Building Automated Text Classifiers via Machine Learning

Fabrizio Sebastiani

Istituto di Scienza e Tecnologie dell'Informazione Consiglio Nazionale delle Ricerche 56124 Pisa, Italy E-mail: fabrizio.sebastiani@isti.cnr.it

ISKO UK / BCS IRSG Joint Workshop

1 Introduction to ATC

- 3 Effectiveness and Efficiency
- What next?

Outline

Introduction to ATC

2 The Machine Learning approach to ATC

3 Effectiveness and Efficiency

What next?

Introduction to ATC

- (Automated) Text Classification (ATC): building software systems that assign classes from a predefined classification scheme to textual documents [9, 10]
- Discipline at the crossroads of several fields in computer science, including
 - machine learning
 - information retrieval
 - computational linguistics / natural language processing
- Synonyms:
 - $\bullet~$ Text Classification \rightarrow text categorization, text coding, document classification,
 - Classification Scheme \rightarrow category set, codeframe, codebook, controlled vocabulary, ...
 - Classes \rightarrow categories, codes, index terms, ...

Introduction to ATC (cont'd)

Several variants of ATC have been addressed in the scientific literature:

- according to cardinality:
 - binary or multi-class ("how many classes are there in the classification scheme?")
 - single-label or multi-label ("how many classes may be attributed to the same text?")
- according to structure of the classification scheme:
 - flat or hierarchical,
 - nominal or ordinal ("is there a linear order defined on the classification scheme?")
 - universal or specific;
- according to dimension:
 - by topic
 - by sentiment
 - by genre
 - by author

Introduction to ATC (cont'd)

Several variants of ATC have been addressed in the scientific literature:

- according to cardinality:
 - binary or multi-class ("how many classes are there in the classification scheme?")
 - single-label or multi-label ("how many classes may be attributed to the same text?")
- according to structure of the classification scheme:
 - flat or hierarchical,
 - nominal or ordinal ("is there a linear order defined on the classification scheme?")
 - universal or specific;
- according to dimension:
 - by topic
 - by sentiment
 - by genre
 - by author

Introduction to ATC (cont'd)

Several variants of ATC have been addressed in the scientific literature:

- according to cardinality:
 - binary or multi-class ("how many classes are there in the classification scheme?")
 - single-label or multi-label ("how many classes may be attributed to the same text?")
- according to structure of the classification scheme:
 - flat or hierarchical,
 - nominal or ordinal ("is there a linear order defined on the classification scheme?")
 - universal or specific;
- according to dimension:
 - by topic
 - by sentiment
 - by genre
 - by author

Outline

Introduction to ATC

2 The Machine Learning approach to ATC

3 Effectiveness and Efficiency

What next?

- Early '90s: switch from the "knowledge engineering" to the "machine learning" approach to text classification;
- The learning metaphor: the system learns from a sample of manually classified texts (the training set) the characteristics a new text should have in order to be attributed a given class;
- The training set needs to include positive examples of the class and negative examples of the class;
- Training works by detecting linguistic patterns (e.g., words, word *n*-grams, noun phrases, syntactic patterns, etc.) that are distributed most differently in the positive and in the negative training examples;
- Providing manually classified examples of the class to the system is by no means different than providing a child with (positive and negative) examples of, say, what a tiger is, in order to teach him to recognize tigers.

- Early '90s: switch from the "knowledge engineering" to the "machine learning" approach to text classification;
- The learning metaphor: the system learns from a sample of manually classified texts (the training set) the characteristics a new text should have in order to be attributed a given class;
- The training set needs to include positive examples of the class and negative examples of the class;
- Training works by detecting linguistic patterns (e.g., words, word *n*-grams, noun phrases, syntactic patterns, etc.) that are distributed most differently in the positive and in the negative training examples;
- Providing manually classified examples of the class to the system is by no means different than providing a child with (positive and negative) examples of, say, what a tiger is, in order to teach him to recognize tigers.

- Early '90s: switch from the "knowledge engineering" to the "machine learning" approach to text classification;
- The learning metaphor: the system learns from a sample of manually classified texts (the training set) the characteristics a new text should have in order to be attributed a given class;
- The training set needs to include positive examples of the class and negative examples of the class;
- Training works by detecting linguistic patterns (e.g., words, word *n*-grams, noun phrases, syntactic patterns, etc.) that are distributed most differently in the positive and in the negative training examples;
- Providing manually classified examples of the class to the system is by no means different than providing a child with (positive and negative) examples of, say, what a tiger is, in order to teach him to recognize tigers.

This is a tiger!

This is another tiger!

This is yet another tiger!

Also a tiger!

This is a NOT a tiger!

NOT a tiger either!

Absolutely NOT a tiger!

Is this a tiger?

Advantages of the machine learning approach

- No need to manually write classification rules; the system only needs manually classified examples for training, which in some cases may already be available;
- Easy update to
 - revised classification scheme
 - brand new classification scheme

since the system only needs user-classified examples for training that reflect the new situation;

- No need of specialized / domain-dependent dictionaries;
- State-of-the-art accuracy, excellent learning and classification speed;
- Possibility to provide feedback to the system, thus allowing it to implement continuous learning.

The Classifier Training module

- Allows to train classifiers, given a classification scheme and a training set of documents
- The Accuracy Estimation module
 - Estimates the likely accuracy of the trained classifiers
- The Classification module
 - Allows to classify yet unclassified data by using the trained classifiers
- The Validation module
 - Allows the user to manually check the most uncertain class assignments
- The Training Data Cleaning module
 - Allows the user to check the training documents most likely to be misclassified
- The Proactive Learning module
 - Allows the user to manually check the automatically classified documents most beneficial to retraining

The Classifier Training module

- Allows to train classifiers, given a classification scheme and a training set of documents
- The Accuracy Estimation module
 - Estimates the likely accuracy of the trained classifiers
- The Classification module
 - Allows to classify yet unclassified data by using the trained classifiers
- The Validation module
 - Allows the user to manually check the most uncertain class assignments
- The Training Data Cleaning module
 - Allows the user to check the training documents most likely to be misclassified
- The Proactive Learning module
 - Allows the user to manually check the automatically classified documents most beneficial to retraining

- The Classifier Training module
 - Allows to train classifiers, given a classification scheme and a training set of documents
- The Accuracy Estimation module
 - Estimates the likely accuracy of the trained classifiers
- The Classification module
 - Allows to classify yet unclassified data by using the trained classifiers
- The Validation module
 - Allows the user to manually check the most uncertain class assignments
- The Training Data Cleaning module
 - Allows the user to check the training documents most likely to be misclassified
- The Proactive Learning module
 - Allows the user to manually check the automatically classified documents most beneficial to retraining

- The Classifier Training module
 - Allows to train classifiers, given a classification scheme and a training set of documents
- The Accuracy Estimation module
 - Estimates the likely accuracy of the trained classifiers
- The Classification module
 - Allows to classify yet unclassified data by using the trained classifiers
- The Validation module
 - Allows the user to manually check the most uncertain class assignments
- The Training Data Cleaning module
 - Allows the user to check the training documents most likely to be misclassified
- The Proactive Learning module
 - Allows the user to manually check the automatically classified documents most beneficial to retraining

- The Classifier Training module
 - Allows to train classifiers, given a classification scheme and a training set of documents
- The Accuracy Estimation module
 - Estimates the likely accuracy of the trained classifiers
- The Classification module
 - Allows to classify yet unclassified data by using the trained classifiers
- The Validation module
 - Allows the user to manually check the most uncertain class assignments
- The Training Data Cleaning module
 - Allows the user to check the training documents most likely to be misclassified
- The Proactive Learning module
 - Allows the user to manually check the automatically classified documents most beneficial to retraining

- The Classifier Training module
 - Allows to train classifiers, given a classification scheme and a training set of documents
- The Accuracy Estimation module
 - Estimates the likely accuracy of the trained classifiers
- The Classification module
 - Allows to classify yet unclassified data by using the trained classifiers
- The Validation module
 - Allows the user to manually check the most uncertain class assignments
- The Training Data Cleaning module
 - Allows the user to check the training documents most likely to be misclassified
- The Proactive Learning module
 - Allows the user to manually check the automatically classified documents most beneficial to retraining

Outline

1 Introduction to ATC

2 The Machine Learning approach to ATC

3 Effectiveness and Efficiency

What next?

Effectiveness and Efficiency

- Scientific research on ATC thoroughly investigates issues of effectiveness (i.e., classification accuracy) and efficiency (i.e., training and classification speed) via controlled experiments on publicly available datasets of manually classified data;
- Often used datasets, ranging from small to very large:

Dataset	Type of	# of	# of	# of
	documents	classes	training docs	test docs
Reuters-21578	Newswire	115	9,604	3,299
WIPO-Alpha	Patents	614	46,324	28,926
OHSUMED	Scientific	97	183,229	50,216
Yahoo! Directory	Web	132,199	492,617	275,364
RCV1-v2	Newswire	101	23,149	781,265

Effectiveness Issues

- Effectiveness is tested by training a classifier on a set of training documents, applying it to the test documents, and checking the degree of correspondence between the results and the original, manually attributed classes.
- Standard mathematical measures have been defined (e.g., F_1) that reward both
 - the ability of the classifier to avoid false positives (precision)
 - the ability of the classifier to avoid false negatives (recall)
- Today's technology allows to obtain, e.g., on Reuters-21578,
 - *F*₁ ≥ 0.87, as an average across all 115 classes (from 1 to 3,200+ training examples per class);
 - $F_1 \ge 0.93$, as an average across the 10 most frequent classes (from 300 to 3,200+ training examples per class).
- Accuracy depends on many factors, including number of positive training documents per class, average document length, and intrinsic class "difficulty".

Efficiency Issues

- Efficiency is tested by recording training times and classification times on a given dataset.
- Classification time is usually regarded as more important than training time, since
 - training can be performed off-line;
 - training is performed once for all.
- Both training times and classification times are usually not a problem, given today's hardware; e.g., on our systems
 - training on 1,000 documents for a 20-class classification scheme takes less than 2 mins;
 - classifying 100,000 documents for a 20-class classification scheme takes less than 8 mins.
- Both training and testing are much quicker when the classification scheme is organized hierarchically.

Outline

1 Introduction to ATC

2 The Machine Learning approach to ATC

3 Effectiveness and Efficiency

What next?

Active areas of scientific research currently include

- Semi-supervised learning
 - Allowing classifiers to be trained via a mixture of classified and unclassified documents
- Very large scale (hierarchical) classification
 - Keeping training and classification efficient in the face of very large classification schemes / training sets / sets of documents to classify
- Quantification
 - Optimizing classifiers for class prevalence estimation

Thanks for your attention!

What next?

Bibliographic references

S. Chakrabarti, B. E. Dom, and P. Indyk.

Enhanced hypertext categorization using hyperlinks.

In Proceedings of the 24th ACM International Conference on Management of Data (SIGMOD 1998), pages 307–318, Seattle, US, 1998.

N. Fuhr and G. Knorz.

Retrieval test evaluation of a rule-based automated indexing (AIR/PHYS).

In Proceedings of the 7th ACM International Conference on Research and Development in Information Retrieval (SIGIR 1984), pages 391–408, Cambridge, UK, 1984.

P. J. Hayes, L. E. Knecht, and M. J. Cellio.

A news story categorization system.

In Proceedings of the 2nd Conference on Applied Natural Language Processing (ANLP 1988), pages 9–17, Austin, US, 1988.

T. Joachims.

Text categorization with support vector machines: Learning with many relevant features. In *Proceedings of the 10th European Conference on Machine Learning (ECML 1998)*, pages 137–142, Chemnitz, DE, 1998.

D. D. Lewis.

An evaluation of phrasal and clustered representations on a text categorization task.

In Proceedings of the 15th ACM International Conference on Research and Development in Information Retrieval (SIGIR 1992), pages 37–50, Copenhagen, DK, 1992.

M. Maron.

Automatic indexing: an experimental inquiry.

Journal of the Association for Computing Machinery, 8(3):404-417, 1961.

B. Masand, G. Linoff, and D. Waltz.

What next?

Classifying news stories using memory-based reasoning.

In Proceedings of the 15th ACM International Conference on Research and Development in Information Retrieval (SIGIR 1992), pages 59–65, Copenhagen, DK, 1992.

R. E. Schapire, Y. Singer, and A. Singhal.

Boosting and Rocchio applied to text filtering.

In Proceedings of the 21st ACM International Conference on Research and Development in Information Retrieval (SIGIR 1998), pages 215–223, Melbourne, AU, 1998.

F. Sebastiani.

Machine learning in automated text categorization.

ACM Computing Surveys, 34(1):1–47, 2002.

F. Sebastiani.

Classification of text, automatic.

In K. Brown, editor, *The Encyclopedia of Language and Linguistics*, volume 2, pages 457–463. Elsevier Science Publishers, Amsterdam, NL, second edition, 2006.

P. Turney.

Thumbs up or thumbs down? Semantic orientation applied to unsupervised classification of reviews. In *Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics (ACL 2002)*, pages 417–424, Philadelphia, US, 2002.

E. D. Wiener, J. O. Pedersen, and A. S. Weigend.

A neural network approach to topic spotting.

In Proceedings of the 4th Annual Symposium on Document Analysis and Information Retrieval (SDAIR 1995), pages 317–332, Las Vegas, US, 1995.

Y. Yang and C. G. Chute.

A linear least squares fit mapping method for information retrieval from natural language texts. In *Proceedings of the 14th International Conference on Computational Linguistics (COLING 1992)*, pages 447–453, Nantes, FR, 1992.