
P
o
S
(
I
S
G
C

2
0
1
2
)
0
1
9

The CONTRAIL approach to Cloud Federations∗

Massimo Coppola, Patrizio Dazzi
Istituto di Scienza e Tecnologie dell’Informazione
Consiglio Nazionale delle Ricerche
Pisa, Italy

Aliaksandr Lazouski, Fabio Martinelli, Paolo Mori
Istituto di Informatica e Telematica
Consiglio Nazionale delle Ricerche
Pisa, Italy

Jens Jensen†, Ian Johnson, Philip Kershaw
Science & Technology Facilities Council
Rutherford Appleton Laboratory
UK

The CONTRAIL project proposes a framework for Cloud Federations, that provides users with
a single point of access to Cloud resources and relieves them from managing the credentials
for access to individual Cloud service providers. The Federation services dynamically broker
access to Cloud resources, ensures that the best available resource is selected, and that diverse
resources are accessed consistently. This paper presents the CONTRAIL approach to federated
identity management, focusing on authentication and authorization. In particular, we present
“usage control” extensions to standard authorization frameworks to dynamically address changes
in authorization decisions.

The International Symposium on Grids and Clouds (ISGC) 2012
Academia Sinica, Taipei, Taiwan
February 26 - March 2, 2012

∗This work was supported by the FP7 projects Open Computing Infrastructures for Elastic Services (CONTRAIL)
FP7-ICT 257438 and Network of Excellence on Engineering Secure Future Internet Software Services and Systems
(NESSOS) FP7-ICT-2009-5 256980

†Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/

P
o
S
(
I
S
G
C

2
0
1
2
)
0
1
9

The CONTRAIL approach to Cloud Federations Jens Jensen

1. Introduction

Cloud computing technology promotes the provisioning of IT infrastructures as services. Cloud
systems have become very common because of their advantages, such as the large amount of com-
putational power available on demand, and the possibility of asking for further resources or releas-
ing unused ones while the computation is running (Cloud elasticity).

Cloud computing facilities are currently provided by several big companies; among them
Amazon1, Google2, IBM3, Microsoft4 and others. Alternatively, software is available for users
that want to deploy a private Cloud in their own data centers, such as Eucalyptus5 [10], OpenNeb-
ula6 [11], and others. As an example, in the Amazon Elastic Compute Clouds (EC2), users request
a number of virtual machines from the Cloud provider with certain features, such as the Instance
Type (that defines the available computing power, the available memory and the local storage ca-
pacity), the operating system (e.g., Amazon Machine Image, AMI) and the network configuration
(e.g., see Amazon Virtual Private Clouds, VPC). Users requiring large computational power can
exploit resources provided by distinct Cloud providers to perform their tasks. However, in this
case, the user has the responsibility of managing the creation of the resources, by sending a request
to each of the providers and of interconnecting them with a proper network configuration.

The CONTRAIL project aims at defining and implementing a framework for Cloud Federa-
tions, to relieve the user from managing the access to individual Cloud service providers. Thus,
users could focus on their work rather than on resource management, because the Federation bro-
kers access to resources, ensures that the best available resource is selected, and that diverse re-
sources are accessed consistently. The user simply defines usage policies: limits on the amount
of resources to be consumed, privacy requirements, etc. The Federation then ensures that the re-
sources are allocated as needed, matching the user’s requirements. Beyond the user’s view, it is also
the role of the federation to bring together service providers and users. The cloud model makes
resources available on-demand, and users don’t have to negotiate directly with individual service
providers because the Federation establishes contracts between them as needed. Nevertheless, the
dynamic and elastic nature of clouds “disconnects” providers and users when there is no direct
contractual agreement between them (or at least a credit card); it is also the role of the Federation
to provide security to bridge this gap.

In fact, apart from performance and interoperability, one of the major concerns of the Cloud
Federation is security. Cloud users use the resources brokered by the Federation to execute their
applications and to store their data. Hence, users’ data and applications should both be protected
from unauthorized accesses and modifications. From the considerations of business computing,
where users’ data could have a high economic value, having an enhanced security support has
the twofold goal of attracting new customers (thus increasing the Cloud provider revenue) and
preventing data theft or corruption that could result in economic loss for the customer and hence

1http://aws.amazon.com/ec2
2http://code.google.com/appengine
3http://www.ibm.com/ibm/cloud
4http://www.microsoft.com/windowsazure
5http://eucalyptus.com
6http://opennebula.org

2

P
o
S
(
I
S
G
C

2
0
1
2
)
0
1
9

The CONTRAIL approach to Cloud Federations Jens Jensen

for the Cloud provider that could be asked for a refund. Besides the attacks coming from external
entities, users’ data and applications stored on Cloud resources should be protected also from the
other users running on the same resources and from Cloud administrators.

This paper presents the CONTRAIL approach to Cloud. In particular, it describes the design
and the features of the Cloud Federation, focusing on the security system which consists of a proper
Identity Management system tailored for the Federation and of an enhanced Authorization system
able to regulate the usage of Cloud resources.

2. Cloud Federation

From the user’s point of view, a Federation can be seen as a bridge linking several cloud
providers. In order to save the user the complexity and burden of dealing with more providers at
the same time, a first step is to allow the most basic interoperation, developing equivalences among
the various APIs of open-source and proprietary Clouds, as well as translators among all of their
data format specifications.

The adoption of a federated approach encompasses but also goes beyond simple interface
adaptation. A second part of the functionalities of a Federation is brokering, as seen in broker-based
approaches such as SpotCloud7. SpotCloud allows the user to easily select one among several cloud
providers. It implements a virtual resource market where demand and offer can meet, in order to
optimize the overall resource exploitation (and the broker to earn its fair share).

However, brokers like SpotCloud still require all joining providers to adhere to a common
API, the API choice restricting the scope of potential users. Brokers provide no support for appli-
cations that need to spread over more than a single provider, and cannot provide any guarantee on
Service Levels past application deployment time. In summary, brokers address the issue of creat-
ing a resource market, but rarely provide ongoing management of resources, integration of diverse
resources (e.g., PaaS and storage), or support providers with different APIs.

CONTRAIL Federations[4] overcome these limitations and aim at being full-fledged comput-
ing platforms. This is achieved by providing an even more comprehensive list of features.

Interoperability CONTRAIL targets the broadest integration of public and private Clouds, man-
aged by both open source and proprietary software. The achievable degree of interoperation
within the platform may be limited in some cases (e.g. whenever a provider lacks a specific
functionality or property). Where a feature cannot be emulated, or cannot be enforced on a
provider’s resources, integration requires that the Federation is aware of the issue and can
take this constraint into account in the resource selection phase. Interoperability will rely
extensively on support of a broad set of normative and de-facto standards describing Cloud
entities and operations, e.g. applications and virtual machines, as well as deployment and
data access operations.

Scalability The implementation of CONTRAIL Federations makes it feasible to manage large
platforms, both with respect to the number of providers, and with respect to the number of
users, and active user applications. This requires a design where centralization points and

7http://www.spotcloud.com

3

P
o
S
(
I
S
G
C

2
0
1
2
)
0
1
9

The CONTRAIL approach to Cloud Federations Jens Jensen

bottlenecks are avoided. A key aspect of the platform scalability that CONTRAIL targets
is the ability to run very large applications, even beyond the limits of a single provider, by
splitting them over multiple Clouds and coordinating the different parts.

The problem of devising a proper plan for splitting applications and mapping the pieces over
the available providers while obeying all application constraints is quite complex, out of
the scope of this paper. In order to be feasible and efficient, execution of application over
multiple providers needs to be carefully planned, and resource management must be as close
as possible to the actual provider. CONTRAIL develops Federation-specific coordination
strategies that combine SLA (Service Level Agreements), monitoring, and image deployment
to manage split applications.

SLA management CONTRAIL Federations support flexible and extensible mechanisms for Ser-
vice Level Agreement specification, negotiation and enforcing. The overall SLA framework
is developed building on the results of the SLA@SOI European project8.

The SLA@SOI multi-level SLA negotiation and enforcement framework provides the basic
mechanisms that enable the Federation to hierarchically manage provider-specific SLAs. An
instance of the SLA@SOI framework is associated with each provider, and a higher-level
one with the Federation. Whenever a user starts an SLA negotiation, sub-negotiation can be
performed with the providers in order to secure the needed resources and guarantee the out-
come of the main SLA. Monitoring tools (and, when appropriate, enforcement mechanisms)
are put in place at each provider by the local instance of the SLA@SOI framework.

The extensibility of the SLA@SOI framework is used to include terms in the Quality of
Service (QoS) specification that also express Quality of Protection (QoP). QoP constraints
are used by the Federation for resource selection to provide overall security guarantees to the
users.

Trust and Security CONTRAIL is a trusted platform, as the providers joining the Federation are
categorized in terms of the security features they support, and the infrastructure connecting
them is crafted to prevent security breaches. CONTRAIL Federations isolate applications
from each other and from the providers’ environment via secured virtual networks and per-
vasive authentication and Authorization checks.

While in the following we will detail the technical solutions adopted, we underline here that
they make the QoP specification in CONTRAIL quite powerful, including constraints on
security protocols adopted and on the geographic location of resources, as well as on the
dynamic behaviour and the reputation of users and providers.

Horizontal integration CONTRAIL Federations provide several types of IaaS resources (data,
computation, network) in a homogeneous way and with SLA terms describing the QoS fea-
tures. In order to guarantee the QoP parts of the SLA, secure virtual resources of each
kind are developed as part of the CONTRAIL project, based on existing open-source tools.

8SLA@SOI web site, http://sla-at-soi.eu/

4

P
o
S
(
I
S
G
C

2
0
1
2
)
0
1
9

The CONTRAIL approach to Cloud Federations Jens Jensen

The “Virtual Execution Platform” (VEP) is based on OpenNebula; the “Virtual Infrastruc-
ture Network” (VIN) exploits IPSec to build large-scale secure networks, and the “Global
Autonomous File System” (GAFS) builds on the XtreemFS distributed file system.

Vertical integration In this paper we have focused on CONTRAIL IaaS implementation and def-
inition. We thus only mention the layer of PaaS services (ConPaaS [13]) that make use of
the IaaS Federation layer in order to access computing resources. Security goals can be
guaranteed only by vertical integration of security between the PaaS, Federation, and the
provider-IaaS layers.

2.1 Supporting CONTRAIL Federations

In order to achieve the features outlined so far, each CONTRAIL Federation has is imple-
mented in a distributed infrastructure, where multiple Federation Access Points are scattered over
the network, each one potentially in contact with all Cloud providers in the Federation. As such ac-
cess points will be trusted gateways (in particular, they have access to the Federation user database),
they will have to be run by trusted participant institutions (and to be identified with X.509 certifi-
cates: one for the front end of the service, and another to identify the federation as a part of the
CONTRAIL infrastructure). Alternatively, an access point could be run by a participating institu-
tion for its own users, in which case true single sign-on could be implemented, but it would still
need to share user database with the other access points, or we would lose the ability to manage
attributes across the whole Federation.

Figure 1 shows the block decomposition of one of the access points.
The access points share databases (by replication) and a common set of policies used to man-

age the Federation. The databases contain the knowledge about Federation entities (e.g. users,
providers), including federation-level user attributes (community memberships, community roles,
and even roles in the federation itself) where the federation acts as an attribute authority on behalf
of the user communities9. Consistency is necessary to ensure that each access point will take the
same resource placement decisions, including enforcement of security goals.

On the other hand, each access point actively communicates with the Cloud providers hosting
applications submitted by that access point. This strategy allows effective management of active
applications via streams of monitoring data, and employs less frequent, cheaper communications
between the access points for spreading non-critical, generic information on the status of the plat-
form.

For the sake of modularity and flexibility, Federation access points are a composition of soft-
ware components from the Tuscany framework10, which is the implementation of the the Apache
Foundation “Service Component Architecture.”

9There are plans to enable CONTRAIL to consume external attributes from attribute authorities already in use
by our user communities, but this requires mapping an attribute assigned to an external identity into one assigned to
the federation identity, and possibly renaming the attribute itself because different communities may have the same
name (e.g., “admin”) for different roles. For now, the attributes relevant to the cloud resources are replicated (currently
manually) by community managers in the CONTRAIL attribute authority database.

10http://tuscany.apache.org/

5

P
o
S
(
I
S
G
C

2
0
1
2
)
0
1
9

The CONTRAIL approach to Cloud Federations Jens Jensen

Contrail Provider

Interface layer HTTP

REST

Federation support

User Identity

GAFS driver VIN driver

CLI

External Cloud
adapters

Core layer

Adapters layer
VEP driver

StateSLA Coordination

SLA Negotiation

SLA Organizer

Provider Watcher

SLA
Management

SLA Template
Repository

Federation Runtime
Manager
Mapping Attribute Authority

Policy
Administration Point

Policy Decision Point

Authentication

Security

SLA
Management

External Provider

Image Registry
Image Manager

Figure 1: Architecture of a Federation Access Point.

In Figure 1 we see that each access point has its own interfaces for user interaction. They are
built with REST web services, and there is an adapter layer where drivers for each available IaaS
provider are instantiated.

The modules implementing security are described below, in the following section. Another
set of modules performs the management of SLAs at the Federation level. Since these modules are
based on the SLA@SOI software architecture, they also provide Web Services interfaces.

Of the remaining modules, the Federation Runtime takes care of almost all of the application
lifecycle. The Image Manager stores image metadata for the virtual machines to be deployed, and
the Provider Watcher gathers statistics about Cloud Providers. The User Identity module provides
persistent storage for user-related data. Finally, the State module gathers information related to
all Federation entities. The task of the State Module, in a Federation with multiple access points,
includes spreading information to other access points by employing algorithms that vary accord-
ing to the kind of data. Atomic transactions must be used for user identities, while slow “gossip
protocols” are fine for load statistics of the Cloud providers.

As a final remark, we note that since each Federation access point and each Cloud provider are
independent separate systems over the Internet, authentication and authorization checks are done
by all interfaces.

3. Federation Security

Security is one of the major concerns of the Cloud environment. First of all, security is an

6

P
o
S
(
I
S
G
C

2
0
1
2
)
0
1
9

The CONTRAIL approach to Cloud Federations Jens Jensen

issue that affects the uptake of Cloud resources, because potential customers will employ Cloud
services for their business only if they believe that the Cloud is secure and dependable.

The Federation on one hand simplifies the usage of Cloud services, but on the other hand in-
troduces new security issues. As a matter of fact, the Federation services are considered as critical
resources, that store critical data about Federation users, hence requiring a proper security evalua-
tions. They also need to be identified to each other, within the federation, with X.509 certificates,
but these certificates do not have to be dynamically generated as federation services do not need to
be elastic, and the trust in the infrastructure is ultimately based on their management by qualified
administrators. The CA issuing these certificates is visible only within the CONTRAIL federation,
so certificates need not be issued by a commercial CA. In turn, they are used to bootstrap the trust
in the dynamically generated certificates for elastic services, but the full description of this is quite
long and beyond the scope of this paper.

3.1 Authentication

A means of authentication for users of the system is essential to secure access to Cloud re-
sources and to monitor their usage. This authentication system must manage access across each of
the Cloud providers which it federates. Each federation represents an independent security domain
with its own set of user credentials. From a user perspective, if the resources in these domains are
to be accessed seamlessly then the credentials must be managed collectively at the federation level.
CONTRAIL approaches this problem by defining a single persistent federation level identity which
maps to Cloud provider credentials under its control. In doing so, it provides a form of single sign-
on, since when the user signs on at federation level, they are effectively signed on within all Cloud
provider domains under the Federation’s control (but may not have permission, or may have se-
curity constraints, preventing them from actually accessig them.) Delegation is also implemented,
since the user delegates to the Federation the ability to invoke cloud resources on their behalf, and
possibly further to resources the ability to perform certain restricted tasks, e.g., mounting GAFS
(the data infrastructure.) We have expediently focused on “identity delegation” where a credential
representing the user is created with the remote service; however, the authorization to obtain such
a token is implemented with OAuth2. Delegating the “identity” has to be done carefully, and in
any case, the user must trust the federation layer which manages and audits this delegation. The
advantage of this approach, beyond the fact that it works, is that the credential is alive during a
well-defined lifetime, and we do not have to rely on caches or on asking for authorization every
time a decision is required; moreover, we provide a sophisticated revocation feature, revoking the
original authorisation decision based on the attributes embedded within the credential (section 3.2.)

Depending on the supported authentication interfaces of the underlying Cloud provider, the
Federation may also need to store sensitive information such as passwords. This can be mitigated
to some degree by carefully isolating and auditing access to such sensitive credentials; they are
only stored in the module which directly interfaces to the given underlying Cloud provider. In the
case of OpenNebula, the baseline Cloud provider for CONTRAIL, it has been possible to develop
a delegation mechanism without the need to store sensitive credentials. We explore this in more
depth later in this section. Note also that by storing resource credentials within the Federation
and logging the accounting data, we are free to map users to resource credentials as we need:

7

P
o
S
(
I
S
G
C

2
0
1
2
)
0
1
9

The CONTRAIL approach to Cloud Federations Jens Jensen

e.g., a one-to-one mapping, a pool of accounts, or a resource account shared by a community (as
determined by Federation attributes.)

Users authenticate to the federation layer using different methods dependent on the context.
Two distinct methods are supported: with a web browser or through a non-browser based client
such as a console script or rich client application. In the case of browser-based user agents, the
CONTRAIL web frontend application will support authentication with the Federation identity and
password. In addition, single sign-on is supported to enable the use of external identities from
other Identity Providers (IdPs). OpenID11 currently works; Shibboleth12 is likely to be supported
via a WFAYF mechanism13. Once signed in, the given identity will be mapped to the CONTRAIL
Federation identity.

In the case of console or rich client applications, authentication is by means of a short-lived
“End Entity Certificate” (EEC.) This certificate is obtained from an online CA (Certification Au-
thority) web service associated with the Federation IdP. The process to obtain a credential is as
follows: the user agent bootstraps the process by downloading the CA trust roots in order to cor-
rectly verify the online CA over HTTPS. With this in place it generates a public/private key pair.
The public key is added to a certificate request and is passed to the online CA over a HTTPS web
service interface. Along with the request, the client also passes their federation user identity and
password using the HTTP Basic Auth method (RFC 2617). Once the certificate has been obtained
it can be used to authenticate with any service in the Federation. Again we are using RESTful web
services for simplicity.

The choice of authentication technologies was determined after careful consideration during
the architectural phase. As a design principle, REST[6] was adopted for all web service interac-
tions both within the federation and for APIs exposed to the outside. Unfortunately, there is no
single established standard authentication mechanism built over REST. At the HTTP level, secu-
rity artifacts may be passed in the URI, the message header, or the message body. The latter can
be immediately ruled out because not all HTTP methods include a request body (e.g. HTTP GET).
Passing arguments in the URI breaks the principles of REST since stateful information is being
passed, as is information which is not related to the underlying resource which the URI identi-
fies. As the last of the HTTP authentication methods, the message header is used by a number
of different specifications for passing security information, e.g., HTTP BasicAuth / DigestAuth
(RFC 2617), OAuth 1.0[8] and HTTPsec[7]. The limitations on header size for some HTTP server
implementations preclude this as a means for passing the larger authentication tokens that may be
required in CONTRAIL.

Instead, we chose the socket-based approach, using certificates. Secured services run over
HTTPS and clients authenticating with them pass a user short-lived EEC in the SSL handshake.
The user’s EEC is acceptable to any service in the federation provided it is signed by the correct
CA, thus meeting the single sign-on requirement. Furthermore, we embedd custom extensions
in certificates carrying user attribute information in SAML format, since SAML provides an ex-
tensible format for providing not just attribute statements but other pertinent information such as

11http://openid.net/
12http://shibboleth.internet2.edu/
13“Which Federation Are You From,” as used by, e.g., XtreemOS VOLife and the Terena Certificate Service: users

are directed to their national federation and in a second redirection to their home institute.

8

P
o
S
(
I
S
G
C

2
0
1
2
)
0
1
9

The CONTRAIL approach to Cloud Federations Jens Jensen

Figure 2: OAuth 2.0 based delegation for Online CA Service

authentication context and perhaps authorisation scope. This technique has been employed on a
number of other projects including GridShib[2] and ESGF[9]. Since multiple authentication meth-
ods are supported in the system, a record of the associated level of assurance should be also be
included. The SAML Authentication Context provides a means of expressing this. Consumers
of the certificate (services) can then check the context statement and see if the level of assurance
provided is sufficient to execute a given action.

Finally, for service to service interactions within the Federation, some services need to authen-
ticate on behalf of a user in order to access other CONTRAIL services. As mentioned earlier, we
chose to “delegate” a full (but short-lived) user credential based on an online CA; but as a mitigat-
ing factor basing the authorisation on OAuth2 (described in the next section). This approach was
pioneered by the CILogon[3] project and eliminates the need for RFC 3820 proxy certificates [15]
which are otherwise used in grids for similar “delegation.” A HTTP-based Online CA service is
fronted with an OAuth interface shown in figure 2. CILogon used the OAuth 1.0 protocol. Version
2.0 has some significant simplification of the information flows, so CONTRAIL contributed to the
development of a python OAuth2 library.

Here, OAuth2 is used by a remote entity to get permission to obtain a delegated credential
on behalf of the user – which can then be used until it expires. This credential is itself an EEC

9

P
o
S
(
I
S
G
C

2
0
1
2
)
0
1
9

The CONTRAIL approach to Cloud Federations Jens Jensen

and so no specialised SSL middleware is needed to correctly process it at consumers, as would
be required for proxies14. Proxy certificates do provide provenance information in the form of
the delegation certificate chain back to the original issuing EEC, and we would like to retain this
information. In CONTRAIL this provenance requirement is simplified somewhat because we only
have a single level of delegation. The EEC issued from the online CA for delegation will include a
SAML authentication statement in its extension asserting that the given OAuth client successfully
authenticated, and of course the process is logged by the online CA.

3.2 Authorization

Authorization is the process of deciding whether a given (authenticated) user has the right to
perform an action on a given resource (according to pre-defined access control policies.)

The federated Cloud environment has a number of peculiarities that impact on the autho-
rization system, many of which were not seen before with grids and other forms of large-scale
distributed computing:

• There is an increased disconnect between the provider of the resoure and the consumer (the
end user). As with grids, the provider may agree to provide resources to a community, but
in a dynamic “cloudy” environment, the connection from the user to the community, and
the community to the provider is weaker than the more static models in the grid (compare
CSA threat 1, [1].) It may make sense to make use of one of the reputation based models,
communicating the reputation as a user attribute (which is one of the use cases for the usage
control model described below.)

• As the Federation is open to everyone – anyone can request an account – the levels of assur-
ance of the credentials with which they authenticate will have to be taken into account. In
the grid world, authentication has focused on the use of X.509 certificates with fairly strong
identity assertions; in a CONTRAIL Federation, there may be a mix of high and low levels
of assurance.

• In particular, the translation of identity credential to a federation credential, and possibly the
associated transfer of attributes associated with the external credential to one with similar
semantics and interpretation for the federation credential, will require careful management
and tracking of the level of assurance.

• As with grids, resource access can last a long time. In grids, if the user’s access rights change,
the next request will (should) fail (it may happen only when the VOMS assertion and/or
RFC 3820 proxy expires), but the current request may continue to execute15 Alternatively,
the user’s credential (certificate) will have to be revoked. We propose here a model for Clouds
with a much improved response rate to changes in the authorization.

Of course, systems have already been developed to address some of the need for trust in dis-
tributed infrastructures, such as WS-Trust from OASIS. In this sense, the Federation is equivalent

14OpenSSL comes with support for RFC 3820 proxies but this must be enabled at compile-time; however, the Linux
distributions usually leave it compiled out.

15In fact it will continue to execute, e.g., a job running, but its subsequent writing of data should fail.

10

P
o
S
(
I
S
G
C

2
0
1
2
)
0
1
9

The CONTRAIL approach to Cloud Federations Jens Jensen

g
et

(a
)/

u
p

d
at

e(
a,

v
)

v
al

u
e

get(policy)

policy

revokeaccess(s,o,r)

tryaccess(s,o,r)

endaccess(s,o,r)

permitaccess(s,o,r)/denyaccess(s,o,r)

revokeaccess(s,o,r)

tryaccess(s,o,r)

endaccess(s,o,r)

permitaccess(s,o,r)/denyaccess(s,o,r)

get(a)/update(a,v)

value

PEP

Attribute

Manager

PDP

PAP

PIP

Component i

Component k

PEP

Figure 3: Architecture of the Authorization System.

to an STS16 in WS-Trust, as there is a direct link from all users to a single Federation, and from
there to the providers. In general, however, the CONTRAIL federation model is a simplification
compared to WS-Trust; for example, the communication pattern is more rigid, and the federation
service normally always holds the initial security token. (Another difference is that we are mainly
using REST rather than SOAP.)

In order to address these peculiarities, the authorization system developed for the CONTRAIL
framework makes use of the Usage Control (UCON) model [14], [16]. UCON is based on the
concept of mutable attributes and continuous control. Mutable attributes are associated with either
users or resources, and may change their value as a consequence of the actions that are performed.
When the value of attributes change, the access control decision is re-evaluated against the policy,
because the changed attribute may revoke the permission to perform the action (it is of course also
possible that the policy has changed; also in this case does it make sense to re-evaluate the access
control decisions.) Hence, the difference with respect “traditional” access control models is that
in UCON, an action can also be stopped while in progress (alternatively, other remedial actions
may be possible, described briefly below.) Contrast this with the “traditional” approach where the
access control decision is taken initially (such as for the grids mentioned above.).

The main components of the CONTRAIL authorization system architecture and their interac-
tions are shown in Figure 3. The architecture is based on a set of Policy Enforcement Points (PEPs),
a Policy Decision Point (PDP), a Policy Information Point (PIP), and a Policy Administration Point
(PAP), as defined in the XACML reference model [12].

16Secure Token Service.

11

P
o
S
(
I
S
G
C

2
0
1
2
)
0
1
9

The CONTRAIL approach to Cloud Federations Jens Jensen

PEPs are (obviously) integrated within the CONTRAIL components that need to be controlled.
An important feature of a PEP is that it must be non-bypassable and tamper-proof. Hence, a PEP
associated with a service performing a security relevant action must be invoked every time that
action is executed. A PEP must be able to:

• intercept the invocations of security relevant actions, e.g. the user attempts to perform an
action on some resource;

• determine when the action has completed;

• prevent, permit, a requested security relevant action based on the decision from the PDP;

• suspend, resume, or terminate the execution of an action which has already started (this is a
CONTRAIL addition to the normal duties of a PEP);

• communicate securely with the PDP (which is normally initiated by the PEP but in CON-
TRAIL the communication can also be initiated by the PDP).

The PDP initially obtains its security policy from the Policy Administration Point (PAP) repos-
itory, and builds its internal data structures for the policy representation. The policy is written in
the “U-XACML” language [5], an extension of the well known XACML [12] policy language, to
cover UCON.

Communications from the PEP to the PDP are implemented through two request commands:
tryaccess(s,o,r) and endaccess(s,o,r) (as specified in [16]), where s represents the subject that
wants to perform the action (including associated attributes), o represents the resource (object) that
the subject wants to access, and r represent the specific action (with parameters) that the subject
wants to execute on the resource.

The execution of the operation is of course permitted only after a positive response is re-
ceived from the PDP, through the permitaccess(s,o,r) response. If the PEP instead receives a
denyaccess(s,o,r) response, the requested action is (obviously) not executed. As this decision is
likely to happen shortly after the request is made, it is natural to communicate this failure back to
the user or agent making the request.

As we have mentioned above, in UCON a decision grant may be reversed: if the right to
perform a particular action is granted by the PDP, and the action is launched (or rather, permitted)
by the PEP, the PDP sets up a subscription process whereby it may be notified of changes to the
attributes it believes are relevant to the authorization decision. Should the value change, the PDP
will re-evaluate the access control decision, and if the outcome of the decision is the reverse, it will
notify the PEP, stating also which remedial action it requests from the PEP. This may usually be to
terminate the user’s action, but could also be to suspend it and alert an administrator to investigate.

If a specific action is denied (upon original request), terminated (by being killed by the PEP),
or completed, then the outcome of the action is logged by the PEP, and the action can no longer be
performed – these states are final. To perform the same action again would require a new request
from the user (or agent); the action cannot be restarted from a final state by the PEP or PDP. At this
final state, the PEP will send endaccess(s,o,r) to the PDP to signal that the PDP need no longer
track the decision for this action. In turn, this may lead the PDP to cancel notifications for the
attributes relevant to the decision.

12

P
o
S
(
I
S
G
C

2
0
1
2
)
0
1
9

The CONTRAIL approach to Cloud Federations Jens Jensen

How does the user know whether their actions have been suspended or terminated? At present,
we have no notification mechanisms for users beyond the accounting records (which contain only
final state notifications) and the general status request of an action via the federation front end
(which currently requires the user to refresh the status.) However, it may be useful in the future to
introduce more active notifications; in which case the simplest option will be to integrate it with
UCON (e.g., “terminate and notify user.”)

4. Conclusion

In this paper, we have presented work done in the CONTRAIL project to develop federated
identity management for clouds. Architecturally, we have chosen to have a single front end for
all services, a federation access point (although in practice there will be many such even within
the same federation, they will be replicated). Access points are able to consume several different
types of identities from external identity providers (although in the current release the focus is
on the integration with OpenID), and also provide internal username/password authentication for
users unable or unwilling to make use of an existing identity. Apart from authentication, the access
points also serve as front ends for account management, as well as portals for management of cloud
resources. Users are not tied to portals, however; we have tools to log in and obtain credentials for
command line work.

Work in the near future will see the integration of Shibboleth, thus leading to a dual-federation
system: users log in with their federation credential (from their Shibboleth federation), and obtain
a federation credential, meaningful to the federation of cloud service providers in CONTRAIL.

Once logged in, a temporary X.509 certificate is generated for users; a technique that has been
used in science portals and gateways for many years: it removes the need for managing certificates
from end users, yet provides good security and the technology works with many types of resources.
In addition, CONTRAIL embeds user attributes into the certificate, attributes which are currently
maintained in the federation accounts database, but there are plans to support external attribute
authorities as well (this topic is non-trivial and deserves a paper in its own right.)

Once received by the resource, the attributes are used for access control decisions, using an ex-
tension of the well-known XACML model to enable usage control, UCON. UCON is implemented
via a set of notification mechanisms between the attribute authority and the PDP, and between the
PDP and the PEP, thus ultimately linking the enforcement of the action to attributes which may
change, making the XACML model more dynamic. The advantage of UCON is to provide a more
rapid signaling of changes to the user’s roles (or more woolly concepts like reputation), leading
to immediate re-evaluation of access control decisions involving the user. We believe that this
helps addressing concerns arising from the looser binding between users and the resource provider,
because a user’s activities can be suspended or terminated almost immediately if needed. Con-
versely, the reputation of the resource provider, or specifically their Quality of Protection, will be
expressed via the SLA negotiation mechanism, and the Federation will match this against the user’s
requirements.

In short, we have addressed the need for federated identity management in large scale, dy-
namic projects, with elastic resource provisioning. While building on existing technologies, the

13

P
o
S
(
I
S
G
C

2
0
1
2
)
0
1
9

The CONTRAIL approach to Cloud Federations Jens Jensen

integration presented in this paper, combined with the CONTRAIL extensions, will enable a new
range of dynamic federations for elastic resources.

References

[1] Cloud Security Alliance, editor. Top Threats to Cloud Computing (v.1.0).
https://cloudsecurityalliance.org/topthreats/csathreats.v1.0.pdf, March 2010.

[2] T. Barton, J. Basney, T. Freeman, T. Scavo, F. Siebenlist, V. Welch, R. Ananthakrishnan, B. Baker,
M. Goode, and K. Keahey. Identity federation and attribute-based authorization through the globus
toolkit, shibboleth, gridshib, and myproxy. 5th Annual PKI R and D Workshop, 2006.

[3] J. Basney and J. Gaynor. An oauth service for issuing certificates to science gateways for teragrid
users. TeraGrid Conference, Salt Lake City, UT., July 2011.

[4] Emanuele Carlini, Patrizio Dazzi, Giacomo Righetti, Massimo Coppola, and Laura Ricci. Cloud
federations in contrail. In Proc. of CoreGRID ERCIM Workshop on GRids, P2P and Service Comput
ing (CGWS 2011), Bordeaux, France, 2011.

[5] M. Colombo, A. Lazouski, F. Martinelli, and P. Mori. A proposal on enhancing XACML with
continuous usage control features. In Proceeedings of CoreGRID ERCIM Working Group Workshop
on Grids, P2P and Service computing, pages 133–146. Springer US, 2010.

[6] R.T. Fielding. Representational state transfer (rest), architectural styles and the design of
network-based software architectures. http://www.ics.uci.edu/ fielding/pubs/dissertation/top.htm,
2000.

[7] S. Fowler. Httpsec authentication protocol. http://www.httpsec.com/1.0/, September 2006.

[8] E. Hammer-Lahav. The oauth 1.0 protocol. http://tools.ietf.org/html/rfc5849, April 2010.

[9] P. Kershaw, R. Ananthakrishnan, L. Cinquini, D. Heimbigner, and B. Lawrence. A modular access
control architecture for the earth system grid federation. The 2011 International Conference on Grid
Computing and Applications, July 2011.

[10] I. Khan, H. Rehman, and Z. Anwar. Design and deployment of a trusted eucalyptus cloud. In Cloud
Computing (CLOUD), 2011 IEEE International Conference on, pages 380 –387, july 2011.

[11] D.S. Milojicic, I.M. Llorente, and R.S. Montero. Opennebula: A cloud management tool. IEEE
Internet Computing, 15(2):11–14, 2011.

[12] OASIS. extensible access control markup language (xacml) version 3.0. Technical report, OASIS
Standard, 2010. http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-cs-01-en.pdf.

[13] Guillaume Pierre, Ismail El Helw, Corina Stratan, Ana Oprescu, Thilo Kielmann, Thorsten Schütt,
Matej Artač, and Aleş Černivec. Conpaas: an integrated runtime environment for elastic cloud
applications. In Proceedings of the ACM/IFIP/USENIX 12th Middleware conference, Lisbon,
Portugal, December 2011.

[14] R. Sandhu and J. Park. The UCONABC usage control model. ACM Transactions on Information and
System Security (TISSEC), 7(1):128–174, 2004.

[15] S. Tuecke, V. Welch, D. Engert, L. Pearlman, and M. Thompson. Internet x.509 public key
infrastructure (pki) proxy certificate profile, 2004.

[16] X. Zhang, F. Parisi-Presicce, R. Sandhu, and J. Park. Formal model and policy specification of usage
control. ACM Transactions on Information and System Security (TISSEC), 8(4):351–387, 2005.

14

