI coverage). Given a set of AOIs
N = {N1...Nn} and an AOI P such that P /∈ N and
a dimension d such that d ≤ n, we define b(P,N , d) as
the subset of N with cardinality |N | = d that maximizes
c(P,N ).

This problem is NP-complete. To prove that, in the follow-
ing we show how it corresponds to an instance of the set cover
problem. The set cover problem has been proved to be NP-
complete by Karp in 1972 [25] and it is defined as follows.

Definition 3 (Set cover problem). Given a set U of elements
(called the universe) and n sets of elements whose union
comprises the universe, identify the smallest number of sets
whose union contains all elements in U .

The correspondence with the Maximum AOI coverage prob-
lem is resolved by considering: (i) n as N , (ii) elements as
the tiles, and (iii) U as the tiles covered by the AOIs in the
optimal solution.

A naive solution to this problem would be to enumerate the
possible combinations of peers and for each of them compute
the coverage. Unfortunately, this is highly impracticable since
the combinatorial nature of the problem. Hence we propose
two heuristics with different characteristics. The second, is a
greedy heuristic that we prove to be near-optimal. The first is
a score-based heuristic that performs better than the greedy in
terms of computational requests but at the cost of an higher
approximation.

1) Score-based Heuristic: The rationale behind this heuris-
tic is to assign a score to each tile. The tiles that are intersected
by few peers have a higher score than tiles intersected by a
larger amount of peers. The idea is then to favour such peers
that overlap high score tiles. The heuristic works as in the
pseudo code in Algorithm 2.

First, it computes the coverage of the AOI by considering
all the peers in N . Each tile has a score that is the reciprocal
of the number of intersected AOIs. Second, it computes the
score for each AOI as the sum of the scores of each intersected
tiles. Finally, it sorts the AOIs in descending order according
to their score, and it chooses the first d entries.

Algorithm 1: Score-based Heuristic
Input : P, the considered peer, N , the set of neighbours

AOIs, d, the size of the returned set
Output: a subset of N with cardinality d

1 coverage(P, N );
2 foreach AOI ∈ N do
3 foreach tile ∈ getTiles(P) do
4 if intersect(AOI, tile) then
5 AOI.score ← AOI.score + 1

tile.count ;
6 end
7 end
8 end
9 sort AOIs in descending order according to score;

10 return the first d AOIs;

The time complexity of the score based heuristics is the sum
of the following: (i) the coverage procedure, which we have
already seen to be O(n), (ii) the computation of the score,
that can be considered as O(n) (similarly to the coverage, we
consider the number of tiles as a constant parameter), and (iii)



the sorting, which is O(nlogn). Hence we can consider the
complexity as O(n).

2) Greedy Heuristic: The idea behind the greedy heuristic
is simple: at each step to choose the peer that yields the higher
increment on the number of unique tiles covered. The pseudo-
code of the greedy heuristic is represented at Algorithm 3.
For each position of the cache, it is selected the AOI that
maximizes the number of further covered tiles considering the
already chosen AOIs. Note that: (i) an AOI can be selected
only once as, upon selection, it is removed from the list of
candidates, and (ii) to evaluate the number of tiles covered we
use the function coverage() described and evaluated in the
previous section.

Algorithm 2: Greedy Heuristic
Input : P, the considered peer, N , the set of neighbour

peers,d, the size of the returned set
Output: a subset of N with cardinality d
Data: C ← ∅

1 while |C| < d do
2 chosen ← ∅;
3 max score ← 0;
4 foreach AOI ∈ N do
5 score ← coverage(P, C ∪ AOI);
6 if score > max score then
7 max score ← score;
8 chosen ← AOI;
9 end

10 end
11 remove chosen from N ;
12 add chosen to C;
13 end
14 return C;

The complexity in time of the greedy heuristic can be
studied as following. The outer cycle (line 1) is repeated
d times. The inner cycle (line 4) is repeated at maximum
|N | = n times. The biggest set of AOI on which the function
coverage() is executed has dimension d (at the first iteration).
Hence, the total complexity in time is O(nd2).

To prove approximation guarantees of the greedy heuristics,
first we have to introduce the concept of submodular function
[26]. Consider Ω to be a finite set and an arbitrary function
f : 2Ω → R, we can say f is submodular if it satisfies the
following property: the marginal gain of adding an element to
a set S is at least as high as the marginal gain from adding the
same element to a superset of S. More formally a submodular
function must satisfy

f(X ∪ x)− f(X) ≥ f(Y ∪ x)− f(Y ) (1)

for all elements x ∈ Ω and for all pairs X ⊆ Y . Now,
suppose f to be submodular, non-negative (i.e. takes only
positive values) and monotone (i.e. adding an element to a
set cannot cause f to decrease. Let also suppose that our aim

is to find a set S of cardinality k such that f(S) is maximized.
It has been proved in [26] that a greedy algorithm resolves this
problem with a worst-case approximation of (1− 1/e), where
e is the base of the natural logarithm. In other words, if the
optimum value is 100, the greedy algorithm is guaranteed to
find a solution with a value of at least 63.

In order to apply this result to our greedy algorithm,
c(P,N ) must be submodular, non-negative and monotone.
Non-negativity is immediate: since we measure an (approxi-
mation of) area, it can not be negative. Monotonicity is also
immediate, since adding an AOI to a set cannot change the
number of tiles already counted. To prove that the function in
our greedy algorithm is submodular, we show how it satisfies
(1). Let us consider what happens when we add an arbitrary
AOI x to a set X whose Y is a superset of: (i) x neither
intersects with AOIs in X or AOIs in Y . In this case the
equality holds since the marginal gain for both sides of the
equation is zero; (ii) x intersects only with AOI’s in X . In this
case we possibly have an increment on the left side, so the
equality holds; (iii) x intersects only with AOI’s in Y . In this
case the left part of the equation is greater, since it considers
all the area covered by x, whereas the right part is incremented
only of the part that is non overlapping, so the equation holds;
(iv) x intersects with both X and Y . The equation holds since
for the left side it counts also the intersection of the AOI’s
with the elements in Y , that it would not count for the right
side. Finally, since we have proved that our greedy algorithm
is submodular, non-negative and monotone we can assert that
in the worst case we obtain an approximation of (1− 1/e).

V. EXPERIMENTAL EVALUATION

This section presents: (i) the description of the metrics used
to evaluate our mechanism, (ii) the workload definition, includ-
ing the description of the mobility model we used to simulate
avatars’ movement, and (iii) a selection of experimental results
evaluating the key performances of the approach.

A. Metrics

To evaluate our approach we consider two different metrics.
The first metric evaluates the coverage of peers AOI. We refer
to this metric as AC. AC is a value in the interval (0, 1) and,
given a peer at an arbitrary iteration, is defined as the ratio
between the AOI coverage obtained by the P’s view and the
best AOI coverage defined by considering all the peers in the
DVE. The second metrics measures the difference between
the local replica of the peer’ state against the server state. To
measure this difference, we exploit a slightly modified version
of the Jaccard similarity coefficient [?]. Let us consider C
as the local replica of a peer and S as the remote replica
of the server. The original Jaccard coefficient is computed
as S ∩ C/S ∪ C. However, this formulation either does not
take in account the difference of the positions of the entities,
or considers entities with a different position as distinct. In
order to take into account at the same time the difference
in position and the presence of the entities we exploit the



following formula to compute the Jaccard coefficient (in short
JC):

JC =

∑
xS ,xC∈S∩C 1− dist(xS ,xC)

dMAX

S ∪ C
(2)

where dMAX is the diameter of the peer’s AOI. A peer with
JC = 1 has its local replica perfectly synchronized with the
state of the server while JC = 0 implies that the replica is
completely out-of-sync with that of the server. Any value in
between 0 and 1 gives a quantitative evaluation on the quality
of the synchronization.

While AC measures how good the heuristics performs in a
dynamic environment, JC measures the quality of the approach
in terms of the quality of the application. A direct correlation
between AC and JC would be desirable. In the following
section we show how the simulation support the existence of
this correlation.

B. Workload and Environment

The simulation code is written in Java. In a single simulation
run, each node (executed in a private thread) executes a
number of gossip iterations, and two consecutive iterations are
separated by a fixed amount of time. For all the simulations
we consider a VE defined as a squared region of 5000 x 5000
points. The map has 5 circular fixed hotspot, whose radius
is tuned so that the 20% of the total area of the DVE is a
hotspot. The remaining 80% is considered as outland. The
65% of the total number of the objects of the DVE lie in
hotspot areas where their concentration follows a power law
distribution, with a peak in the hotspot center. The total amount
of objects in the simulation is 1000, and players AOI have a
radius of 100 points. The remaining 35% of the objects stay
in the outland area and it is distributed according to a uniform
random distribution.

Avatars move on the map according to realistic mobility
traces that have been computed according the mobility model
presented by Legtchenko et al. [27], which simulates avatars
movement in a commercial DVE, Second Life [28]. The model
works according to the hotspots defined in the DVE. When
an avatar reaches a hotspot, it explores the hotspot for a
span of time and eventually it moves to another hotspot. This
behaviour is defined by a state finite automata characterized by
three states: halted, exploring and travelling. When in halted
state avatars stay still, whereas in the exploring state avatars
explore a portion of the DVE close to their current position.
Finally when in travelling state avatars move from one hotspot
to another. This mobility model exposes a fair balance between
the time spent by avatars in hotspots and outland. Furthermore,
the path followed by avatars when moving between hotspots
is not fixed, i.e. no predefined path connects two hotspots.

C. Behaviour over Ts

In this section we discuss the result of several simulation
runs by varying the interval of time (Ts) between two con-
secutive communications to the central server. Requests to the
overlay are done every 0.25 seconds. For instance, with Ts = 1

there is a server communication followed by three requests to
overlay in row and then another server communication. Where
it is not indicated differently, the simulations consider: 500
nodes with a cache of 10 elements each, 1000 objects, and
an AOI approximation of 32x32 tiles. Figure 7 shows the
comparison of the JC between the greedy heuristic and the
score heuristics. In general, we can observe how the reduction
in the JC is limited even with high values of Ts. For instance,
with Ts = 1 the average JC value for both the heuristics is
around 0.9. Form an application point of view, this means
that the mechanism is able to fully support IM. As expected,
further increments of Ts imply a JC reduction. Note However,
that even with the Ts = 2.5, the JC is still around 0.8.

The effectiveness of the mechanism is further supported by
the values of the JC when using only the server. In other words,
increasing Ts would be problematic if not supported by the
overlay. For example, with Ts = 1.5, the JC with the support
of the overlay is around 0.9, whereas is 0.65 using only the
server.

As regards the comparison between heuristics, the greedy
outperforms the score heuristics. With these simulation pa-
rameters, the AC, which is independent from Ts, is 0.8 and
0.85 respectively for the greedy and the score heuristics. This
would suggest a correlation between AC and the JC.

Figure 6 shows the JC when selecting the more fresh entries
during a gossip iteration. The ranking algorithm considered is
the score, but similar results have been obtained with the the
greedy heuristics. The results are evident and not surprising: to
prefer fresh entries gives a neat increment on the performance.
As the previous, even this result indicates a possible correlation
between AC and JC as the score’s AC = 0.80 with stale
control and AC = 0.70 without.

D. Tiles Variation

Figure 8 shows the JC and the AC of the greedy and score
heuristics with various degree of AOI approximation (from 16
to 1024 tiles). The points for the plot have been obtained by
averaging the outcome of 20 simulation runs with a Ts = 1.
The results show that the score-based heuristics is basically
agnostic to the approximation whereas the increment in the
number of tiles implies an increment of the performance of
the greedy-based heuristics. From the graph it is clear how
with approximations larger than 400 tiles for AC and 600 for
JC, the greedy-based heuristics outperforms the score-based
one. The reason why it happens lies on the order used by
the greedy heuristics for choosing the areas. Indeed, with
higher approximation, the greedy would have greater chance
to choose a worse area. When the approximation is reduced,
the greedy heuristics performance increases.

E. Number of Peers

Figure 10 shows how the number of peers affects the
JC of greedy and score heuristics. Each point in the plot
is the average of the outcome of 20 independent runs. The
simulations have been run with a 32x32 AOI approximation,
a fixed cache size of 10 elements, and a TS = 1.
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Fig. 4: Evaluation of the heuristics with different AOI approximation and network sizes

As expected, the greedy overcomes the score, but both the
heuristics show a similar behaviour. Their performance are
essentially independent from the number of nodes, even with
a fixed-size cache. In fact, there is a slight increment on the
JC as the number of peers increases. With more nodes there
is a higher chance of crowded zones. This situation allow the
node to exploit the knowledge of the neighbours more often.

VI. CONCLUSION

In this work we proposed a gossip-based mechanism to
build overlay for best-effort IM in DVEs. Conversely to the
other approach in the field, we trade some precision in the
result to keep the mechanism fast, simple and lightweight.
However, our proposal can be further extended and studied.
To this end, we plan to improve the precision of the result
by considering additional information when ranking peers,
such as movement forecasts and different neighbours selection
functions. As to further validate our solution, we intend to test
it with movement traces from different mobility models and to
compare it with the non best-effort works presents in literature.
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