
Int. J. Metadata, Semantics and Ontologies, Vol. 0, No. 00, 2012 1

Deduplication of Aggregation Authority Files

P. Manghi

Istituto di Scienza e Tecnologie dell’Informazione “Alessandro Faedo”,
Consiglio Nazionale delle Ricerche, Pisa, Italy,
Fax: +39 050 315-3464,
E-mail: paolo.manghi@isti.cnr.it,
*Corresponding author

M. Mikulicic
Istituto di Scienza e Tecnologie dell’Informazione “Alessandro Faedo”,
Consiglio Nazionale delle Ricerche, Pisa, Italy,
Fax: +39 050 315-3464,
E-mail: marko.mikulicic@isti.cnr.it

C. Atzori
Istituto di Scienza e Tecnologie dell’Informazione “Alessandro Faedo”,
Consiglio Nazionale delle Ricerche, Pisa, Italy,
Fax: +39 050 315-3464,
E-mail: claudio.atzori@isti.cnr.it

Abstract:
This paper presents PACE (Programmable Authority Control Engine), an authority

control tool conceived to maintain “aggregation authority files”. These are obtained as
continuous aggregations of records originating from a variable set of information systems
with heterogeneous and duplicated content. To facilitate record deduplication in the
presence of such heterogeneity and dynamicity, PACE user interfaces enable an iterative
curation process, where data curators can: (i) configure algorithms for the identification of
record duplicates; (ii) open work sessions where algorithm configurations can be run and
evaluated; (iii) merge the identified record duplicates to disambiguate the authority file,
and (iv) repeat this cycle several times. PACE supports a tunable probabilistic similarity
measure and performs record matching with a customizable variation of the sorted
neighborhood heuristic. Finally, it addresses the underlying performance and scalability
issues by exploiting multi-core parallel processing and Cassandra’s storage systems, to
support I/O performances that scale up linearly with the number of records.

Keywords: authority control; record deduplication; record merge; record aggregations;
sorted neighborhood; candidate identification; performance; scalability; Cassandra.

Biographical notes:
Paolo Manghi received his PhD in the year 2002 from the Dipartimento di Informatica
of the University of Pisa, Italy. He is presently working as a researcher at the Istituto
di Scienza e Tecnologie dell’Informazione “Alessandro Faedo”, Consiglio Nazionale
delle Ricerche (CNR) of Pisa, Italy. His research interest include Data Models for
Digital Library Management Systems, Types for Compound Objects, data curation in
Digital Libraries, service-oriented ICT infrastructures with special focus on data ICT
infrastructures.

Marko Mikulicic received his bachelor degree in Computer Science in the year 2002
at the SUPSI, Switzerland. He works as technical research fellow at the Istituto di
Scienza e Tecnologie dell’Informazione “Alessandro Faedo”, Consiglio Nazionale delle
Ricerche (CNR) of Pisa, Italy. His research interest includes data modeling and
development of Digital Library Management Systems, system administration of research
infrastructures, and design and development of service-oriented architecture middleware
for data infrastructures.

Claudio Atzori received his master degree in Tecnologie Informatiche in the year
2009 at the Universitá degli studi di Cagliari, Italy. He works as graduate fellow
at the Istituto di Scienza e Tecnologie dell’Informazione “Alessandro Faedo” (ISTI),
at the National Research Council. His working scope include Digital Library
Management Systems, Service-oriented Data Infrastructures, and NoSQL data models.

Copyright c© 2009 Inderscience Enterprises Ltd.

2 P. Manghi et al.

1 Introduction

Authority control is the combination of software
resources and human actions required to maintain
authority files, which are lists of authoritative records
uniquely and unambiguously describing corresponding
sets of entities in an information system (Tillett, 2003).
In the library world, traditional examples of such lists
are authors of publications or publications themselves.

Authority control is essential to provide information
systems with certified digital representations for
entities and thus leverage exact references, search and
browse functionalities. It is a data curation process,
whose goal is to addresses two important aspects of
information representation: entity deduplication and
entity association. Deduplication is the action of making
sure that distinct records, with different identifiers,
indeed represent different entities. Association is the
action of linking different records to indicate they are
“variations” of the same entities, e.g., two author names
are pseudonyms of the same person. The function of
authority files is more organizational than informational,
that is they contain the minimal information required to
disambiguate and associate entities and do not generally
include information useful for other purposes, such as
end-user reading.

Managing authority files is typically a semi-automatic
process, which requires significant human effort and
technology cost (to the point that the trade-off with
the benefits is often a valid debate). It is a continuous
process, whose quality is affected by the expertise
of the data curators, e.g., librarians for catalogues,
as well as by the overall evolution of knowledge
in the field of application. The curation process is
supported by authority control tools, which typically
provide for record matching algorithms that are both
effective, to maximize precision and recall, and efficient,
to optimize performance over arbitrary numbers of
records. In general, no “best matching algorithm” can
be found since different authority files bear structures
and semantics which require dedicated solutions. As
a consequence, such tools should also allow for an
easy-to-use degree of customization of the record
matching algorithms (e.g., record matching heuristics,
similarity functions, and their parameters), in order to
be applicable in different contexts.

Today’s multidisciplinary and international society
is characterized by a strong will to share knowledge
and information and is facilitated in this task by a
number of standard APIs and formats. Known examples
of these are: Linked Data (http://linkeddata.org),
which defines an open standard to expose information
through RDF graphs, and the Open Archives Initiative
protocols: OAI-PMH (Lagoze and Van de Sompel, 2001)
(Carl Lagoze and Herbert Van de Sompel, 2003) and
OAI-ORE (Lagoze and Van de Sompel), which define
APIs and formats to access digital knowledge bulk-
wise, as “sets of metadata records”, or point-wise, as
“web aggregations”. In a scenario of accessible data

sources, it is often the case that data spread across
several information systems needs to be aggregated
to become one unambiguous source of information.
In this direction, several attempts to construct and
maintain in synergy authority files about people or
other kinds of entities have been made worldwide
(Tillett, 2003). Among the most known initiatives is
VIAF (Virtual International Authority File) (Rick
et al., 2007), LEAF (Linking and Exploring Authority
Files) (Weber, 2003), the Digital Author Identifier
(DAI, http://www.narcis.nl), and the projects OCLC-
CORC (Connexion, http://www.oclc.org/connexion),
NACO and SACO (Cornell University Library,
http://www.loc.gov/catdir/pcc/naco/naco.html), which
investigated solutions on how to tackle authority control
on global scale.

Many of such initiatives need to maintain aggregation
authority files, obtained by integrating records originated
from several information sources. Such files are
characterized by sheer number of records (e.g., up to
tens of millions), semantic and context heterogeneity of
the incoming records, the “short” authoritative values
that these generally contain (e.g., name, surname, date
of birth for people), frequent bulk records updates, and
possibly high rates of duplicates. Frequent updates and
heterogeneous record semantics call for an “interactive”
and customizable authority control activity made of
cycles where data curators can tune and evaluate
several record matching strategies, and commit or roll-
back deduplication actions. To offer and interactive
experience, performance plays a crucial role. Duplicate
detection heuristics (e.g., record blocking/clustering
techniques) can reduce computational complexity by
reducing the number of matches, but may worsen
precision and recall due to the presence of false negatives
(Elmagarmid et al., 2007). On the other hand, heuristic
restrictions may be loosened thanks to the adoption
of adequate storage technologies, whose I/O rates and
indexing techniques are capable of coping with higher
number of records (i.e., disk reads) and duplicates (i.e.,
disk writes).

Authority tools capable of coping with aggregation
authority files must therefore include a front-
end supporting data curators with a framework
for record matching algorithm customization, and
a back-end capable of withstanding the level of
performance envisaged. In this paper we present the
architecture and the current implementation of PACE
(Programmable Authority Control Engine) authority
control tool, which extends the one presented in
(Manghi and Mikulicic, 2011). PACE is open source
and designed to address maintenance of aggregation
authority files. Its realization was made necessary
in real-case data infrastructures operated by the
European Commission projects European Film Gateway
(http://www.europeanfilmgateway.eu) and OpenAIRE
(http://www.openaire.eu), targeting aggregation of
movie data archives and institutional bibliographic
repositories. Both infrastructures required part of the

Deduplication of Aggregation Authority Files 3

aggregated data to become an authority file (persons and
movies for EFG, persons and bibliographic records for
OpenAIRE). To this aim, PACE is designed to support
a framework where record matching algorithms can be
easily customized, similarity functions plugged-in, and
authority files can be easily personalized, continuously
populated and curated with optimal performance and
no development effort.

PACE user interfaces deliver a framework where
data curators can create and maintain their authority
files. Its novelty is that curators can conduct continuos
actitivies of population, customization and evaluation
of record matching algorithms, commit of a set field-
grained record merges, and possibly roll-back to past
commits. Record matching is based on an variation of
the “sorted neighborhood” technique (Hernández and
Stolfo, 1995) aiming at improving recall by reducing the
number of false negatives. The complexity introduced by
the algorithm is compensated by PACE’s back-end. The
back end copes with storage and processing scalability of
high number of records, hence with the potentially high
I/O costs implied by sorting, reading, and writing million
of records, by relying on multi-core parallelism and
Cassandra’s storage technology (Lakshman and Malik,
2010). The back-end also exposes authority files to third-
party consuming systems through APIs delivering on
request authority file records or history changes.

Outline of the paper. The paper is organized as follows.
Section 2 introduces some nomenclature on authority
files and defines aggregation authority files. Section
3 details the main features behind authority control
tools, with references to existing solutions, pointing
out the lack of reusable and open source tools for
aggregative authority file control. Section 4 presents
functional requirements, data model, and architecture,
while Section 5.2 describes the implementation of
PACE and provides performance statistics. Section 6
compares PACE with other existing tools, to draw
the differences and highlights its peculiarities. Finally,
section 7 summarizes the paper outcomes and future
issues.

2 Aggregation Authority Files

Nowadays, the strong need of sharing information
across independent information systems, makes the
construction and maintenance of authority files more
and more important (Gorman, 2003). Moreover, such
files are not necessarily focused on people names
or publication titles as it was in traditional digital
library cataloguing settings, but can involve any set
of entities of an information system’s data model
(e.g., journal titles, research organizations, geographic
profiles, research subjects (Dalrymple and Young,
1991), biological species), as long as such set requires
deduplication to improve search precision and valid
references.

Aggregation authority files are a peculiar category
of authority files, urging from the multitude of
data aggregation initiatives worldwide, such as data
infrastructures or archive and institutional repository
federations (Artini et al., 2009). They are obtained
from the union and continuous integration of records
representing entities of the same conceptual class, i.e.,
with the same “structure”, originated from a dynamic
set of information systems which typically participate to
the authority file population in order to disambiguate
their corresponding class of entities or/and to align it
with others benefiting from the resulting aggregated and
deduplicated collection of entities.

In particular, information systems data models are
heterogeneous and may not necessarily contain entities
which exactly match the authority file entities. Typically,
systems feed the authority file with records respecting
the authority file structure but are generated from the
local database thanks to a structural and semantic
mapping from local entities to authority file entities.
The action may be straightforward, when a local class
of entities “subclasses” the authority file entities, or be
more complicated when the information systems have
no corresponding class of entities – this is the case
when authority file entities are obtained from properties
of other entities, for example consider person records
obtained from bibliographic records.

The peculiarity of aggregation authority files is
therefore due to the variegated characteristics of the
feeding information systems:

• Non-disambiguated records: records from the same
information system may have duplicates;

• Heterogeneous records: records from the same
information systems are not necessarily
semantically uniform;

• Alive records: data in the information systems
grows in time, hence new records are continuously
fed to the authority file;

• Non-uniform feeding of records: systems may be
able to feed the authority file “incrementally”,
which means only new records or changes to old
ones are transmitted, or by “refresh”, which means
only the whole record collection can be
transmitted;

• Systems volatility : systems may join and leave the
aggregation any time.

The dynamic and autonomous nature of information
systems severely limits the semantic assumptions that
can be generally done on the aggregation authority
files they feed and therefore affects the process of
record deduplication. Contextual information about
entities may be used to facilitate deduplication of
entities from the same information system or across
several systems whose records share similar contextual
semantics. Context information may be obtained by

4 P. Manghi et al.

querying an information system to extract information
from the entities which are linked (more generally,
“reachable from”) to the entities to be disambiguated.
Since information systems are fully autonomous and not
directly accessible from authority control tools, context
selection is delegated to the local systems and the
notion of context is modeled by enriching the authority
file structure with context fields. Their purpose is to
enrich the record structure with “flattened” encodings of
record’s context.

An aggregation authority file can be described as a
set of authority records conforming to a uniform flat
structure (l1 : K1, . . . , ln : Kn), where li is a field label
and Ki = (Ti,Mi, Ui) expresses the “kind” of the field in
terms of its type Ti (e.g., string, date, number, boolean),
its multiplicity Mi (i.e., [0 . . . 1], [1], [0 . . .m], [1 . . .m]),
and its usage Ui, namely an identifier, heading, context,
or explanation field:

Identifier field: each record must have one such field,
containing a code that uniquely identifies the
record within the authority file;

Heading fields: fields describing properties of the
entity represented by the record (e.g., for person
entities: name and date of birth; for publication
entities: language and script);

Context fields: fields capturing information about the
context of the entity in a given application scenario
(e.g., for person entities: list of own’s publication
titles; for publication entities: citation references
to other publication entities), aimed at enriching
the record with local context-disambiguating
information; one record may feature context fields
relative to different contexts;

Explanation fields: in some cases, for the sake of
cataloguing, it can be necessary to introduce
fields whose purpose is to hold information,
automatically or manually generated, aimed at
justifying the current content of the heading fields.
For example, why the name of an author is kept
in the form “D. Alighieri”, rather than “Dante
Alighieri”; this may be due to the original source
of the name, an article or book citation.

For example, an authority file for people entities may
have the following structure:

(personID: (number, [1], identifier),

firstName: (string, [1], heading),

lastName: (string, [1], heading),

birthDate: (date, [0...1], heading),

country: (string, [0...1], heading),

paperTitles: (string, [0...m], context),

source: (string, [0...1], explanation)

)

An authority record conforming to this structure may
be:

[personID: 123456789,

firstName: "Charlotte",

lastName: "Summann",

birthDate: 10/7/1939,

country: "CH",

paperTitles:

{"First order logics of ants",

"Squirrels: the dawn of mathematics"},

source: "information system XYZ"

]

In some cases, authority control also keeps track
of semantic relationships between deduplicated records
to determine the “degree of disambiguation” between
them. Examples are: “equivalence” relationships, which
link an authority record with another record that
is not authoritative, but whose content is a valid
alternative to the authoritative record (e.g., records
relative to pseudonyms of a given author); “deprecation”
relationships, which link an authority record with the
records that have been deprecated in favor of the former
because of merge actions. Depending on the application
domain’s context, other types of relationships may be
introduced.

3 Authority Control Tools for Aggregation
Authority

Authority control is an activity operated by a group
of expert data curators, whose task is to ensure
disambiguation of the set of records by avoiding
and resolving record duplication, which is when two
records represent the same entity. Duplication issues
are addressed by merging (also referred as deduping)
actions, whose consequences are to collapse the two
records into one. The average cardinality of authority
files and the rather machine-only-detectable reasons
which may indicate the need for merging two records,
make authority control a task impossible for humans
without adequate technological support.

Authority control tools are systems supporting a
group of data curators with automatic candidate
identification techniques capable of efficiently spotting
record pairs candidate for merging in authority files
of arbitrary dimension (Winkler, 2006). Candidate
identification techniques are based on two main concepts:
(i) similarity functions, which return a 0 . . . 1 similarity
distance measure between two records (with 1 they are
equal), and (ii) record matching algorithms, which cope
with the optimization of otherwise O(n2) complexity
required to compare all pairs in a collection of n records.
Such techniques are delivered to data curators through
user interfaces for managing authority files (i.e., creating,
updating, and deleting authority files and their records)
and drafting newer and more disambiguated versions
(i.e., configuring and running candidate identification
processes, record merging, and commit new versions).
Finally, authority control tools may support third-party

Deduplication of Aggregation Authority Files 5

information systems with APIs for consuming a version
of an authority file.

In the following we shall present the main functional
requirements which authority file tools designed to
maintain aggregation authority files should address. In
particular, we focus on record candidate identification
and management and drafting of authority files.

3.1 Candidate Identification

Candidate record pairs are those who might allegedly
entail merge actions. Typically two records are regarded
as candidates for merging if some “similarity function”
0 ≤ FS ≤ 1 calculated over the fields of the two goes
beyond a given threshold; the action is also called record
linkage (Winkler, 2006), object identification (Tejada
et al., 2001), and entity resolution (Benjelloun et al.,
2005).

Designers and implementers of candidate
identification techniques must face two main challenges,
efficacy and efficiency (Koepcke and Rahm, 2010):

Effectiveness: identification of record matching
algorithms and similarity functions which at
best capture record pairs candidate for merging,
thereby maximizing recall and precision;

Efficiency: adoption of record matching algorithms
tackling the inherent O(n2) complexity of record
matching phase and implementing such algorithms
based on storage solutions tailored to address the
specific I/O issues raised by such algorithms.

Similarity functions. The similarity measure of two
records is a function FS that calculates the “distance”
between the two, i.e., the likelihood for these records
of being mistakenly used to represent two distinct
entities while they are instead representing the same one.
Approaches split in “deterministic” ones, i.e., yes/no
rule-based detection of duplicates, or “probabilistic”
ones, where a “similarity measure” is assigned to
each pair of records, quantifying their likelihood of
duplication (Elmagarmid et al., 2007).

In the context of aggregation authority files,
where field values are generally information-poor,
the probabilistic approach is more appropriate. The
similarity function of two records is often obtained by
combining record field similarity functions associated to
the record heading and context fields and depending
on their value domains, be them dates, person names,
subjects, etc. Examples of record field similarity
functions are string-based functions focusing on variants
of the “typographical error” problem (e.g., Jaro-Winkler
(Winkler, 1990), Cohen’s variants of the TFIDF metrics
(Cohen et al., 2003), Edit distance, Biagram distance)
or the “person name and address matching” problem
(Christen and Zhu, 2002) (Churches et al., 2002).
Other methods focus on special cases of the problem,
such as identifying short texts duplicates (SimFinder
(Gong et al., 2008)); when richer textual information

is available, near-duplicate functions, typically used
for documents and web pages duplicates (SimHash
(Charikar, 2002), (Manku et al., 2007)) can be used.

Record matching techniques. The complexity upper
bound for the identification of all possible candidate
record pairs is O(n2), where n is the number of records in
the authority file. Ideally, the function FS is calculated
over all possible record pairs and the results are then
sorted in descending ordering by distance, to let the best
hits surface. Due to the amount of records involved in
aggregation authority files, possibly scaling up to tens of
millions, and the potentially high number of duplicates,
the time for such calculation as well as the time for
the subsequent storage and sorting of all pairs might
be unacceptable and thus hinder a smooth authority
file management life-cycle, made of frequent cycles of
candidate identification. The technical challenge is dual:
(i) finding methods and algorithms capable of reducing
complexity while identifying candidates with minimal
false positive/negatives, and (ii) deliver implementations
capable of scaling up with the number of records and
the I/O costs needed for reading, writing, and sorting by
well balancing between RAM and disk operations.

Two main categories of methods and algorithms
have been proposed. The first one includes “clustering”
techniques, where authority file records are grouped
based on some common pattern which may pre-
suggest them as candidates for merges. The candidate
identification process is then applied to the clusters,
thereby reducing the overall complexity. Examples of this
are blocking (Jaro, 1989), Sliding Window (also called
Sorted Neighborhood) (Hernández and Stolfo, 1995),
Canopy Clustering (Cohen and Richman, 2002), Bigram
Indexing (Christen and Pudjijono, 2009), and R-Swoosh
(Benjelloun et al., 2005). All such approaches decrease
the complexity, but may bring in a loss of recall and
precision due to the likelihood that true candidate record
pairs have been excluded from the matching.

The second category includes approaches based on
similarity function properties, assumptions to be made
on the domains of the authority file record fields (e.g.,
vocabularies, common terms), or the data distribution
that these may feature. Based on such properties and
assumptions, record matching algorithms can avoid
classes of string comparisons, thereby reducing the
computational cost of the process. Examples are Text
Joins (Gravano et al., 2003), Fuzzy Match (Chaudhuri
et al., 2003), and the Comparison Store (Gómez-Bao
et al., 2009).

Being dependent on application domain
preconditions, approaches in the second category tend
to be not applicable to handle aggregation authority
files where such assumptions are often not possible.
Vice versa, approaches in the first category are
generally effective, if delivered to data curators together
with interfaces for customizing both record matching
algorithms and similarity functions. In any case,
regardless of the theoretical complexity, implementing

6 P. Manghi et al.

such approaches requires choosing the adequate storage
technology, in order to offer input and output rates in
line with the expected usage of the authority control
activities at hand. Dedicated indexing structures,
distributed databases, sorted storage techniques, multi-
core parallel processing, are examples of solutions in
this context.

3.2 Authority File Management

Aggregation authority files are characterized by
frequent bulk record updates of highly semantically
heterogeneous records. This is due to the lively and
heterogeneous nature of the information systems feeding
the file and to the fact that systems may join or
leave the aggregation in any moment. This leads to a
“chronically” heterogeneous federation, where not only
information systems may not share common semantics,
but new unpredictable semantics may be introduced
whenever new systems join in. As a consequence, the
process of candidate identification cannot rely on stable
similarity functions nor record matching algorithms. The
overall candidate identification process is affected by the
semantics of the information systems currently feeding
the records and how this relates with the semantics
established for the authority file.

To cope with these issues, authority control tools
must provide data curators with highly configurable user
interfaces easing the process of management and drafting
of authority files. On the one hand, such interfaces must
provide and intuitive level of abstraction over low-level
record matching and similarity functions configuration.
On the other hand, they must enable an interactive
behavior, with which data curators can experiment
with several candidate identification configurations in
temporary work sessions before effectively applying
and committing record merges. More generally, we can
envisage that authority control tools for aggregation
authority files should cover the following functionality:
customizability, drafting, and third-party consumption
– see (Koepcke and Rahm, 2010) for a summary of
deduplication and record linkage functionalities.

Customizability. Authority file tools can be used for
maintenance of authority files of different structures
and semantics, where effectiveness and efficacy require
different similarity functions, different parameters for
both such functions and the record matching algorithms
they adopt. To this aim, tools should provide easy-to-
use user interfaces, through which data curators can
create their authority files by specifying record structure
(i.e., identifier, heading, context, explanation fields) and
record semantics (i.e., value domain of each field).
Moreover, data curators must be able to personalize
their candidate identification process by configuring
record matching algorithms and similarity functions with
minimal or none development effort.

Drafting. As illustrated in Figure 1, authority file tools
enable drafting of new versions of authority files in
temporary work sessions. Within a work session, as
shown in Figure 2, data curators can perform a number
of actions, which may include addition, deletion, update,
and bulk-feed of records. Most importantly, they can
iteratively run candidate identification processes relative
to different configurations, to grow a list of candidates
under different perspectives, and possibly apply field-
grained merge actions. Indeed, merges may not be
limited to the choice of the predominant record out
of a candidate pair, but also offer the possibility of
selecting which field-value pairs of the two records should
be included in the predominant record. When satisfied,
experts may decide to commit the work session, that is
to make the changes authoritative and generate a new
version of the authority file.

Figure 1 Opening, committing, and rolling-back work
sessions

Some tools keep track of the actions performed
since the last commit, in order to support roll-back
of committed authority files, incremental consumption
(as described below), and automatic deduplication.
The latter is a useful and fundamental optimization,
which consists in automatically applying merging actions
relative to candidate record pairs which had been
previously committed by data curators. This is often
the case when information systems can only feed the
authority file in “refresh mode” (see Section 2). Without
adequate logging support, authority file administrators
would be faced, at every information system refresh, with
the same candidate list to be merged.

On the other hand, as mentioned in the introduction,
some information systems may feed records who do
not carry unique identifiers or, more generally, cannot
guarantee the persistence of the identifiers they provide.
The absence of persistent identifiers makes it impossible
to log administrator’s merging actions. In such cases,
the solution is often to create identifiers from record
field values through hash functions and the challenge
is to identify sufficient contextual information to

Deduplication of Aggregation Authority Files 7

make this identifier effectively unique, hence usable to
automatically detect and repeat merge actions.

Figure 2 Iterative maintenance process within a work
session

Some authority file tools support self-tuning
techniques, capable of learning from data curator
behavior and from the actual content of records (e.g.,
training sets) to automatically refine the configuration
of record matching algorithms and/or similarity
functions. Examples of systems providing for self-tuning
techniques are STEM (Self Tuning Entity Matching)
(Koepcke et al., 2008) and Febrl (Freely Extensible
Biomedical Record Linkage) (Christen, 2008). Due to the
heterogeneity and dynamicity of aggregation authority
files, such techniques do not apply very well in this
context, where assumptions on the record semantics or
distribution and typologies of the errors that led to
record duplication are hard to make.

Consumption. Aggregation authority files are formed
so as to be used by third-party systems to synchronize
and align to a common semantics. As such, the relative
maintenance tools should implement APIs to support
and facilitate third-party system access. Ideally, two
access modalities may be envisaged: in-full, i.e., fetching
the full authority file as available at a given commit time,
or incrementally, i.e., by fetching the actions executed
after a given commit time. Some authority tools may
offer on-demand candidate identification functionalities,
through which third-party systems may request the list
of matching (when logs about committed merges are
kept) or candidate authority records relative to an input
list of records.

4 PACE (Programmable Authority Control
Engine)

In this section we present PACE (Programmable
Authority Control Engine), an open source authority
control tool designed to offer out-of-the-box and fully-
fledged authority file management functionality. The
realization of the tool was motivated by the real-
case data infrastructures resulting from the European
Film Gateway project and the OpenAIRE plus project,
where large aggregation authority files of people, movie,
and bibliographic records had to be maintained. PACE
has been designed to offer the functionalities described
in Section 3, as such, it leaves administrators the
ability to customize (the structure and semantics of)
their authority files, configure their preferred candidate
identification settings, and enable an interactive and
iterative curation life-cycle. In the following, we shall
describe the data model behind PACE, together with the
management, drafting, and consumption functionality it
implements. Secondly, we shall illustrate the candidate
identification process at the core of PACE, that is the
record matching algorithms and the similarity function
it provides.

4.1 Management of authority files

PACE introduces two levels of drafting, reflected by the
conceptual data model depicted in Figure 3. On the
first level, data curators (i.e., owners) can create one
or more authority files and grant to a set of colleagues
(i.e., administrators) the right to curate such files. In
particular, given an authority file, administrators can
define one or more candidate identification configurations
to be used to identify possible record merges.

Figure 3 Conceptual data model

On the second level, that is the context of work
sessions, administrators of one authority file can apply
the actions illustrated in Figure 1 and Figure 2. They

8 P. Manghi et al.

can open multiple work sessions, each associated to a
given candidate identification configuration. In a work
session they can draft a new version of the authority file
by adding, deleting, updating and bulk-feeding records.
They can run the candidate identification configuration
over the authoritative records, visualize the candidate
list (Figure 4), and perform merge actions (Figure 5). In
PACE, merge actions do not simply consist in identifying
which authoritative record of a candidate pair will be
deprecated. Precisely, as reflected by the data model in
Figure 3, merge actions cause one record of a candidate
pair to “prevale” over the other in two possible ways:

• Duplicate merge: the records are effectively
redundant representations of the same entity,
hence one record becomes authoritative while the
other becomes non-authoritative, i.e., deprecated
(see Figure 3); a semantic relationship
“duplicateOf” is created between the two.

• Alternative merge: the records are different and
valid representations of the same entity (e.g., the
author’s pseudonym and the author’d name),
hence they are both considered authoritative, but
one of the two becomes the primary record, while
the other the alternative record; a semantic
relationship “alternativeOf” is created between the
two: if the new primary record was alternative of
an existing primary record, the relationship is
created between the new alternative record and
the existing primary record; if the new alternative
record was primary of existing alternative records,
then these and the new alternative record will
point to the new primary record. As a result,
“alternativeOf” relationships define clusters of
alternative records equivalent to one primary
record.

In addition, if the records are to be merged as
duplicates, data curators can select which field-value
pairs of the non-authoritative record must be added to
the authoritative record and which fields-value pairs of
the authoritative record are to be removed (see figure 5);

Merge actions cause the authority file to temporarily
change and shape up into a new list of primary or
alternative authoritative records. When a session is
committed (i) all open sessions are canceled, (ii) all
actions executed in the session are applied to the
last committed authority file, and (iii) the actions
are persisted into the authority file log. Optionally,
committing a session may require the approval of a
minimal quorum of the data curators in charge of the
authority file (“voting mode”). As described in Section
3, action logs keep track of all actions executed on
committed sessions and by whom, thereby enabling
incremental consumption, automatic re-deduplicaiton,
and rolling back the status of a committed authority
file to a past committed version. In particular, logs
model actions by tracking the following information:
time-stamp (time of commit), work session identifier,

administrator identifier (responsible of the action),
type of merge (duplicate or alternative), prevailing
record identifier, secondary record identifier, identifiers
of added field-value pairs, and identifiers of removed
field-value pairs. Addition, update, and removal actions
are modeled as distinct log entries, which keep track
of time-stamp, work session identifier, administrator
identifier, type of action (add, update, delete), and
specific parameters of the action.

Finally, PACE implements and exposes APIs for
(authorized) third-party consumers to access authority
files of interest. Authority files (referred by a unique
identifier) can be accessed in two modalities: full access,
i.e., the list of records at a given commit time t, and
incremental access, i.e., the list of actions committed
after commit time t, obtained by accessing the relative
logs. The list of records can be exported in XML
custom format or RDF formats, e.g., Linked Data’s
(http://linkeddata.org). The list of changes are exported
as an XML file or as a text file.

4.2 Candidate identification

PACE implements user interfaces for data curators to
create and thus become owners of authority files, by
providing a name, a description and providing the
flat record structure (l1 : K1, . . . , ln : Kn), as defined in
Section 2. Owners can give the permission to maintain
files they own to a number of administrator users,
which can manage a set of candidate identification
configurations for such files and operate maintenance
actions over them. PACE implements a record matching
algorithm based on an iterative application of the “sorted
neighborhood” (Hernández and Stolfo, 1995) heuristic
and adopts a notion of probabilistic record similarity.
Configurations consist in the definition of parameters
required to configure the record matching algorithm and
the parameters needed to define the similarity function.

Similarity function. In PACE, given two records r1 and
r2 of an authority file with structure (l1 : K1, . . . , ln :
Kn), their similarity function FS(r1, r2) is defined as the
weighted mean:

FS(r1, r2) =

n∑
i=1

(fi(r1.li, r2.li) ∗ wi)/

n∑
i=1

wi

where 0 ≤ fi ≤ 1 and
∑n

i=1 wi = 1 are respectively the
field similarity functions and the weights w.r.t. to each
li.

FS(r1, r2) is therefore the result of combining a set of
similarity measures, calculated over one or more record
fields and possibly with different weights, assigned by
data curators to reflect the impact of one field over the
others. For example person names may be regarded as
more important than birth dates when trying to identify
candidates in a person authority file, but similarity
measures for both fields may be considered to establish
the overall similarity of two person records.

Deduplication of Aggregation Authority Files 9

Figure 4 PACE screenshots: list of candidate record pairs

Figure 5 PACE screen shots: merge preparation

New fi’s can be plugged in PACE and be made
available through the user interfaces for the selection of
data curators. The fi’s are associated to one or more
value type domain T of application, in order to be
automatically proposed by the interface during similarity
function configuration. Special fi can be defined:

• multi-field : functions that accept more than one
record field as input; their effect on the formula
above is to behave as if the record had one extra
“virtual” field lf ;

• inter-field : functions that may impact on the
selected fi’s and wi’s based on the values of the
two records to be compared; for example, a

function that if an li has empty value removes the
field from the distance measurement, a function
that increases the weight wi if the field lj contains
a given value, etc.

Record matching. PACE record matching is based on
a variation of the sorted neighborhood process. In its
traditional definition, this heuristic takes as input: (i) a
data structure authF ile which contains the authority file
records, (ii) a record similarity function configuration
simConf , which includes FS and its parameters, and
(iii) a sorted neighborhood configuration snConf , which
includes the window size K and a clustering function FC .
The clustering function has the purpose of returning, for

10 P. Manghi et al.

each record, the value to be used to sort the records. A
run of the algorithm has complexity O(nlogn) + O(n ∗
K) (ordering and pairing) and populates a sorted data
structure clCollector of records candidate pairs, together
with their similarity distance (i.e., triples such as
〈rec1, rec2, FS(rec1, rec2)〉) sorted by the their distance
values.

def sortedNeighborhood(

authFile, %%% authority file record list

snConf, %%% sorted neighborhood config

simConf, %%% similarity function config

clCollector %%% collector of record pairs

{

1. val sortedRecords = sort(authFile, snConf.Fc)

2. val window = new List()

3. for(pivot <- sortedRecords.rec) {

4. for(record <- window) {

if (pivot <> record)

5. then {val dist = simConf.Fs(pivot, record)

6. clCollector.insertSort(pivot,

record,

dist)

}

7. window = enqueue(window, pivot, snConf.K)

}

}

Step 1. generates sortedRecords, which is the list
of pairs (val, rec) such that rec ∈ authF ile and val ∈
FC(rec), ordered by the values val. Steps 3. and 4.
collect all possible pairs obtained by combining records
that fall in a proximity of K in the list (sliding window
algorithm); step 5. applies FS to each pair (if pivot 6=
record); and step 6. collects pairs into the sorted data
structure clCollector (for the sake of simplicity we have
not mentioned the distance threshold used to skim the
pairs). Record pairs are built by moving a pivot along
the list sortedRecords (step 3.) and pairing it to the
K elements record which precede pivot in the list. This
is ensured by step 7., which constructs the list window
of at most size K of the records in sortedRecords that
will precede the next pivot. Note that by modifying the
algorithm to construct the list window based on equal
FC values rather than on a constant number K, we would
obtain a traditional blocking algorithm.

In the context of aggregation authority files the
relatively poor amount of information within the records
makes the identification of the functions FC a real
challenge. A misjudged choice, may result in false
negatives (i.e., records candidate for merging that are
placed at a distance greater than K) and therefore
reduce the overall recall rates. Consider an authority file
of people, which includes record fields such as ‘name’ and
‘surname’. The intuition may lead to choose a function
FC that returns the field ‘surname’. This would yield
all people records with similar surnames, hence possible
merge candidates, close to each other in the ordering.
Unfortunately, simple typing errors, such as exchange of
two letters of a name, or a different spellings, may cause
true candidates to fall out of the K record window.

To improve recall, PACE extended the sorted
neighborhood algorithm introducing two novelties
towards a “greedy” approach: multi-value clustering and
multi-sort passes. In PACE FC is a function which
processes a record to return one or more values that will
be used to sort the record before record matching. More
specifically, a record with many FC values will appear
in the ordering several times, ones for each value. An
example may be the function FC = ngram(n,m, fields):
the function concatenates the values of the given fields
and extracts m n-grams of size n from the resulting
string, starting from the first character (the option
m = ∗ extracts all the available n-grams in the string).
Clustering functions with multiple values introduce
powerful flexibility in the way records can be sorted and
therefore be included into the same sorting window. In
the case of the ngram function for example, duplicate
records due to typos of the kind introduced in our
benchmark would fall close to each other in the sorting
due to a common n-gram.

Moreover, since reasoning based on one snConf
may not be enough to capture all possible pairs of
candidate records, PACE introduces the possibility
to iterate sorted neighborhood several times with
different configurations. According to this approach,
PACE accepts a set snConfs of sorted neighborhood
configurations snConf each indicating a clustering
function and and a window size and iteratively applies
each of them (step 9.) to the sorted neighborhood
algorithm to enrich the same list of record candidates:

def multiSortRecordMatcher(

authFile,

snConfs,

simConf)

{

8. val clCollector = new Collector()

9. for(snConf <- snConfs) {

10. sortedNeighborhood(authFile,

snConf,

simConf,

clCollector)

}

}

Note that step 6. of sortedNeighborhood is modified
to discard record pairs which where already processed
on previous runs of the algorithm (using an in-memory
hash-set).

Identification configuration parameters. Data curators
can define several record matching configurations
relative to the same authority file, hence on a given
structure (l1 : K1, . . . , ln : Kn). Configurations consist
of the set snConfs of sorted neighborhood strategies,
namely snConf = 〈FC ,K〉’s, and of the similarity
function configuration simConf , namely the fi’s to be
applied to each li, together with the weight wi.

PACE provides administrators with a range of
clustering functions FC . Examples are the functions

Deduplication of Aggregation Authority Files 11

concat(fields), which returns the concatenation of
the values relative to the given fields, and the
function simhash(i, size, fields), to cope with fields
with large and similar textual content (e.g., context
fields). simhash(i, size, fields) calculates a bit SimHash
((Charikar, 2002), (Manku et al., 2007)) of size bits
calculated from the concatenation of the values in the
given fields of the record and shifts it by i positions. A
SimHash function guarantees that records with similar
values for such fields have SimHash values with small
Hamming distance. However, ordering records using
their SimHash would not guarantee that all records with
small Hamming distance would fall close to each other.
To make sure that this will be the case, the solution is
to apply sorted neighborhood i : 1, . . . , size times, each
time applying FC = simhash(i, size, fields).

Similarly, administrators can tune up their similarity
function FS by selecting distance and weight parameters
for each field or by opting for multi-field and inter-field
functions. The distance function fi of a field li can be
chosen out of a list which is derived by the domain Ti of
li. Currently PACE supports the following string-string
distance functions (Cohen et al., 2003): Jaccard Index,
Jaro distance, Winkler distance, Levenshtein distance,
Jensen distance, Shannon divergence (Jelinek Mercer
and Dirichlet unigram language models), Monge Elkan
distance, and Needleman-Wunsch distance.

PACE is designed to facilitate developers at plugging
in new clustering functions and new record field distance
functions, to be offered for selection to administrators.

5 PACE: implementation issues

PACE v2.0 extends PACE v1.0 (Manghi
and Mikulicic, 2011) with the multi-value
clustering and multi-sort options for the sorted
neighborhood strategy as described above – a
demo version of PACE is available for testing at
http://node1.pace.research-infrastructures.eu.
Already included in v1.0, were the implementation of
the following functionality described in Section 4 for:

• Authority files management: creation of an
authority file specifying a name and a structure;

• Configurations management: creation of candidate
identification configurations by providing a name
and the parameters required for its settings,
selecting FCj ’ and fi’s from a list of available
functions;

• Work sessions management: opening of a work
session, together with a merging configuration of
reference, ability to perform merge actions, and
commit of work sessions;

• Information systems management: low-level admin
interfaces for bulk-feeds of records from a set of
information systems compatible with JDBC
protocol, i.e., SQL queries over a JDBC data

source, or OAI-PMH protocol (Open Archives
Initiative - Protocol for Metadata Harvesting)
(Carl Lagoze and Herbert Van de Sompel, 2003),
which is a simple protocol widely adopted in the
library world to expose (OAI) sets of XML
metadata records;

• Logs management: merge actions of committed
actions to support incremental authority file
consumption and “refresh mode” optimization.

Efficient and scalable data management through
adequate storage and processing technologies is an
important and sometime underestimated issue in
authority control, where research is often concentrated
on adaptable and configurable frameworks and
computational complexity of the underlying algorithms.
PACE faces efficiency and scalability as primary goals in
order to cope with the large size of aggregation authority
files (up to tens of millions) and the multiple sorting
neighborhood passes introduced to compensate poorly
informative header fields. To this aim, PACE stores
authority files on a Cassandra storage and parallelizes
record candidate identification over multiple processors.

Efficient storage. PACE stores authority files and the
resulting candidate lists on a Cassandra (Lakshman
and Malik, 2010) “NoSQL” storage cluster. Cassandra
is in use at Digg, Facebook, Twitter, and many other
companies which have extremely large and active data
sets. Its storage framework manages data replicas over a
cluster of servers and offers I/O performance which scales
linearly on the number of records through a tunable
interaction between RAM buffers, object disc accesses,
horizontal partitioning, and degree of robustness by
replica. Furthermore, its deferred indexing mechanisms
allow for fast sorting at insertion time. As such, its
capabilities support PACE record scalability (up to the
availability of machines to be added to the cluster) and
provide for efficient/parallel disc writes and sorting of
the candidate list of records. Consequently, Cassandra
outclasses the I/O and sorting performance provided
by more traditional storage platforms, such as open
source DBMSs (e.g., MySQL, Postgres). In the algorithm
multisortRecordMatcher, the usage of Cassandra is
visible at step 8.:

def multiSortRecordMatcher(

authFile,

snConfs,

simConf)

{

8. val clCollector = new CassandraCollector()

9. for(snConf <- snConfs) {

10. sortedNeighborhood(authFile,

snConf,

simConf,

clCollector)

}

}

12 P. Manghi et al.

Parallelism. PACE performs record similarity
calculation and Cassandra disc writes in parallel,
achieving performances that go well beyond I/O
capacities normally supported by other storage
systems. This is particularly true in the case of
large-size records, where I/O can affect processing
and writes; for example in the case the number of
heading and context fields reflects standard exchange
formats such as MARCXML bibliographic records
(http://www.loc.gov/standards/marcxml), custom
DIDLXML entity representations (Van de Sompel et al.,
2005), RDF Linked Data, etc.

Moreover, to improve performance of the multi-sort
passes, the sorting step 1. of the algorithm is executed by
a parallel encoding of merge-sort to achieve a complexity
of O(nlogn)/H, where H is the number of processors.

In the algorithm sortedNeighborhood, the effects of
these two actions are reflected in steps 1. and 3.− 6.:

def sortedNeighborhood(

authFile, %%% authority file record list

snConf, %%% sorted neighborhood config

simConf, %%% similarity function config

clCollector %%% collector of record pairs)

{

1. val sortedRecords =

parMergeSort(authFile, snConf.Fc)

2. val window = new List()

3. for(pivot <- sortedRecords) {

4. for(record <- window) {

par{ %%% begin parallel block

if (pivot <> record)

5. then {val dist = simConf.Fs(pivot, record)

6. clCollector.insertSort(pivot,

record,

dist)

}

} %%% end parallel block

7. window = enqueue(window, pivot, snConf.K)

}

wait; %%% end of parallel executions

}

In the following we present the benchmark and the
experiments we used to show the ability of PACE
to achieve improved recall by adopting the multi-
value clustering and multi-sort extensions of the sorted
neighborhood algorithm, and efficiency in the presence
of millions of records.

5.1 Benchmark and Dataset

The experimental dataset consists of an authority file of
people entities with the following structure:

(personID: (number, [1], identifier),

firstName: (string, [1], heading),

lastName: (string, [1], heading),

birthDate: (date, [0...1], heading),

country: (string, [0...1], heading)

)

Records were generated from a name and surname set
of 50, 000 values, the list of world countries. Identifiers
were assigned an incremental integer and dates were
randomly generated. The dataset counts 107 records,
with an exact 10% of duplicates. 1 out of 10 records
is replicated with a different identifier to generate a
duplicate record affected by one random error, chosen
out of the following list:

• oneCharMiss: one missing character (random
position) in one of the fields firstName, lastName,
or both;

• oneCharErr : one misspelled character (random
position) in one of the fields firstName, lastName,
or both;

• twoCharSwap: swap two adjacent characters in one
of the fields firstName, lastName, or both;

• date1Gen: in the field birthDate the value collapse
to 01/01/yyyy;

• dateSwitch: in the field birthDate the day and
month value are swapped when the day number is
less than 12.

oneCharErr, oneCharMiss, twoCharSwap errors have
an higher probability to be picked, to reflect the trend of
introducing typos in entries such as names and surnames.

Records also feature administrative fields to be used
to run experiments and measure precision and recall
rates, as well as accuracy of the similarity functions. The
complete record structure includes the following fields:

• kind : the field is used to store the typology of a
record, which may range from unique, to indicate
authoritative-born records, duplicate, to indicate
the 10% of records obtained from these and to be
merged, or alias, to indicate the 5% of false
positive records;

• error : the field indicates, in the case of duplicate
records, the typology of error that was applied; its
values therefore range in the range: none,
oneCharErr, oneCharMiss, twoCharSwap,
date1Gen, dateSwitch;

• relatedTo: the field is present only in the case of
duplicate or alias records and contains the
identifier of the record from which the current
record was generated.

Here are examples of a unique record and one
duplicate record generated from it:

[personID: 0,

error: "none",

kind: "unique",

firstName: "Charlotte",

lastName: "Summann",

birthDate: 10/7/1939,

country: "CH"

]

Deduplication of Aggregation Authority Files 13

[personID: 1,

error: "twoCharSwap",

kind: "duplicate",

relatedTo: 0,

firstName: "Charlotte",

lastName: "Smumann", %%% <-- typo error

birthDate: 10/7/1939,

country: "CH"

]

5.2 Experiments

As mentioned above, several experiments were run
to give evidence of PACE’s ability to cope with
deduplication of records with poorly informative fields
(effectiveness) and to do so with acceptable performance
rates, which would enable an interactive deduplication
strategy. The benchmark has been constructed in
a way that a 10% duplication rate is present and
trackable. In addition, authoritative records and their
duplicates are generated with typos which may turn
into false negatives using traditional blocking or sorted
neighborhood techniques.

The initial experiments were run to evaluate the
behaviour of a “naive” sorting neighborhood algorithm,
where only one clustering function FC which returns
the field lastName is used. Three experiments are
considered, to measure:

• Precision and recall behaviour on increase of
window size (see Figure 7): we fixed a dataset of
10, 000, 000 records and 12 CPUs;

• Performance improvement Vs increase of CPUs: we
fixed a window of 100 records and a dataset of
10, 000, 000 records;

• Performance degradation on increase of dataset
size (see Figure 6): we fixed a window of 100
records and run over 12 CPUs;

• Speedup rate on increase of CPUs (see Figure 9):
obtained by running several experiments with
window sizes of 100, 200, 400, 1000 and dataset
size of 1, 000, 000 and 10, 000, 000.

From these initial experiments we can observe how
with our dataset, where duplicates are generated by
injecting typos which may jeopardize sensible clustering
by lastName ordering, traditional sorted neighborhood
logic shows low recall and high precision, but with good
performances (see related work Section 6). With an
increase of window size, performance tends to degrade
while precision tends to decrease with only a small gain
in recall. This is indeed the expected behaviour, since
ordering is not effective in grouping within a reasonable
K the real duplicate records in our dataset. As to
efficiency, it is clear how, with higher numbers of CPUs,
execution time tends to decrease with a near-linear

size

tim
e

101.6

101.8

102

102.2

102.4

102.6

102.8

105 105.5 106 106.5 107

Figure 6 Execution time Vs dataset size (window = 100,
12 CPUs)

window

0.0

0.2

0.4

0.6

0.8

1.0

200 400 600 800 1000

precision

recall

Figure 7 Precision and recall behavior at variation of
window size (dataset = 10, 000, 000, 12 CPUs)

cores

tim
e

800

1000

1200

1400

5 10 15 20

Figure 8 Execution time Vs number of CPUs (window =
100,dataset = 10, 000, 000)

speedup which reflects the high-degree of parallelization
of PACE.

In the second slot of experiments we identified
the best behaviour of PACE for the multi-value
clustering function ngram and the multi-sort method
with clustering function simhash (the combination of
the two was not considered in this work). The tests,
which were run over the largest dataset of 10, 000, 000,
with 12 CPUs, and an acceptance threshold of 0.9, led
to the following best configurations:

14 P. Manghi et al.

cores

sp
ee

du
p

0.25

0.30

0.35

0.40

0.45

0.50

0.55

5 10 15 20

Figure 9 Overall speedup w.r.t. number of CPUs

• ngram(2, 4, lastName): with a window of size 10,
applying a 2-gram function for the first 4
characters of lastName values, PACE returns a
precision of 0.99 and recall of 0.95 in 0h : 42m;

• simhash(i, 32, lastName): applying a 32-bit
simhash map over lastName values, with with
i : 1, . . . 8 passes and a window of size 100, PACE
returns a precision of 0.99 and recall of 0.84 in
1h : 37m minutes.

Results are optimal since the two clustering functions
are designed to reduce the impact of differences in
spelling introduced by the typos into record duplicates.
By using ngram, splitting lastName (or other fields)
in smaller substrings (ngram) helps matching common
substrings in any part of the value (or at least in a
significant portion of every token). By using simhash,
lastName (or other fields) values are mapped onto a
metric which is weakly affected by the relative ordering
of the features.

5.3 Real-Case Scenarios

PACE is today used in the European Film Gateway
European Commission project, whose aim is to operate
a data infrastructure aggregating content from an initial
set of 20 movie archives in Europe. The infrastructure
collects from such archives heterogeneous information
about movies, people, companies, and available digital
material, including videos, images, and documents, and
operate sophisticated data cleaning and normalization
actions, to populate a uniform European movies
information space. PACE was devised to address the
construction of an European aggregation authority file
of persons and movies in order to align authority files at
the local archives, where these existed, or create valuable
references from those archives which are not supporting
authority files. As mentioned above the current authority
file of people counts around 300,000 records, while the
movie authority files counts around 140,000 records. In
the first file, context fields (e.g., movies titles in which
such people were involved with some role) are used to
improve the extremely poor information about persons
(i.e., name, surname, year of birth), which sometime

does not come with a persistent identifier assigned by
the archive (e.g., persons are properties of other entities,
such as movies). In the second file, movie records were
rich of complete heading fields, which simplified their
deduplication process.

PACE is currently under deployment in the
OpenAIRE European Commission project whose
aim is to operate a data infrastructure capable of
collecting publication bibliographic records from a
set of European institutional repositories and from
manual “claiming”, i.e., ingestion, by authors. The
purpose of the infrastructure is to offer statistics over
the ratio Open Access/licensed scientific publications
funded by given European Commission projects. In
its continuation through the OpenAIREplus European
Commission project, the infrastructure will have to
integrate the DRIVER Open Access infrastructure
(http://search.driver.research-infrastructures.eu),
which today contains around 6,000,000 Dublin Core
bibliographic records from around 320 institutional
repositories in Europe and beyond. PACE will be
used to disambiguate the aggregation authority files of
publication records and the relative authors. Author
records are obtained from the bibliographic records and
therefore consists only of a string inclusive of names
and surname and lead to high percentage of duplicates.
Authors grow with the number of publications and are
today estimated to bring more than 22 Millions records,
inclusive of duplicates. To facilitate disambiguation of
this set, context fields relative to abstracts of author
publications will be introduced.

6 Related work

The literature and the market offer a number of
tools, which mainly address record linkage between
information systems or deduplication of one information
system. Record linkage tools focus on the problem
of identifying a set of record matches across two
or more information systems to be integrated or
combined for processing. Here, candidate identification
is not necessarily intended for record merging and
deduplication. Deduplication tools focus instead
on resolving record duplicates in one information
system, typically a relational database. Here, candidate
identification is generally followed by application of
record merges. Hence, the process can take advantage
of contextual information (e.g., relationships with
other entities (Bhattacharya and Getoor, 2007)
(Kalashnikov and Mehrotra, 2006)) and can exploit logs
to enable advanced data curation options (e.g., history
information, roll-backs to previous status). Strengths
and differences of such tools (Christen, 2011) lay in
(i) the techniques devised to effectively and efficiently
identify candidate record duplicates, and (ii) the level
of usability (i.e., user-friendly interfaces versus low-level
configuration) and personalization (i.e., general-purpose

Deduplication of Aggregation Authority Files 15

versus domain specific tools (Rudniy et al., 2010; Wang
and Alexander, 2010).

We examined differences and similarities between
PACE and existing tools, which we believe are
relevant and representative with respect to the goals
of PACE. The following tools were selected, which
target record linkage and deduplication at different
degrees: LinkageWiz (http://www.linkagewiz.com),
FRIL (Fine-grained Records Integration and Linkage,
http://fril.sourceforge.net) (Jurczyk et al., 2008),
D-Dupe (http://www.cs.umd.edu/projects/linqs/-
ddupe/) (Kang et al., 2008), and Febrl
(Freely Extensible Biomedical Record Linkage,
https://sourceforge.net/projects/febrl/) (Christen,
2008). In the analysis we focused on the common data
processing phases they support of (i) records import,
(ii) candidate identification configuration, and (iii)
generation of results. Finally, to compare effectiveness
and efficiency, we run experiments with the dataset
presented in Section 5.1.

Data processing phases. The records import phase is
characterized by user interfaces to load records from files
or to fetch records from data sources. Tools differ by:

• Data import functionality: Febrl, LinkageWiz and
FRIL allow for cleansing (normalization) of
imported records, while FRIL also allows for
deduplication of data sources to be linked.

• Data import formats and protocols: Febrl and
FRIL support Excel and CSV Text Files,
LinkageWiz supports Excel, CSV, DBASE,
FoxPro, and MS Access, while D-Dupe a
proprietary representation of relational data.
LinkageWix and FRIL can also collect data from
JDBC connections.

The candidate identification configuration phase
consists in user interfaces for the specification of
the parameters for record matching algorithms and
probabilistic similarity functions. Tools differ by:

• Clustering methods the users can choose from: all
of them offer traditional blocking (i.e., field
values), FRIL, Febrl and D-Dupe support also
literature variations of blocking (i.e., values
obtained from elaboration of field values, such as
metaphone and soundex), while FRIL and Febrl
also provide sorted neighborhood. In general, the
selection of a method requires pre-processing of the
records before matching can be applied.

• Similarity distances the users can choose from:
record similarity function is based on a weighed
mean can be configured based on list of distance
functions, field weights, and in some cases, such as
in FRIL, introducing conditions.

The generation of result phase generally allows to
export the result of record linkage or deduplication as

Table 1 Comparative analysis

processable text files. Tools differ by the way the output
can be handled by users before the final export. In FRIL
users can only opt for what should be exported, which
is either data source records purged of the duplicates
(deduplication mode) or the identified record pairs
together with a confidence level (record linkage mode).
LinkageWiz allows instead to tune up the thresholds for
automated approval or manual approval of record pairs,
offering user interfaces to visualize and manually approve
or reject record pairs. D-Dupe graphically visualizes
record pairs (with a maximum limit of 300) together with
the graph of records related with them, to help users at
making the right choice. Febrl offers user interfaces to
scroll through and evaluate candidate pairs for linking
or deduplication (i.e., “clerical evaluation”).

Efficiency and effectiveness. For the purpose of this
paper, we have run the same experiment with
10, 000, 000 and 1, 000, 000 records taken from our
dataset over FRIL and LinkageWiz. Specifically, we
used blocking techniques based on lastName and
the same similarity function and with an acceptance
threshold of 0.9 (where possible, since LinkageWiz offers
field templates, no explicit distance functions). The
tools executed on the following platform: 2x AMD
Opteron 6172 2.48 Ghz (12 CPUs), with 16GB RAM,
running Debian 6 Squeeze and Xen 4.0.1, and mounting
a Windows Server virtual machine. Table 1 shows
the results, where LinkageWiz was run on 4, 000, 000
records (its declared upper bound), rather than over
10,000,000, with its default blocking configuration –
it must be remarked that by using an “accelerated
matching” option in LinkageWiz, execution time
decreases considerably: about 0h : 30m for 1, 000, 000
records and 7h : 00m for 10, 000, 000, with the same
precision and recall rates. To enable a reasonable
comparison between the tools blocking methods and
PACE’s sorted neighborhood, we considered the worst
case experiment of PACE, which sorted records
according to the values of lastName.

All tools suffer from a lack of precision and
performance due to the number of possible duplicates,
which increases with the number of records. PACE
generally performs better, especially with very large
numbers of records, but its configuration delivers lower
recall rates due to the issues highlighted in Section 5.2.
Indeed, given our dataset, blocking techniques generally
behave better than traditional sorted neighborhood since

16 P. Manghi et al.

they can restrict record pair matching to windows of
lastName-related records only.

Comparison. FRIL, LinkageWiz, and Febrl support
effective techniques for record linkage and deduplication,
and generally deliver to the users a wider range
of blocking techniques compared to PACE. However,
unlike PACE they are not concerned with authority
control of aggregation authority files. D-Dupe targets
deduplication, supports iterative curation of one static
authority file, and offers elegant visualization tools to
facilitate manual evaluation of potential duplicates. On
the other hand, it does not cope with incremental
population of the authority file and multiple users
curation through work sessions and logs.

With regard to efficiency, the examined tools do
not cope with arbitrary scalability and performance.
Attempts are made only by FRIL which exploits multi-
core parallelism. However, as shown by the experiments,
both FRIL and LinkageWiz cannot cope with the
performances reached by PACE when operating over
10,000,000 record datasets.

Finally, as to effectiveness, the experiments show that
PACE multi-value clustering method with n-gram and
the multi-sort “greedy” approach with SimHash manifest
precision and recall results which are generally better
than other tools. Although this cannot be considered
a general statement, as indeed the evaluation depends
on the datasets at hand, we do not expect PACE to
behave worse than the other tools. Indeed, PACE can
offer the same similarity functions and record matching
techniques which lead to higher recall and precision with
better performance.

7 Conclusions

This paper presented PACE, an open source and general-
purpose tool for managing aggregation authority files.
PACE offers a framework where administrators can
create their authority files, configure their preferred
candidate identification configurations and use them to
curate authority files life-cycle. PACE aims at offering an
ideal environment for maintaining aggregation authority
files, whose semantics and content dynamicity requires
“fast” deduplication experimentations with different
similarity matching functions and ability to scale to
arbitrary sizes. Its implementation features high sorting
performances due to parallel processing and underlying
optimizations and can scale up to arbitrary numbers
of records. Future issues include the completion of the
front-end functionalities according to the specification in
Section 3, the introduction of blocking techniques, and
the study and experimentation of logging techniques to
cope with the absence of identifiers and the heavy usage
of context fields.

Acknowledgments. This work was partially funded
by the European Commission projects European

Film Gateway (Best Practice Networks project,
grant agreement: ECP-517006-EFG, call: FP7 EU
eContentplus 2007) and OpenAIRE (grant agreement:
246686, call: FP7-INFRASTRUCTURES-2009-1).

References

Michele Artini, Leonardo Candela, Donatella Castelli,
Paolo Manghi, Marko Mikulicic, and Pasquale Pagano.
Aggregative Digital Library Systems in the DRIVER
Infrastructure. World Digital Libraries Journal, 2(2):
113–130, December 2009. ISSN ISSN 0974-567X.

O. Benjelloun, H. Garcia-Molina, Q. Su, and J. Widom.
Swoosh: A generic approach to entity resolution.
Stanford University technical report, March 2005.

Indrajit Bhattacharya and Lise Getoor. Collective entity
resolution in relational data. ACM Transactions on
Knowledge Discovery from Data (TKDD), 1(1), 2007.

Carl Lagoze and Herbert Van de Sompel. The making
of the open archives initiative protocol for metadata
harvesting. Library Hi Tech, 21(2):118 – 128, 2003.

M. Charikar. Similarity estimation techniques from rounding
algorithms. In 34th Annual Symposium on Theory and
Computing, Montreal, Quebec, Canada, May 2002.

Surajit Chaudhuri, Kris Ganjam, Venkatesh Ganti, and
Rajeev Motwani. Robust and efficient fuzzy match
for online data cleaning. In Proceedings of the
2003 ACM SIGMOD international conference on
Management of data, SIGMOD ’03, pages 313–324, New
York, NY, USA, 2003. ACM. ISBN 1-58113-634-X.
doi: http://doi.acm.org/10.1145/872757.872796. URL
http://doi.acm.org/10.1145/872757.872796.

P. Christen. A survey of indexing techniques for scalable
record linkage and deduplication. Knowledge and Data
Engineering, IEEE Transactions on, PP(99):1, 2011.
ISSN 1041-4347. doi: 10.1109/TKDE.2011.127.

Peter Christen. Febrl -: an open source data cleaning,
deduplication and record linkage system with a graphical
user interface. In Proceedings of the 14th ACM SIGKDD
international conference on Knowledge discovery and
data mining, KDD ’08, pages 1065–1068, New York,
NY, USA, 2008. ACM. ISBN 978-1-60558-193-4.
doi: http://doi.acm.org/10.1145/1401890.1402020. URL
http://doi.acm.org/10.1145/1401890.1402020.

Peter Christen and Agus Pudjijono. Accurate
Synthetic Generation of Realistic Personal
Information. In Thanaruk Theeramunkong,
Boonserm Kijsirikul, Nick Cercone, and Tu-Bao
Ho, editors, Advances in Knowledge Discovery and
Data Mining, volume 5476 of Lecture Notes in
Computer Science, pages 507–514. Springer Berlin
/ Heidelberg, 2009. ISBN 978-3-642-01306-5. URL
http://dx.doi.org/10.1007/978-3-642-01307-2 47.
10.1007/978-3-642-01307-2 47.

T. Christen, P. Churches and J.X. Zhu. Probabilistic
name and address cleaning and standardization. The
Australian Data Mining Workshop, November 2002.

T. Churches, P. Christen, J. Lu, and J. X. Zhu. Preparation
of Name and Address Data for Record Linkage Using
Hidden Markov Models. BioMed Central Medical
Informatics and Decision Making, 2 (9), 2002.

Deduplication of Aggregation Authority Files 17

W. W. Cohen, P. Ravikumar, and S. E. Fienberg. A
comparison of string metrics for matching names
and addresses. International Joint Conference on
Artificial Intelligence, Proceedings of the Workshop on
Information Integration on the Web, August 2003.

William W. Cohen and Jacob Richman. Learning to
match and cluster large high-dimensional data sets
for data integration. In Proceedings of the eighth
ACM SIGKDD international conference on Knowledge
discovery and data mining, KDD ’02, pages 475–480,
New York, NY, USA, 2002. ACM. ISBN 1-58113-567-X.
doi: http://doi.acm.org/10.1145/775047.775116. URL
http://doi.acm.org/10.1145/775047.775116.

Prudence W. Dalrymple and Jennifer A. Young. From
authority control to informed retrieval: Framing
the expanded domain of subject access. College
& Research Libraries, 52:139 149., 1991. doi:
http://hdl.handle.net/1860/3173.

A.K. Elmagarmid, P.G. Ipeirotis, and V.S. Verykios.
Duplicate record detection: A survey. Knowledge
and Data Engineering, IEEE Transactions
on, 19(1):1–16, Jan. 2007. ISSN 1041-
4347. doi: 10.1109/TKDE.2007.250581. URL
http://www.cs.purdue.edu/homes/ake/pub/-

survey2.pdf.

Jordi Gómez-Bao, Josep-L. Larriba-Pey, and Josepa
Ribes Puig. Record linkage performance for large data
sets. In Proceedings of the ACM first international
workshop on Privacy and anonymity for very large
databases, PAVLAD ’09, pages 9–16, New York,
NY, USA, 2009. ACM. ISBN 978-1-60558-804-9.
doi: http://doi.acm.org/10.1145/1651449.1651453. URL
http://doi.acm.org/10.1145/1651449.1651453.

Caichun Gong, Yulan Huang, Xueqi Cheng, and Shuo
Bai. Detecting Near-Duplicates in Large-Scale Short
Text Databases. In Takashi Washio, Einoshin Suzuki,
Kai Ting, and Akihiro Inokuchi, editors, Advances
in Knowledge Discovery and Data Mining, volume
5012 of Lecture Notes in Computer Science, pages
877–883. Springer Berlin Heidelberg, 2008. URL
http://dx.doi.org/10.1007/978-3-540-68125-0 87.

Michael Gorman. Authority control in the context of
bibliographic control in the electronic environment.
International Conference Authority Control: Definition
and International Experiences, Florence, February 10-12
2003, 2003. doi: http://hdl.handle.net/10760/4164.

Luis Gravano, Panagiotis G. Ipeirotis, Nick Koudas, and
Divesh Srivastava. Text joins in an RDBMS for web
data integration. In Proceedings of the 12th international
conference on World Wide Web, WWW ’03, pages 90–
101, New York, NY, USA, 2003. ACM. ISBN 1-58113-
680-3. doi: http://doi.acm.org/10.1145/775152.775166.
URL http://doi.acm.org/10.1145/775152.775166.

Mauricio A. Hernández and Salvatore J. Stolfo. The
merge/purge problem for large databases. SIGMOD
Rec., 24:127–138, May 1995. ISSN 0163-5808.
doi: http://doi.acm.org/10.1145/568271.223807. URL
http://doi.acm.org/10.1145/568271.223807.

Matthew A. Jaro. Advances in Record-Linkage Methodology
as Applied to Matching the 1985 Census of Tampa,
Florida. Journal of the American Statistical
Association, 84(406):414–420, June 1989. URL

http://www.jstor.org/stable/2289924. published by
American Statistical Association.

Pawel Jurczyk, James J. Lu, Li Xiong, Janet D. Cragan,
and Adolfo Correa. Fine-grained record integration
and linkage tool. Birth Defects Research Part A:
Clinical and Molecular Teratology, 82(11):822–829, 2008.
ISSN 1542-0760. doi: 10.1002/bdra.20521. URL
http://dx.doi.org/10.1002/bdra.20521.

D.V. Kalashnikov and S. Mehrotra. Domain-independent
data cleaning via analysis of entity-relationship graph.
ACM Transactions on Database Systems (TODS), 31(2):
716–767, 2006.

Hyunmo Kang, Lise Getoor, Ben Shneiderman, Mustafa
Bilgic, and Louis Licamele. Interactive entity resolution
in relational data: A visual analytic tool and its
evaluation. IEEE Transactions on Visualization and
Computer Graphics, 14(5):999–1014, 2008.

Hanna Koepcke and Erhard Rahm. Frameworks for entity
matching: A comparison. Data & Knowledge
Engineering, 69(2):197 – 210, 2010. ISSN 0169-
023X. doi: 10.1016/j.datak.2009.10.003. URL
http://www.sciencedirect.com/science/article/-

pii/S0169023X09001451.

Hanna Koepcke, Erhard Rahm, and Erhard Rahm. Training
selection for tuning entity matching. In QDB/MUD,
pages 3–12, 2008.

Carl Lagoze and H. Van de Sompel. The open
archives initiative: building a low-barrier interoperability
framework. In Proceedings of the first ACM/IEEE-
CS Joint Conference on Digital Libraries, pages 54–
62. ACM Press, 2001. ISBN 1-58113-345-6. doi:
http://doi.acm.org/10.1145/379437.379449.

Carl Lagoze and Herbert Van de Sompel. The
OAI Protocol for Object Reuse and Exchange.
http://www.openarchives.org/ore/.

Avinash Lakshman and Prashant Malik. Cassandra: a
decentralized structured storage system. SIGOPS Oper.
Syst. Rev., 44:35–40, April 2010. ISSN 0163-5980.
doi: http://doi.acm.org/10.1145/1773912.1773922. URL
http://doi.acm.org/10.1145/1773912.1773922.

Paolo Manghi and Marko Mikulicic. PACE: A General-
Purpose Tool for Authority Control. In Elena
Garcia-Barriocanal, Zeynel Cebeci, Mehmet C. Okur,
and Aydin Ozturk, editors, Metadata and Semantic
Research, volume 240 of Communications in Computer
and Information Science, pages 80–92. Springer Berlin
Heidelberg, 2011. ISBN 978-3-642-24731-6. URL
http://dx.doi.org/10.1007/978-3-642-24731-6 8.
10.1007/978-3-642-24731-6 8.

G.S. Manku, A. Jain, and Sarma A.D. Detecting near-
duplicates for web crawling. In 16th International World
Wide Conference, Banff, Alberta, Canada, May 2007.

Bennet Rick, Christal Hengel-Dittrich, Edward T. ONeill,
and Barbara Tillett. Viaf (virtual international authority
file): Linking the deutsche nationalbibliothek and library
of congress name authority files. In International
Cataloging and Bibliographic Control, number 1 in 36,
pages 12–19, 2007.

Alex Rudniy, Min Song, and James Geller. Detecting
duplicate biological entities using shortest path
edit distance. International Journal of Data
Mining and Bioinformatics, 4(4):395 – 410,

18 P. Manghi et al.

2010. doi: 10.1504/IJDMB.2010.034196. URL
http://inderscience.metapress.com/content/-

TQ3737625VK1R573.

S. Tejada, C. Knoblock, and S. Minton. Learning
object identification rules for information extraction.
Information Systems, 26 (8):607–633, 2001.

Barbara T. Tillett. Authority control: State of the art and
new perspectives. In Authority Control International
Conference, Florence, Italy, 2003.

Herbert Van de Sompel, Jeroen Bekaert,
Xiaoming Liu, Luda Balakireva, and Thorsten
Schwander. aDORe: a modular, standards-
based Digital Object Repository, 2005. URL
http://www.citebase.org/abstract?id=oai:-

arXiv.org:cs/0502028.

Xiaoyi Wang and Suraj M. Alexander. Linking medical
records: a machine learning approach. International
Journal of Collaborative Enterprise, 1(3):394 – 406,
2010. doi: 10.1504/IJCENT.2010.03836. URL
http://inderscience.metapress.com/content/-

T93552025P150H36.

Jutta Weber. LEAF. Linking and Exploring Authority Files.
International Conference Authority Control: Definition
and International Experiences, Florence, February 10-12
2003, 2003.

W. E. Winkler. String Comparator Metrics and Enhanced
Decision Rules in the Fellegi-Sunter Model of Record
Linkage. Proceedings of the Section on Survey Research
Methods, American Statistical Association, pages 354–
359, 1990.

W. E. Winkler. Overview of record linkage and
current research directions. Technical report,
Research Report Series, RRS, 2006. URL
http://www.census.gov/srd/papers/pdf/-

rrs2006-02.pdf.

