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Introduction to ATC

o (Automated) Text Classification (ATC): building software systems that assign
classes from a predefined classification scheme to textual documents [9, 10]

@ Discipline at the crossroads of several fields in computer science, including

e machine learning
e information retrieval
e computational linguistics / natural language processing

@ Synonyms:
o Text Classification — text categorization, text coding, document classification,
o Classification Scheme — category set, codeframe, codebook, controlled

vocabulary, ...
o Classes — categories, codes, index terms, ...
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Introduction to ATC (cont'd)

Several variants of ATC have been addressed in the scientific literature:

@ according to cardinality:
e binary or multi-class (“how many classes are there in the classification

scheme?”)
o single-label or multi-label (“how many classes may be attributed to the same

text?")
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Introduction to ATC (cont'd)

Several variants of ATC have been addressed in the scientific literature:

@ according to cardinality:

e binary or multi-class (“how many classes are there in the classification
scheme?”)

o single-label or multi-label (“how many classes may be attributed to the same
text?")

@ according to structure of the classification scheme:

o flat or hierarchical,

o nominal or ordinal (“is there a linear order defined on the classification
scheme?")

e universal or specific;
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Introduction to ATC (cont'd)

Several variants of ATC have been addressed in the scientific literature:

@ according to cardinality:

e binary or multi-class (“how many classes are there in the classification
scheme?”)

o single-label or multi-label (“how many classes may be attributed to the same
text?")

@ according to structure of the classification scheme:

o flat or hierarchical,

o nominal or ordinal (“is there a linear order defined on the classification
scheme?")

e universal or specific;

@ according to dimension:

e by topic

e by sentiment
o by genre

e by author
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ing approach to ATC

The Machine Learning approach to ATC

@ Early '90s: switch from the “knowledge engineering” to the “machine
learning” approach to text classification;

@ The learning metaphor: the system learns from a sample of manually
classified texts (the training set) the characteristics a new text should have in

order to be attributed a given class;
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@ Early '90s: switch from the “knowledge engineering” to the “machine
learning” approach to text classification;

@ The learning metaphor: the system learns from a sample of manually
classified texts (the training set) the characteristics a new text should have in
order to be attributed a given class;

@ The training set needs to include positive examples of the class and negative
examples of the class;

e Training works by detecting linguistic patterns (e.g., words, word n-grams,
noun phrases, syntactic patterns, etc.) that are distributed most differently in
the positive and in the negative training examples;
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Early '90s: switch from the “knowledge engineering” to the “machine
learning” approach to text classification;

The learning metaphor: the system learns from a sample of manually
classified texts (the training set) the characteristics a new text should have in
order to be attributed a given class;

The training set needs to include positive examples of the class and negative
examples of the class;

Training works by detecting linguistic patterns (e.g., words, word n-grams,
noun phrases, syntactic patterns, etc.) that are distributed most differently in
the positive and in the negative training examples;

Providing manually classified examples of the class to the system is by no
means different than providing a child with (positive and negative) examples
of, say, what a tiger is, in order to teach him to recognize tigers.
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The Machine Learning approach to ATC

This is another tiger!
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The Machine Learning approach to ATC

This is yet another tiger!
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Also a tiger!
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The Machine Learning approach to ATC

This is a NOT a tiger!
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The Machine Learning approach to ATC

NOT a tiger either!
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The Machine Learning approach to ATC

Is this a tiger?
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ing approach to ATC

Advantages of the machine learning approach

@ No need to manually write classification rules; the system only needs manually
classified examples for training, which in some cases may already be available;

o Easy update to

o revised classification scheme
o brand new classification scheme

since the system only needs user-classified examples for training that reflect
the new situation;

@ No need of specialized / domain-dependent dictionaries;

@ State-of-the-art accuracy, excellent learning and classification speed;

@ Possibility to provide feedback to the system, thus allowing it to implement
continuous learning.
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The ATC Ecosystem

@ The Classifier Training module

o Allows to train classifiers, given a classification scheme and a training set of
documents
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The ATC Ecosystem

@ The Classifier Training module
o Allows to train classifiers, given a classification scheme and a training set of

documents

@ The Accuracy Estimation module
o Estimates the likely accuracy of the trained classifiers
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The ATC Ecosystem

@ The Classifier Training module
o Allows to train classifiers, given a classification scheme and a training set of

documents

@ The Accuracy Estimation module
o Estimates the likely accuracy of the trained classifiers

@ The Classification module
o Allows to classify yet unclassified data by using the trained classifiers
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The Machine Learning approach to ATC

The ATC Ecosystem

@ The Classifier Training module
o Allows to train classifiers, given a classification scheme and a training set of

documents

@ The Accuracy Estimation module
o Estimates the likely accuracy of the trained classifiers

@ The Classification module
o Allows to classify yet unclassified data by using the trained classifiers

@ The Validation module

o Allows the user to manually check the most uncertain class assignments
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The ATC Ecosystem

@ The Classifier Training module
o Allows to train classifiers, given a classification scheme and a training set of
documents

@ The Accuracy Estimation module

o Estimates the likely accuracy of the trained classifiers

@ The Classification module
o Allows to classify yet unclassified data by using the trained classifiers

@ The Validation module

o Allows the user to manually check the most uncertain class assignments

@ The Training Data Cleaning module
o Allows the user to check the training documents most likely to be misclassified
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The ATC Ecosystem

@ The Classifier Training module
o Allows to train classifiers, given a classification scheme and a training set of
documents
@ The Accuracy Estimation module

o Estimates the likely accuracy of the trained classifiers

@ The Classification module
o Allows to classify yet unclassified data by using the trained classifiers

@ The Validation module

o Allows the user to manually check the most uncertain class assignments

@ The Training Data Cleaning module
o Allows the user to check the training documents most likely to be misclassified

@ The Proactive Learning module

o Allows the user to manually check the automatically classified documents
most beneficial to retraining
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Effectiveness and Efficiency

Effectiveness and Efficiency

@ Scientific research on ATC thoroughly investigates issues of effectiveness (i.e.,
classification accuracy) and efficiency (i.e., training and classification speed)
via controlled experiments on publicly available datasets of manually
classified data;

o Often used datasets, ranging from small to very large:

Dataset Type of # of # of # of
documents | classes | training docs | test docs

Reuters-21578 Newswire 115 9,604 3,299
WIPO-Alpha Patents 614 46,324 28,926
OHSUMED Scientific 97 183,229 50,216
Yahoo! Directory Web 132,199 492,617 275,364
RCV1-v2 Newswire 101 23,149 781,265
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Effectiveness and Efficiency

Effectiveness Issues

o Effectiveness is tested by training a classifier on a set of training documents,
applying it to the test documents, and checking the degree of correspondence
between the results and the original, manually attributed classes.

@ Standard mathematical measures have been defined (e.g., F1) that reward
both

o the ability of the classifier to avoid false positives (precision)
o the ability of the classifier to avoid false negatives (recall)

@ Today's technology allows to obtain, e.g., on Reuters-21578,

e F1 > 0.87, as an average across all 115 classes (from 1 to 3,200+ training
examples per class);

e F1 > 0.93, as an average across the 10 most frequent classes (from 300 to
3,200+ training examples per class).

@ Accuracy depends on many factors, including number of positive training
documents per class, average document length, and intrinsic class “difficulty”.
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Efficiency Issues

Efficiency is tested by recording training times and classification times on a
given dataset.

Classification time is usually regarded as more important than training time,
since

e training can be performed off-line;
e training is performed once for all.

Both training times and classification times are usually not a problem, given
today's hardware; e.g., on our systems
e training on 1,000 documents for a 20-class classification scheme takes less
than 2 mins;
e classifying 100,000 documents for a 20-class classification scheme takes less
than 8 mins.

Both training and testing are much quicker when the classification scheme is
organized hierarchically.
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What next?

Active areas of scientific research currently include

@ Semi-supervised learning

o Allowing classifiers to be trained via a mixture of classified and unclassified
documents

o Very large scale (hierarchical) classification

o Keeping training and classification efficient in the face of very large
classification schemes / training sets / sets of documents to classify

@ Quantification

e Optimizing classifiers for class prevalence estimation
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Thanks for your attention!
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