

RUBICON
Robotic UBUquitous COgnitive Network

 Project No.: 269914

Dissemination level

X PU = Public

 PP = Restricted to other programme participants (including the Commission Services)

 RE = Restricted to a group specified by the consortium (including the Commission Services)

 CO = Confidential, only for members of the consortium (including the Commission Services)

D2.2 – Core Learning

Services API and

Documentation V.1.0

Editor: Davide Bacciu UNIPI
 Claudio Gallicchio UNIPI
 Alessio Micheli (Supervisor) UNIPI
 Claudio Vairo CNR

Contributor(s): Stefano Chessa UNIPI
 Maurizio Bonuccelli UNIPI
 Mauro Dragone UCD
 Giuseppe Amato CNR

Issue Date 30/09/2012 (M18, MS3)

Deliverable Number D2.2

WP WP3 - Learning Layer

Status Draft Working Released Delivered to EC Approved by EC

Document history

RUBICON D2.2 Core Learning Service API V1.0 RUBICON: Project No.: 22699145

18/10/2012 Page 2

Disclaimer

The information in this document is provided as is and no guarantee or warranty is given that the
information is fit for any particular purpose. The user thereof uses the information at its sole risk and
liability.

The document reflects only the author’s views and the Community is not liable for any use that may
be made of the information contained therein.

V Date Author Description

1.0 08/10/2012 Davide Bacciu,
Claudio Gallicchio

First deliverable version for internal revision and
quality assurance review.

1.1 15/10/2012 Davide Bacciu,
Claudio Gallicchio

Revised version after quality assurance review.
Changed status to “Released”.

RUBICON D2.2 Core Learning Service API V1.0 RUBICON: Project No.: 22699145

18/10/2012 Page 3

Executive Summary

This report describes the release 1.0 of the “Core Learning Service API” software, presented as
deliverable D2.2. We focus here on a description of the design and current implementation status of
this software, and we outline the future work to be performed as part of tasks 2.4 - 2.5, leading up to
the second release in deliverable D2.3 in month 30.

This report includes

- External and internal overviews of the learning layer architecture, with a particular focus on
progress since D2.1

- An outline of how to access the software and the technical platform requirements
- Detailed descriptions of the main components of the learning layer software system, to wit

o The Core learning service API v1.0
o The Learning Network (LN)
o The Learning Network Manager
o The Training Manager

- A description of the testing carried out and the successful results of all the tests
- Conclusions that mainly describe the compliance to workplan and the impact on the project

In addition to this report with an appendix documenting the Learning Layer API, the main part of the
deliverable consists of the published software, available on the RUBICON code repository and later to
be released on the project webpage.

RUBICON D2.2 Core Learning Service API V1.0 RUBICON: Project No.: 22699145

18/10/2012 Page 4

Contents

EXECUTIVE SUMMARY .. 3

ABBREVIATIONS ... 6

FIGURES ... 7

TABLES ... 8

1. OVERVIEW ... 9

1.1 TARGET AUDIENCE ... 9
1.2 EXTERNAL VIEW OF LEARNING LAYER .. 9
1.3 INTERNAL ARCHITECTURE OF THE LEARNING LAYER .. 9

1.3.1 Differences from the preliminary architecture in D2.1. ... 12
1.4 DELIVERED SOFTWARE .. 13

1.4.1 Accessing the software .. 13
1.4.2 Software requirements and hardware assumptions ... 13

1.4.2.1 Platform dependencies, PC side ... 14
1.4.2.2 Platform dependencies, WSN side.. 14

2. LEARNING LAYER SOFTWARE SYSTEM ... 15

2.1 CORE LEARNING SERVICE (CLS) API V1.0 ... 15
2.1.1 The CLS Java API .. 15
2.1.2 The CLS NesC API ... 18

2.2 LEARNING NETWORK (LN) .. 18
2.2.1 Overview .. 18
2.2.2 Learning Modules .. 20
2.2.3 Synaptic Connections ... 20
2.2.4 Forward Computation .. 22
2.2.5 Learning Network Wrapper ... 23

2.3 LEARNING NETWORK MANAGER (LNM) ... 24
2.3.1 Overview .. 24
2.3.2 Supervisor Interface ... 24
2.3.3 Synaptic Communication Control and Management .. 26
2.3.4 Device and Module Management ... 27

2.4 TRAINING MANAGER .. 27
2.4.1 Overview .. 27
2.4.2 Training of a Learning Module .. 29
2.4.3 Deployment of a Learning Module .. 29
2.4.4 Summary of the Steps for the Creation of a New Task .. 29

2.5 GRAPHICAL USER INTERFACE ... 30

3. TESTING ... 33

3.1 OUTLINE... 33
3.2 TESTING CORE LEARNING SERVICES ... 33

3.2.1 Test configuration .. 33
3.2.2 Offline Test ... 34
3.2.3 Online Testing .. 35

3.3 TESTING LOCAL LEARNING ... 36
3.4 INTEGRATION WITH CONTROL LAYER ... 37

RUBICON D2.2 Core Learning Service API V1.0 RUBICON: Project No.: 22699145

18/10/2012 Page 5

4. CONCLUSIONS .. 42

4.1 COMPLIANCE TO WORKPLAN ... 42
4.2 IMPACT ON PROJECT ... 43
4.3 NEW DEVELOPMENTS AND UNFORESEEN ISSUES .. 43

5. APPENDIX A – REFERENCE MANUAL .. 45

RUBICON D2.2 Core Learning Service API V1.0 RUBICON: Project No.: 22699145

18/10/2012 Page 6

Abbreviations

API Application Programming Interface

CLS Core Learning Service

ESN Echo State Network

GUI Graphical User Interface

LN Learning Network

LNM Learning Network Manager

PEIS Physically Embedded Intelligent Systems (Ecology)

RUBICON Robotic UBIquitous COgnitive Network

TM Training Manager

WSN/WSAN Wireless Sensor Network / Wireless Sensor and Actuator Network

RUBICON D2.2 Core Learning Service API V1.0 RUBICON: Project No.: 22699145

18/10/2012 Page 7

Figures

FIGURE 1 EXTERNAL VIEW OF THE LEARNING LAYER WITH AN HIGHLIGHTING OF THE APIS INTERFACING WITH OTHER RUBICON

LAYERS. .. 10

FIGURE 2 SOFTWARE ARCHITECTURE OF THE LEARNING LAYER: DERIVES FROM THE PRELIMINARY SKETCH IN D2.1, SECTION 5, FIGURE

7. LOGICAL SUBSYSTEMS ARE REPRESENTED AS SIMPLE RECTANGULAR BOXES, SOFTWARE COMPONENTS ARE SMALL RECTANGLES

WITH THE UML COMPONENT ICON ON THE TOP-RIGHT CORNER, WHILE INTERLAYER AND INTRALAYER INTERFACES ARE DENOTED

AS THICK AND THIN ARROWS. .. 11

FIGURE 3 ARCHITECTURAL DETAIL OF THE LN SUBSYSTEM: THE MANAGER AND LEARNING MODULE COMPONENTS RUN ON ECOLOGY

DEVICES (REPRESENTED AS L-SHAPED BOXES) DISTRIBUTED IN THE ENVIRONMENT (CURRENTLY ONLY MOTE DEVICES ARE

SUPPORTED); THE LN WRAPPER COMPONENT IS DEPLOYED ON A PC (CURRENTLY THE RUBICON GATEWAY), REPRESENTED AS

A DASHED RECTANGLE.. 12

FIGURE 4 ARCHITECTURAL DETAIL OF THE LN MANAGER SUBSYSTEM: THE LN CONTROL AGENT COMPONENT IS DEPLOYED ON A PC

(CURRENTLY THE RUBICON GATEWAY). THE LN MANAGER SUBSYSTEM INTERACTS WITH THE PEIS WRAPPER COMPONENT,
RUNNING ON THE SAME PC, THAT INTERFACES THE LEARNING LAYER WITH OTHER PEIS-ENABLED COMPONENTS. 12

FIGURE 5 ARCHITECTURAL DETAIL OF THE TRAINING MANAGER SUBSYSTEM: THE REPOSITORY, THE TRAINING AGENT AND NETWORK

MIRROR COMPONENTS ALL RUN ON THE SAME PC (CURRENTLY THE RUBICON GATEWAY), REPRESENTED AS A DASHED

RECTANGLE.. 13

FIGURE 6 THE PACKAGE DIAGRAM OF THE LEARNING LAYER JAVA API. ... 17

FIGURE 7 SCHEMATIC ILLUSTRATION OF THE WIRING AMONG SOFTWARE COMPONENTS INVOLVED IN THE CLS NESC API. LEARNING

NETWORK (LN) ... 19

FIGURE 8 A SCHEMATIC ILLUSTRATION OF THE INFORMATION FLOW IN ONE STEP OF THE FEEDFORWARD COMPUTATION ON-BOARD A

MOTE. .. 23

FIGURE 9 SCREENSHOT OF THE LEARNING LAYER GUI SHOWING THE LN LAYOUT. .. 31

FIGURE 10 SCREENSHOT OF THE LEARNING LAYER GUI SHOWING THE DEVICE MANAGER. ... 32

FIGURE 11 THE STANDARD OUT PRODUCED BY THE SCRIPT SUPERVISORENTITY.SET_CONFIGURATION_7() USED IN TEST 7. THE OUTPUT

LINES ARE GROUPED ACCORDING TO THE CORRESPONDING STEPS IN THE SCRIPT. THE OUTPUT CONCERNING THE TRAINING

FUNCTIONALITIES IS HIGHLIGHTED. ... 38

FIGURE 12 INFORMATION FLOW IN THE FEEDFORWARD CHAIN LEADING TO THE DELIVERY OF THE LN PREDICTIONS TO THE CONTROL

(OR COGNITIVE) LAYER. ... 39

FIGURE 13 SCREENSHOT OF THE CONTENT OF THE PEISSYMBOLS.CONTROL_CMD TUPLE DURING THE EXECUTION OF THE

SUPERVISORENTITY.SET_CONFIGURATION_PEIS1() SCRIPT. .. 40

FIGURE 14 SCREENSHOT OF THE CONTENT OF THE PEISSYMBOLS.OUTPUT_ID_VALUE TUPLE DURING THE EXECUTION OF THE

SUPERVISORENTITY.SET_CONFIGURATION_PEIS1() SCRIPT. THE CURRENT VALUES REPRESENT THE LIGHT AND

TEMPERATURE READINGS OF THE TRANSDUCERS ON-BOARD THE 2 MOTES. THE SHARP DIFFERENCE IN THE READINGS OF THE 2

LIGHT SENSORS (I.E. THE FIRST AND THIRD VALUES) ARE DUE TO A MALFUNCTIONING TRANSDUCER ON THE SECOND MOTE. ... 41

FIGURE 15 SCREENSHOT OF THE CONTENT OF THE PEISSYMBOLS.OUTPUT_ID TUPLE DURING THE EXECUTION OF THE

SUPERVISORENTITY.SET_CONFIGURATION_PEIS1() SCRIPT. .. 41

RUBICON D2.2 Core Learning Service API V1.0 RUBICON: Project No.: 22699145

18/10/2012 Page 8

Tables

TABLE I THE MAIN MEMBERS OF THE CLASS ECHOSTATENETWORK ... 21

TABLE II DEFINITION OF THE INPUTSYNCONNECTION_T DATA STRUCTURE. .. 21

TABLE III DEFINITION OF THE OUTPUTSYNCONNECTION_T DATA STRUCTURE. .. 21

TABLE V DESCRIPTION OF THE TUPLE USED TO PUBLISH THE OUTPUTS OF THE LN .. 23

TABLE VI DESCRIPTION OF THE TUPLE USED TO PUBLISH THE SYMBOLIC NAMES OF THE LN OUTPUTS .. 23

TABLE VII DESCRIPTION OF THE TUPLE USED TO DELIVER CONTROL INSTRUCTIONS FROM THE SUPERVISOR TO THE LNM. 25

TABLE VIII ENCODING OF THE SUPERVISOR INTERFACE COMMANDS THAT CAN BE INVOKED THROUGH THE CONTROL_CMD TUPLE.
THE ARG1 AND ARG2 COLUMN DESCRIBE THE ARGUMENTS ASSOCIATED TO THE COMMAND. THE DASH “-“ INDICATES THAT THE

COMMAND DOES NOT REQUIRE AN ARGUMENT (SET IT TO 0 FOR CONVENIENCE). .. 26

TABLE IX DESCRIPTION OF THE TUPLE USED TO DELIVER WIRING INSTRUCTIONS FROM THE SUPERVISOR TO THE LNM 26

TABLE X EXAMPLE OF A WIRING TABLE, USED BY THE TRAINING MANAGER TO CONVERT WIRING INSTRUCTIONS INTO SYNAPTIC

CONNECTIONS. ... 28

RUBICON D2.2 Core Learning Service API V1.0 RUBICON: Project No.: 22699145

18/10/2012 Page 9

1. Overview

1.1 Target audience

This report is intended for the project consortium as well as members of the public interested in
using the provided software to deploy a RUBICON ecology and/or develop application specific
software for such an ecology. It assumes that the reader is already confident with the concepts
described in Deliverable D2.1 about the learning mechanisms in RUBICON.

1.2 External view of Learning Layer

“Aka. Blackbox view of the Learning Layer.”

The RUBICON Learning Layer is a distributed software system, executed on a range of devices with
heterogeneous computational, sensing and actuator capabilities, that provides a distributed,
adaptive, and self-organizing memory for the RUBICON ecology.

The RUBICON Learning Layer processes streams of sensor data gathered by the ecology transducers
and delivered to the distributed software components of the Learning Layer through the
communication infrastructure provided by the Communication Layer and described in D1.3.1. A
Synaptic Connection mechanism is built on the top of the Synaptic Channel API (Sect. 2.2.1, D.3.1.1)
provided by the Communication Layer (see Figure 1). It allows the delivery of transducer readings
local to the learning module onboard a device, as well as the construction of a network of
cooperating learning modules that implement a distributed neural computation over the ecology
nodes. For this initial release of the Learning Layer API, we focus on the use of the Synaptic
Communication local to the node. Deliverable D2.3 will provide the software implementing the full
distributed neural computation functionality. The Learning Layer further uses the “Connectionless
Message Passing” mechanism of the Communication Layer (Sect. 2.2.3, D.3.1.1) to configure and
control its components.

The streams of sensor data are processed by the Learning Layer to produce a set of predictions that
concern the state of the environment/users monitored by the RUBICON ecology, e.g. events and
actions plans in Figure 1. Such predictions are delivered to the Control and Cognitive layers by
publishing tuples, using the Tuplespace API described in D1.3.1, Sect. 2.1 (see Figure 1.). The same
Tuplespace mechanism is used by the Learning Layer to implement the Supervisor Interface, that
receives control, configuration and training information from the higher levels of the RUBICON
ecology.

1.3 Internal architecture of the Learning Layer

“Aka. Whitebox view, opening up the Learning Layer.”

The Learning Layer is a complex software system comprising several software components,
implemented with different programming languages depending on the underlying hardware and OS
support. Deliverable D2.1 has provided a detailed architectural sketch of the Learning Layer software
system: see Figure 7 in Sect. 5 of D2.1. Such preliminary architecture has been refined and partially
modified as a result of the implementation activities (from Task 2.2 and Task 2.3) and of the
refinement phase anticipated in the second part of Task 2.1.

RUBICON D2.2 Core Learning Service API V1.0 RUBICON: Project No.: 22699145

18/10/2012 Page 10

Figure 1 External view of the Learning Layer with an highlighting of the APIs interfacing with other
RUBICON layers.
The up-to-date architecture of the Learning Layer software is depicted in Figure 2. The Learning
Layer is organized into 3 logical subsystems, represented as light-blue boxes in the architectural
sketch in Figure 2. Each subsystem is made up of a variable number of software components,
depicted as simple rectangular boxes in Figure 2, that are distributed over a heterogeneous
networked architecture comprising both resource constrained devices (e.g. sensor nodes) as well as
powerful gateways.

The Learning Layer subsystems, whose architectural detail is shown in Figure 3 to Figure 5, are as
follows:

1. The Learning Network (LN) realizes the ecology memory by means of a distributed Echo
State Network (ESN) residing on devices with heterogeneous computational capabilities,
denoted as L-shaped boxes in the architectural detail in Figure 3. Each device hosts a
Learning Module, implementing the Echo State Network (ESN), that is controlled and
configured by a Manager component. Currently, these are available as NesC software for
TinyOS 2.1 enabled devices.

2. The Learning Network Manager (LNM) is responsible for the configuration and control of the
Learning Layer. The LNM is implemented by a single software component, the LN Control
Agent, implemented as a Java-based agent and hosted on a gateway device, as shown in
Figure 4.

3. The Training Manager (TM) controls the learning phases of the Learning Layer: it receives
training information from the Supervisor and uses it to update the Learning Modules in the
LN subsystem. The TM functionalities are implemented by two Java-based software
components, i.e. the Training Agent and the Network Mirror, and by a Repository that is
used to store training data. In the current software version, the Repository is implemented
also by a Java component, that is likely to be replaced by a database system in future
releases. All the TM components are deployed on a PC, as shown in Figure 5.

Synaptic
Communication
and Message
Passing

Tuplespace API

RUBICON D2.2 Core Learning Service API V1.0 RUBICON: Project No.: 22699145

18/10/2012 Page 11

Figure 2 Software architecture of the Learning Layer: derives from the preliminary sketch in D2.1,
Section 5, Figure 7. Logical subsystems are represented as simple rectangular boxes, software
components are small rectangles with the UML component icon on the top-right corner, while
interlayer and intralayer interfaces are denoted as thick and thin arrows.

N
e

tw
o

rk
 M

ir
ro

r

Tr
ai

n
in

g
A

ge
n

t

R
e

p
o

si
to

ry

Tr
ai

n
in

g
M

an
ag

e
r

LN
 C

o
n

tr
o

l A
ge

n
t

Le
ar

n
in

g
N

e
tw

o
rk

M

an
ag

e
r

Le
ar

n
in

g
M

o
d

u
le

M
an

ag
e

r

Le
ar

n
in

g
N

e
tw

o
rk

Le
ar

n
in

g
La

ye
r

Se
n

so
r

N
o

d
e

C
o

m
m

u
n

ic
at

io
n

 L
ay

e
r

C
o

gn
it

iv
e

 L
ay

e
r

Su
p

e
rv

is
o

r

C
o

n
tr

o
l L

ay
e

r

O
n

lin
e

re
fi

n
em

en
t

Tr
ai

n
in

g
sa

m
p

le
s

W
ir

in
g

&
 C

o
n

tr
o

l
In

st
ru

ct
io

n
s

Sy
n

ap
ti

c
I/

O

Sy
n

ap
ti

c
In

st
ru

ct
io

n
s

W
ei

gh
ts

Se
n

so
r

p
re

d
ic

ti
o

n
s

Ev
en

ts
 c

la
ss

if
ic

at
io

n
/

p
re

d
ic

ti
o

n

Tr
ai

n
in

g
sa

m
p

le
s

Le
ar

n
in

g
Fe

ed
b

ac
k

Tr
ai

n
in

g
co

n
tr

o
l

Tr
ai

n
in

g
se

t

M
o

d
u

le

u
p

d
at

e

Lo
ca

l i
n

p
u

t

R
em

o
te

in

p
u

t

O
u

tp
u

t

C
o

n
fi

gu
ra

ti
o

n
/

C
o

n
tr

o
l m

sg

Le
ar

n
in

g
co

n
tr

o
l

LN
 W

ra
p

p
e

r

PEIS
Wrapper

RUBICON D2.2 Core Learning Service API V1.0 RUBICON: Project No.: 22699145

18/10/2012 Page 12

Figure 3 Architectural detail of the LN subsystem: the Manager and Learning Module components run
on ecology devices (represented as L-shaped boxes) distributed in the environment (currently only
mote devices are supported); the LN Wrapper component is deployed on a PC (currently the RUBICON
Gateway), represented as a dashed rectangle.

Figure 4 Architectural detail of the LN Manager subsystem: the LN Control Agent component is
deployed on a PC (currently the RUBICON Gateway). The LN Manager subsystem interacts with the
PEIS Wrapper component, running on the same PC, that interfaces the Learning Layer with other
PEIS-enabled components.

1.3.1 Differences from the preliminary architecture in D2.1.

A detailed specification of the role and operations of each subsystem and software component can
be found in Section 5 of D2.1, which can be used as a reference for the current deliverable. Here we
summarize the major differences and the new components that have been introduced, with respect
to the preliminary specification in D2.1, as a result of the implementation and requirement
refinement phase.

Learning Module

Manager

Learning Network

Sensor

MOTE

Local input

Remote
input

Output

LN Wrapper

PC
(RUBICON Gateway)

LN Control Agent

Learning
Network
Manager P

EIS
W

rap
p

e
r

PC (RUBICON Gateway)

RUBICON D2.2 Core Learning Service API V1.0 RUBICON: Project No.: 22699145

18/10/2012 Page 13

Figure 5 Architectural detail of the Training Manager subsystem: the Repository, the Training Agent
and Network Mirror components all run on the same PC (currently the RUBICON Gateway),
represented as a dashed rectangle.

Two major software components have been added to the architectural sketch in Figure 2:

1. The PEIS Wrapper is a component that explicitly models the fact that the interface between
the Learning Layer and the Control and Cognitive Layer (Supervisors) is realized through the
PEIS tuplespace system (see D1.3.1). The PEIS Wrapper is a Java-based software component
that realizes this interface by providing mechanisms for writing into the appropriate interface
tuples and notifies the reception of messages to the appropriate Java components of the
Learning Layer.

2. The LN Wrapper is a component that abstracts the distributed nature of the Learning
Network. It is a Java-based component that receives configuration, learning and control
related information from the LNM and the TM and forwards them to the appropriate
Manager components in the Learning Network.

1.4 Delivered software

1.4.1 Accessing the software

The software of this deliverable have been stored in the subversion repository of RUBICON and will
be published on the RUBICON public website following the second project review.

1.4.2 Software requirements and hardware assumptions

Successful operation of this software requires the deployment of the following hardware and
software configuration

 Zero or more islands (groups) of WSN nodes (also called motes) where each mote is within
direct communication range of each other mote.

 Zero or more motes in each such island. Each motes must deploy the TinyOS based
Communication Layer API (see D1.3.1) and the Learning Layer API.

Network Mirror

Training Agent

Repository

Training Manager

Training
samples

Learning
Feedback

Training control

Training
set

Module
update

PC (RUBICON Gateway)

RUBICON D2.2 Core Learning Service API V1.0 RUBICON: Project No.: 22699145

18/10/2012 Page 14

 One sink-node WSN mote per island deploying the TinyOS based Communication Layer API
(see D1.3.1) and the Learning Layer API.

 The sink-mote must be connected through a USB serial to a PC running
o The RUBICON gateway software (D1.3.1);
o The gateway wrapper software enclosed within the Learning Layer API;
o A PEIS-init component (D1.3.1);
o A working peisjava distribution;
o The Training Manager and LN Manager subsystems of the Learning Layer API,

together with the LN Wrapper component.

1.4.2.1 Platform dependencies, PC side

The primary target for the PC side of the Learning Layer is an Ubuntu 11.10 based systems running on
Intel x86 compatible hardware in 32/64-bit modes and with the Oracle Java implementation. The
software has been tested and guaranteed to work on these systems, but have also to a lesser extent
been verified to work with a range of other Posix conformant operating systems such as other linux
based systems as well as Macintosh based systems.

1.4.2.2 Platform dependencies, WSN side

The primary target for the deployment of the distributed Learning Network are WSN/WSAN based
motes based on a micro-controller and Bluetooth radio stack capable of running TinyOS 2.x and the
Communication Layer API. Furthermore, we assume that the motes have a programming flash
memory in addition to a minimum of 10KB of on-board RAM memory. The software has been tested
and guaranteed to work on the TelosB clone CM3000 by Advanticsys: the mote is equipped with and
MSP430 processor, 48KB program flash, 10KB data RAM and 1MB external flash.

RUBICON D2.2 Core Learning Service API V1.0 RUBICON: Project No.: 22699145

18/10/2012 Page 15

2. Learning Layer Software System

2.1 Core Learning Service (CLS) API V1.0

The Core Learning Service (CLS) API V1.0 provides a preliminary implementation of the RUBICON
Learning Layer, whose specification is discussed in detail in D2.1. The current release provides the
management and control functionalities specified in D2.1, Sections 5.2-5.4; the training
functionalities are currently limited to the sole Local Learning mechanism (Task 2.3.). As per the
RUBICON DoW, the distributed, reinforced and refinement learning mechanisms, as well as feature
selection, will be delivered in D2.3.

The CLS API is articulated into two software libraries:

1. A Java API comprising the PC-side software that runs on the RUBICON gateway (see Sect.
1.4.2) and provides the implementation for the LN Manager and Training Manager
subsystems, as well as the wrapper objects to access the PEIS and the LN interface.

2. A NesC library, targeted to TinyOS devices, that provides the implementation of the
distributed LN subsystem, including the Synaptic Connection mechanism.

In the remainder of this section, we discuss the main functionalities implemented as part of the CLS
API. Rather than discussing the two software libraries in separation, we provide a description of the
functionalities following the structure of the specification document D2.1, to allow a straightforward
mapping from the specification to the implementation. The key aspects and the design choices of the
Java and NesC libraries are discussed briefly in the following two subsections, whereas a more
technical reference manual of the implemented functionalities is available in Appendix A of this
document.

2.1.1 The CLS Java API

The CLS Java API implements the gateway-side functionalities of the Learning Layer: these are
provided by several threads that communicate by means of message queues and dispatcher-listener
mechanisms. A unique interface LLRunnableInterface has been defined to allow unified control
over thread activation, management and termination. The dispatcher-listener mechanism (e.g. see
the LNInformationDispatcher and LNInformationListener interfaces) allows any component
controlling the main LearningLayer object (e.g. a GUI) to subscribe to its publishing service and to
receive information on the status of the layer. The message queue system, on the other hand, is used
internally to the layer to allow thread communication.

The CLS Java API requires the Java TinyOS and peisjava libraries to be installed into the system where
it is deployed. In its current version, the CLS Java API needs to be deployed on a PC running the
RUBICON gateway, which, in turn, should be attached to the sink mote controlling the island.

The CLS Java API comprises 6 packages

 LearningLayerApi.generics – Includes the data structures shared across the Learning
Layer subsystems, the standard interface of the Learning Layer threads, the inter-thread
communication mechanisms as well as some general macros.

 LearningLayerApi.learningnetwork – Includes the Java wrapper for accessing the
distributed LN and an interface to the RUBICON gateway that currently supports
communication with TinyOS devices.

RUBICON D2.2 Core Learning Service API V1.0 RUBICON: Project No.: 22699145

18/10/2012 Page 16

 LearningLayerApi.main – Includes the definition of the main Learning Layer object, as well
as the LN output interface and the wrapper to access the PEIS functionalities.

 LearningLayerApi.manager – Includes the implementation of the LN Manager subsystem.

 LearningLayerApi.training – Includes the implementation of the Training Manager
subsystem by two main components, i.e. the TrainingAgent and the NetworkMirror.

 LearningLayerApi.test – Includes the example scripts for testing and experimenting with
the library.

Figure 6 shows the package diagram of the Learning Layer Java API, detailing the interfaces, the
classes and the package import dependencies among the packages.

In addition to that, the software includes a Java package LearningLayer.gui implementing a Graphical
User Interface (GUI) for the configuration and control of the Learning Layer. The GUI is NOT officially
a part of D2.2, as per DoW description, and it is still in a preliminary beta version that has not yet
undergone a complete debugging process; however it is a useful ad-hoc development and validation
tool.

RUBICON D2.2 Core Learning Service API V1.0 RUBICON: Project No.: 22699145

18/10/2012 Page 17

Figure 6 The package diagram of the Learning Layer Java API.

s
r
c
.
g
e
n
e
r
i
c
s

+

I
L
N
I
n
f
o
r
m
a
t
i
o
n
L
i
s
t
e
n
e
r

+

I
L
L
R
u
n
n
a
b
l
e
I
n
t
e
r
f
a
c
e

+

C
D
e
v
i
c
e
R
e
p
o
s
i
t
o
r
y

+

C
E
c
h
o
S
t
a
t
e
N
e
t
w
o
r
k

+

C
E
s
n
U
p
l
o
a
d

+

C
H
a
s
h
C
o
d
e
U
t
i
l

+

C
L
L
M
e
s
s
a
g
e
s

+

C
L
N
I
n
f
o
r
m
a
t
i
o
n
D
i
s
p
a
t
c
h
e
r

+

C
L
N
I
n
f
o
r
m
a
t
i
o
n
E
v
e
n
t

+

C
L
N
I
n
f
o
r
m
a
t
i
o
n
M
s
g

+

C
L
N
O
u
t
T
y
p
e

+

C
N
o
d
e
I
n
f
o
r
m
a
t
i
o
n

+

C
S
y
n
a
p
t
i
c
C
o
n
n
e
c
t
i
o
n

+

C
T
a
s
k
D
a
t
a

+

C
T
a
s
k
T
y
p
e

+

C
T
r
a
i
n
i
n
g
D
a
t
a

+

C
T
r
a
i
n
i
n
g
D
a
t
a
s
e
t

+

C
W
i
r
i
n
g
S
p
e
c
i
f
i
c
a
t
i
o
n

+

C
W
i
r
i
n
g
T
a
b
l
e

+

C
W
i
r
i
n
g
T
y
p
e

s
r
c
.
l
e
a
r
n
i
n
g
n
e
t
w
o
r
k

+

I
L
N
M
e
s
s
a
g
e
L
i
s
t
e
n
e
r
I
n
t
e
r
f
a
c
e

+

I
G
a
t
e
w
a
y
I
n
t
e
r
f
a
c
e

+

C
B
r
o
a
d
c
a
s
t
C
m
d
M
s
g

+

C
C
o
m
m
a
n
d
M
s
g

+

C
G
a
t
e
w
a
y
W
r
a
p
p
e
r

+

C
L
e
a
r
n
i
n
g
M
o
d
u
l
e
C
m
d
M
s
g

+

C
L
e
a
r
n
i
n
g
M
o
d
u
l
e
D
o
w
n
M
s
g

+

C
L
e
a
r
n
i
n
g
M
o
d
u
l
e
F
l
o
a
t
C
m
d
M
s
g

+

C
L
e
a
r
n
i
n
g
N
e
t
w
o
r
k
W
r
a
p
p
e
r

+

C
L
e
a
r
n
i
n
g
N
o
t
i
f
i
c
a
t
i
o
n
M
s
g

+

C
L
e
a
r
n
i
n
g
O
u
t
p
u
t
M
s
g

+

C
N
e
t
I
d
C
m
d
M
s
g

+

C
S
e
r
i
a
l
D
a
t
a
M
s
g

+

C
S
e
r
i
a
l
J
o
i
n
e
d
M
s
g

+

C
S
y
n
C
r
e
a
t
e
C
m
d
M
s
g

s
r
c
.
m
a
i
n

+

C
L
e
a
r
n
i
n
g
L
a
y
e
r

+
C

L
N
O
u
t
p
u
t
s

+

C
P
e
i
s
S
y
m
b
o
l
s

+

C
P
e
i
s
W
r
a
p
p
e
r

s
r
c
.
m
a
n
a
g
e
r

+

I
C
o
n
t
r
o
l
I
n
t
e
r
f
a
c
e

+

I
S
u
p
e
r
v
i
s
o
r
I
n
t
e
r
f
a
c
e

+

I
T
r
a
i
n
i
n
g
I
n
t
e
r
f
a
c
e

+

C
L
N
C
o
n
t
r
o
l
A
g
e
n
t

s
r
c
.
t
e
s
t

+

C
G
a
t
e
w
a
y
W
r
a
p
p
e
r
D
u
m
m
y

+

C
s
u
p
e
r
v
i
s
o
r
E
n
t
i
t
y

s
r
c
.
t
r
a
i
n
i
n
g

+

C
N
e
t
w
o
r
k
M
i
r
r
o
r

+

C
T
r
a
i
n
i
n
g
A
g
e
n
t

RUBICON D2.2 Core Learning Service API V1.0 RUBICON: Project No.: 22699145

18/10/2012 Page 18

2.1.2 The CLS NesC API

The CLS NesC API provides the mote-side functionalities of the Learning Layer. These are
implemented as ESN learning networks for TinyOS devices, including all the data structures and
functions used for the feed-forward computation, implementation of the synaptic connections,
upload/download and activation/stop of the ESN modules. The CLS NesC API also includes the
implementation of the Synaptic Connection abstraction, which is used to properly route the input
data towards the units of the neural network, by exploiting the Synaptic Channel mechanism
delivered by the Communication Layer.

The CLS NesC API requires TinyOS 2.1.1 to be installed into the devices where it is deployed,
supporting both mobile and sink devices.

The CLS NesC API consists in the files

 learning.h – Contains the data structures and macro definitions for the implementation
of the learning network onboard the TinyOS devices.

 LearningP.nc – Contains the NesC implementation of the learning modules.

 LearningC.nc – Contains the NesC configuration for the learning modules.

Figure 7 describes the structure of the CLS NesC API, showing the wiring among the different NesC
components involved.

2.2 Learning Network (LN)

2.2.1 Overview

The LN subsystem implements the environmental memory of the RUBICON ecology by means of a
network of learning modules distributed on the ecology devices (e.g. WSN motes, gateways, etc.). It
computes the Learning Layer predictions through a distributed neural computation (referred to as
forward computation) realized by the single learning modules interconnected and cooperating
through synaptic connections.

The functionalities of the LN subsystem are implemented partly by the CLS Java API and partly by the
CLS NesC API. The LearningLayerApi.learningnetwork package of the CLS Java API implements
most of the gateway-side mechanisms and data-structures of the LN. The main Java component is
implemented by the LearningNetworkWrapper class (discussed in Section 2.2.5): it provides
methods to interact with the LN and allows abstracting from the technical details of its
implementation and deployment. Further, the package defines an interface detailing the RUBICON
gateway functionalities used by the Learning Layer (see learningnetwork.GatewayInterface) as

RUBICON D2.2 Core Learning Service API V1.0 RUBICON: Project No.: 22699145

18/10/2012 Page 19

Figure 7 Schematic illustration of the wiring among software components involved in the CLS NesC
API. Learning Network (LN)

RUBICON D2.2 Core Learning Service API V1.0 RUBICON: Project No.: 22699145

18/10/2012 Page 20

well as a stand-alone component implementing the interface (see learningnetwork

.GatewayWrapper).

The CLS NesC API implements the learning modules embedded in the TinyOS ecology devices as well
as the mechanisms supporting the Synaptic Connection abstraction. In particular, in the NesC file
LearningP.nc, a complete implementation of the Leaky-Integrator ESN model is provided,
including functions for initialization, forward computation, upload/download and activation/stop of
the learning network. In the same NesC file, the mechanisms for the realization of Synaptic Channels
are implemented.

The CLS Java API implements the learning modules in the Network Mirror component. Such
implementation corresponds to the embedded implementation in the NesC API, but can also be used
to train off-line the parameters of the ESNs.

2.2.2 Learning Modules

The implementation of the ESN module in the CLS NesC API is based on several variables and
structures that are used to represent the main parameters and computational components of the
network. These include input, reservoir and readout dimensions, internal weight values of the neural
network (input-to-reservoir, recurrent reservoir and reservoir-to-readout weight matrices), reservoir
state transition function parameters and the input, reservoir state and output of the network. The
weight values for the reservoir part of the ESN are encoded by resorting to a finite alphabet of
possible weights.

The implementation of the ESN module in the CLS Java API is based on the class
EchoStateNetwork. This class stores the parameters of the ESN, including the input, reservoir and
readout dimensions, the weight values for the input-to-reservoir, recurrent reservoir and reservoir-
to-readout connections. The weight matrices are represented both in a standard form, as matrices of
float, and in a mote-version which resembles the NesC implementation, using the same weight
alphabet. Other members of the EchoStateNetwork represent the input, the state and the output
of the neural network. The class also includes the ID of the computational task associated. The most
relevant members of the class EchoStateNetwork are illustrated in Table I.

2.2.3 Synaptic Connections

Synaptic Connections are built on top of the Synaptic Channel mechanism implemented by the
Communication Layer. A Synaptic Connection is used to route the input and the output information
towards the right units of the local learning network or towards the right positions in the Synaptic
Channels buffers. Synaptic Connections can be remote or local.

The inputSynConnection_t data structure describes the input of Synaptic Connections by
specifying the ID of the associated Synaptic Channel, and the index in the corresponding ChIn buffer
reserved for the Synaptic Connection, the ID of the source device in the ecology and the ID of source
and destination neurons for the connection. The structure definition of the
inputSynConnection_t data structure is reported in Table II.

Analogously, the outputSynConnection_t data structure describes the Synaptic Connection at
the source-side, i.e. the ID of the corresponding Synaptic Channel, the index in the ChOut buffer and
the ID of the source Neuron. The structure definition of the outputSynConnection_t data
structure is reported in Table III.

RUBICON D2.2 Core Learning Service API V1.0 RUBICON: Project No.: 22699145

18/10/2012 Page 21

Table I The main members of the class EchoStateNetwork.
Class EchoStateNetwork

//Forward Computation
 private float[] state;
 private float[] output;
 private float[] input;
 private float leakyParameter;
 private int reservoirDimension;
 private int inputDimension;
 private int outputDimension;

//Weight values
 private float[][] Win,W,Wout;
 private short[][] WinIndices;
 private short[][] WIndices;
 private short[][] WPositions;

//Mote-embedded representations of weight values
 private float[] weightAlphabet;
 private int weightAlphabetLength;
 private short reservoirConnections;
 private short[][] WinE;
 private short[][] Wa;
 private short[][] Wb;
 private short maxDistanceReservoir;

//Training
 private float readoutRegularization;
 private int taskID;

Table II Definition of the inputSynConnection_t data structure.
typedef struct inputSynConnection {
 syn_ch_id_t synChannelIndex; // id of the synaptic channel
 uint8_t chIndex; // index in the synaptic channel buffer
 WSNnodeID_t sourceNode; // id of the source node
 uint16_t sourceNeuron; // id of the source neuron
 uint16_t destinationNeuron; // id of the destination neuron
 synConnectionStatus status; // status
} inputSynConnection_t;

Table III Definition of the outputSynConnection_t data structure.
typedef struct outputSynConnection {
 syn_ch_id_t synChannelIndex; // id of the synaptic channel
 uint8_t chIndex; // index in the synaptic channel buffer
 uint16_t sourceNeuron; // id of the source neuron
 synConnectionStatus status; // status
} outputSynConnection_t;

RUBICON D2.2 Core Learning Service API V1.0 RUBICON: Project No.: 22699145

18/10/2012 Page 22

Remote input Synaptic Connections are created by the function
configure_syn_connect_in(nodeId, neuronsId_out, neuronsId_in, numNeurons,
params), requesting the configuration of a remote synaptic connection among the numNeurons
neuronsID_out in nodeId and the neuronsId_in in the local node. Analogously, the creation of
an output Synaptic Connection is requested by invoking the function
configure_syn_connect_out(nodeId, neuronsId, numNeurons, params), which
configures an output Synaptic Connection from the numNeurons units neuronsId in the local node
to the node with identifier nodeId.

In the case of a local Synaptic Connection the source of the data is represented by local sensor
transducers. This particular case is handled as a special case of the remote Synaptic Connection case,
and corresponds to the creation of an input and an output Synaptic Connections, in which the ID of
the transducer is obtained as a special encoding of the field describing the ID of the source neuron.

2.2.4 Forward Computation

The forward computation phase on-board the RUBICON nodes is realized in the LearningP.nc file
within the NesC API. Each time the RUBICON clock fires, the input for the ESN module is read from
the input Synaptic Connections using the function read_syn_connection(inConnection), then
the routine do_feedforward_step() is called to compute the actual output of the ESN, and
finally the output of the ESN module is propagated through a write operation
write_syn_connection(outConnection) on the Output Synaptic connections. These passes
are schematically shown in Figure 8.

The LNOutputs component, implemented through a java class in the main package of the CLS Java
API, maintains information concerning the outputs predicted by the LN, including their symbolic
names and their current values. The LNOutputs component receives the updated LN predictions
from the LearningNetworkWrapper (see Sect. 2.2.5): these can be accessed through getter methods
by any component possessing a reference to the LNOutputs object.

Nevertheless, the information in the LNOutputs component is made available to any ecology
participant (including Control and Cognitive Layer) through PEIS tuples. To receive information
concerning the current LN predictions and their symbolic names, a PEIS-enabled participant need
only to subscribe to the tuples with key-string “LLoutputIDValue” and “LLoutputID”, respectively.
Table IV and Table V show the format of the two tuples as well as the “PEIS Name” macro defined in
main.PeisSymbols.java. In particular, the values predicted for K LN outputs (i.e. a float array of
size K) are serialized to string of comma-separated values (one for each output) and published to as a
tuple with a binary encoding as a byte array (see Table IV). Symbolic names are concatenated into a
unique string, using the placeholder “#” to separate between names (see Table V). Publishing of the
output-related tuples is achieved by the main.PeisWrapper component, which takes care of creating
the OUTPUT_ID and OUTPUT_ID_VALUE tuples and updates their value at each tick of the RUBICON
clock.

RUBICON D2.2 Core Learning Service API V1.0 RUBICON: Project No.: 22699145

18/10/2012 Page 23

Figure 8 A schematic illustration of the information flow in one step of the feedforward computation
on-board a mote.

Table IV Description of the tuple used to publish the outputs of the LN

Tuple String Peis Name Payload (Byte[] encoding a string of comma-separated
floats)

LLoutputIDValue OUTPUT_ID_VALUE OUT_1,OUT_2, …,OUT_K

Table V Description of the tuple used to publish the symbolic names of the LN outputs

Tuple String Peis Name Payload (String)

LLoutputID OUTPUT_ID OUT_NAME1# OUT_NAME2#...#OUT_NAMEK

2.2.5 Learning Network Wrapper

The LearningNetworkWrapper class is defined in the learningnetwork package of the CLS Java
API: it provides methods to interact with the LN and allows abstracting from the technical details of
its implementation. The LearningNetworkWrapper implements an agent that receives control and
configuration commands from the LNControlAgent and the NetworkMirror components, it formats
them into appropriate messages and forwards them to the LN through the communication primitives
defined by the RUBICON Gateway. Further, it collects information from the LN and forwards it to the

RUBICON D2.2 Core Learning Service API V1.0 RUBICON: Project No.: 22699145

18/10/2012 Page 24

appropriate Learning Layer components: e.g. it receives the LN predictions and communicates them
to the LNOutputs component.

The LearningNetworkWrapper interaction with the RUBICON gateway is defined by the methods
listed in the learningnetwork.GatewayInterface interface. This defines a set of send() operations
to direct messages to the learning modules, as well as a list of command types. To receive
information from the LN (through the RUBICON gateway), the LearningNetworkWrapper
implements the LNMessageListenerInterface method messageReceived().

The LearningNetworkWrapper agent maintains a list of pending control and configuration
commands sent to the LN (i.e. the requestState structure), for the purpose of supporting reliable
delivery of the requests. For each non-broadcast message, the LearningNetworkWrapper awaits the
reception of an acknowledgment of the state of the pending command, that is used to update the
requestState structure and to inform the LNControlAgent and NetworkMirror of the outcome of
their requests.

2.3 Learning Network Manager (LNM)

2.3.1 Overview

The main goal of the LNM subsystem is to configure and manage the Learning Layer. It acts as an
interface towards the RUBICON layers performing as Supervisors, by receiving their instructions (e.g.
wiring information) and transforming them into control and configuration actions (e.g. synaptic
connection setup) that are delivered to the appropriate Learning Layer components (e.g. the LN
Wrapper).

The functionalities of the LNM subsystem are mainly implemented in the
LearningLayerApi.manager package of the CLS Java API. The LNControlAgent class implements
the agent controlling the subsystem, which advertises 3 types of input interfaces

1. SupervisorInterface - Provides methods that are invoked by the Supervisor component.
2. ControlInterface – Provides additional methods that can be (optionally) invoked by a

Supervisor component (e.g. the GUI), to have a finer grained control on the Learning Layer.
3. TrainingInterface - Provides methods that are invoked by the Training Agent in the TM.

The LNControlAgent advertises information concerning the internal status of the Learning Layer
through 3 information dispatchers (LNInformationDispatcher)corresponding to the 3 input
interfaces described, i.e. the superDisp, trainDisp and controlDisp fields.

The LNControlAgent maintains a repository of deployed synaptic connections (synConList) and a
repository of available ecology nodes (deviceRepository) for the purpose of LN management.

2.3.2 Supervisor Interface

This interface allows the Learning Layer to interact with the entities acting as Supervisor, e.g. other
RUBICON layers or the GUI. The prototype methods that pertain to this interface are listed in
SupervisorInterface.java. Additional (optional) management operations can be found in
ControlInterface.java.

The set of methods pertaining to the Supervisor interface can be invoked either

 Directly, by calling the appropriate method of the SupervisorInterface (or
ControlInterface) implemented in the LNControlAgent; this approach can only be used

RUBICON D2.2 Core Learning Service API V1.0 RUBICON: Project No.: 22699145

18/10/2012 Page 25

by those software entities possessing the handler to the LNControlAgent object (e.g. the
GUI);

 Remotely, by posting a well-formatted request on the appropriate tuple in PEIS; this
approach can be used by any software entity that is integrated in PEIS (e.g. the Control Layer
or the Cognitive Layer).

A PEIS-enabled entity can invoke methods of the Supervisor Interface by means of the tuples with
key-string “LLControlCmd” and “LLWireCmd”: Table VI and Table VIII show the expected tuple format
as well as the “PEIS Name” macro defined in main.PeisSymbols.java.

The CONTROL_CMD tuple (Table VI) expects a String of 3 comma-separated int, such that the first
integer encodes the command, while the second and the third integers denote the (optional)
command arguments. The CMD_CODE values for the different methods are defined in
main.PeisSymbols.java and reported in Table VII for the sake of completeness. E.g. to place a
stop_learn_module(netID) request, the Supervisor should fill the CONTROL_CMD tuple with the int
value 4 (that encodes the stop command), followed by the netID value, followed by 0 (since the stop
command has a single argument), e.g. the String “4,1,0” if netID = 1.

Table VI Description of the tuple used to deliver control instructions from the Supervisor to the LNM.

Tuple String Peis Name Payload (Byte[] encoding a string of 3 comma-separated int)

LLControlCmd CONTROL_CMD CMD_CODE,ARG1,ARG2

The WIRING_CMD tuple (Table VIII) is used to post the command (see specification 5.3.1 in D2.1)

learn_new_task(WiringType wiringInfo, TaskType taskInfo)

that requests the allocation of a new learning task and provides the necessary wiring and task
information through the objects of type WiringType and TaskType, respectively. These two classes
pertain to the TM subsystem and their details are discussed in Sect. 2.4: they provide serialization
methods to transform the object into a string representation that can be used as a payload for the
tuple Table VIII. Hence a component that is willing to post a learn_new_task()request needs only to
serialize the wiring and task information and publish it in the WIRING_CMD string.

The LNControlAgent object receives the commands posted in the PEIS Supervisor Interface through
the main.PeisWrapper component, which takes care of subscribing to the CONTROL_CMD and
WIRING_CMD tuples and notifies the LNControlAgent by invoking its local methods.

RUBICON D2.2 Core Learning Service API V1.0 RUBICON: Project No.: 22699145

18/10/2012 Page 26

Table VII Encoding of the Supervisor Interface commands that can be invoked through the
CONTROL_CMD tuple. The Arg1 and Arg2 column describe the arguments associated to the command.
The dash “-“ indicates that the command does not require an argument (set it to 0 for convenience).

Name Value Arg1 Arg2 Description

ACTIVATE_FORWARD 1 - - Broadcast message to activate forward
computation

STOP_FORWARD 2 - - Broadcast message to stop forward
computation

ACTIVATE_MODULE 3 nodeID netID Activates a target learning module

STOP_MODULE 4 nodeID netID Stops a target learning module

RESET_MODULE 5 nodeID netID Resets a target learning module

CONNECT_NODE 6 nodeID - Connects a target device to the LN

DISCONNECT_NODE 7 nodeID - Disconnects a target device to the LN

SET_CLOCK 8 clock - Sets the RUBICON clock

Table VIII Description of the tuple used to deliver wiring instructions from the Supervisor to the LNM

Tuple String Peis Name Payload (String)

LLWireCmd WIRING_CMD Wiring+Task

FORMAT = <WIRING>[OUTID]{TASK} =
<s1,d1>...<sn,dn>[outid1]…[outidk]{type}{granularity}…
{datatype}{outtype}

2.3.3 Synaptic Communication Control and Management

The LNControlAgent provides mechanisms for the deployment of the synaptic connections and
maintains updated information concerning their status. The deployment of a set of synaptic
connections listSC associated to a learning task with identifier taskID is requested, by the
TrainingAgent, by means of the method

deploy_synaptic_connections(int taskID, List<SynapticConnection> listSC).

The LNControlAgent determines the type of synaptic connection (local or remote, see D2.1) and
forwards the appropriate requests to the LearningNetworkWrapper object. Also, it stores the
synaptic connections into the synConList repository and sets their status to
synapticState.INITING. The LNControlAgent will be notified by the LearningNetworkWrapper
upon the successful deployment of a synaptic connection, whose status will be then changed to
synapticState.READY. Single synaptic connections can also be requested by using the
create_synaptic_connections() method in the ControlInterface.

RUBICON D2.2 Core Learning Service API V1.0 RUBICON: Project No.: 22699145

18/10/2012 Page 27

The class generics.SynapticConnection defines the synaptic connection objects used by the
LNControlAgent. It maintains information concerning the source and destination endpoints of the
connection as well as the QoS parameters, as specified in Sect. 5.2.2 of D2.1. Further, it stores
management related information such as the ID of the associated learning task (optional), a
deployment ID to manage its setup phase and the state information discussed above.

2.3.4 Device and Module Management

The LNControlAgent provides mechanisms for configuration and control of the devices participating
in the Learning Layer, as well as of the Learning Modules hosted on such devices.

Information concerning the devices is maintained in the deviceRepository structure (defined in
generics.DeviceRepository): an element of such repository provides information on the ID of the
device, on the ID of the (optional) on-board learning module and on its current state (INITING,
CONNECTED, DISCONNECTING). Additionally, the repository stores information on the device
capabilities in terms of sensors, transducers, etc. Such information is communicated to the
LNControlAgent through the SupervisorInterface method

connect_node(int nodeID, NodeInformation nodeSpec).

In the current implementation, such a notification is automatically provided by the device itself when
it joins the ecology. A joining message containing the nodeSpec information is forwarded by the
RUBICON gateway to the LearningNetworkWrapper which, in turns, activates the connect_node()
method above. The deviceRepository also provides a getCompatibleDevice(capability)
method, that determines which devices in the repository possess the transducer capabilities passed
as argument.

The LNControlAgent provides methods (in its SupervisorInterface) to trigger the activation, stop
and reset of the single learning modules distributed on the ecology device (according to
specifications 5.2.4.4-5.2.4.6 in D2.1). The activation of a learning module netID on the device
nodeID is achieved through the method activate_learn_module(nodeID, netID): note that this
is a NECESSARY step in order to enable the reception of other Learning Layer commands on the
device, which will be otherwise ignored. Activation and stopping of the forward computation in the
LN is triggered by calling the LNControlAgent methods activate_forward_computation() and
stop_forward_computation(). This result in a broadcast message sent by the LN Wrapper and
processed by all the learning modules that have received the activation message.

2.4 Training Manager

2.4.1 Overview

The Training Manager comprises the Training Agent and the Network Mirror software components.
The Training Manager receives wiring and task information for the creation of new computational
tasks. In order to manage the wiring instructions, the Training Manager manages a Wiring Table (see
an example in Table IX) to convert the wiring instructions into a set of Synaptic Connections.

Wiring instructions are implemented by the class WiringType, containing ArrayList of symbolic
names for source, destination (in couples) and output entities for the wiring instruction. The entries
of the Wiring Table are implemented by the class WiringSpecification, which for each element
specifies the symbolic name, the ID of the node, the ID of the ESN, the ID of the unit within the ESN
and some possible associated information. The class WiringTable manages an ArrayList of
WiringSpecification objects, allowing to add and to remove entries from the table.

RUBICON D2.2 Core Learning Service API V1.0 RUBICON: Project No.: 22699145

18/10/2012 Page 28

Table IX Example of a wiring table, used by the Training Manager to convert wiring instructions into
synaptic connections.

Symbolic Name Node ID Net ID Sensor/Neuron
ID

Associated
Information
(optional)

LIGHT_SENSOR1 1 0 1

EVENT_FIRE2 4 8 45

LOCATION_PREDICT_X 7 10 30

LOCATION_PREDICT_Y 7 10 31

… … … … …

Task information are specified through the class TaskType, which entails information on the
computational task, namely the task type (a String which may be equal to “classification” or
“regression”), the granularity (a String which may be equal to “sequence-to-sequence” or “sequence-
to-element”), the data type (a String which may be equal to “event” or “sensory”) and the output
type (a String which may be equal to “weight”, “event”, “sensor”).

Training data are used to train the ESN modules. Training examples are implemented by the class
TrainingData. In the constructor of the class TrainingData, the input and the desired (target)
output are specified through two vectors of float. An ArrayList of IDs of the tasks to which the
training sample is associated should be provided as well. Training datasets are implemented by the
class TrainingDataset, which entails an ArrayList of TrainingData objects.

The Training Agent is implemented by the class TrainingAgent. It manages a WiringTable object
in order to realize the functionalities related to the wiring instructions conversion. Wiring
instructions in the form of WiringSpecification objects can be added to the wiring table by
using the method add_wiring_specification(w). Analogously, the entries in the wiring table
can be removed by invoking the method remove_wiring_specification(w).

The Training Agent manages a collection of tasks, through an ArrayList of TaskData objects. A new
task is allocated by calling the method allocate_task(wiring, taskInfo, nodeID), where
the wiring instructions, the information on the task and the ID of the RUBICON node on which to
deploy the task, are specified respectively by the WiringType object wiring, the TaskType object
taskInfo and the integer nodeID.

 All the information pertaining to a computational task and necessary for the Training Agent, is
collected within the class TaskData, which comprises a WiringType object, a TaskInfo object, a
TrainingDataset object (collecting the training data that should be used for training on the task),
a List of SynapticConnection objects (in which the wiring instructions can be converted using the
wiring table) and a status. The TrainingAgent class manages a repository of tasks and related
information by containing an ArrayList of TaskData. Training data examples are passed to the
Training Agent by the function new_training_data(sample), which stores the TrainingData
object sample in the TrainingDataset object associated to all the tasks with identifiers indicated
in the sample itself.

The Network Mirror is implemented by the class NetworkMirror. This class contains an ArrayList of
EchoStateNetwork objects (which correspond to the deployed ESN modules), and manages a
queue of incoming messages from an associated LearningNetworkWrapper object. The creation
of a new ESN is requested to the Network Mirror by invoking the method addESN(taskID,
inputDimension, outputDimension, nodeID), which creates and stores a new

RUBICON D2.2 Core Learning Service API V1.0 RUBICON: Project No.: 22699145

18/10/2012 Page 29

EchoStateNetwork object using the specified information. When the creation of a new ESN is
requested, the WiringTable object in the TrainingAgent is also updated with the neural
network ID assigned by the NetworkMirror.

2.4.2 Training of a Learning Module

Training examples are provided to the Training Agent by the new_training_data method.
Learning modules can be trained by invoking the method do_training(int taskID) in the
TrainingAgent, specifying the ID of the task on which training should be performed. Training is
performed only if training data for the task has already been provided. In this case the
TrainingAgent retrieves the TrainingDataset corresponding to the task and calls the method
do_training(taskID, T) in the NetworkMirror, specifying the ID of the task and the
TrainingDataset.

2.4.3 Deployment of a Learning Module

The successful completion of the training procedure on a task with handler taskID is signalled by the
NetworkMirror to the TrainingAgent, by calling the method training_complete(taskID).
Subsequently, the TrainingAgent method deploy_task(taskID) is invoked to start the
deployment of the learning modules. The TrainingAgent then calls the method
deploy_modules(taskID) in the NetworkMirror, which calls the upload_module(nodeID,
netID, ESN) function in the associated LearningNetworkWrapper object for each
EchoStateNetwork object which is associated to the task. When the upload of a module has been
completed, the LearningNetworkWrapper object sends a LEARN_MODULE_READY message to
the NetworkMirror. When a LEARN_MODULE_READY message has been received for all the ESN
modules involved in a task, the NetworkMirror signals the completion of the upload procedure to
the TrainingAgent, by calling the method upload_complete(taskID). Finally, the
TrainingAgent requests the deployment of the Synaptic Connections by a call to the function
deploy_synaptic_connections(taskID, sc) in the LNControlAgent object, where sc is a
List of SynapticConnection objects (corresponding to the wiring instructions).

2.4.4 Summary of the Steps for the Creation of a New Task

This section summarizes the steps to be used at the Training Agent level for the creation of a new
computational task:

1. Update the wiring table
Add an entry in the wiring table for each new entity which is involved in the task, using the
TrainingAgent method add_wiring_specification(w), where w is a
WiringSpecification object.

2. Construct the wiring instructions
Construct a WiringType object. This can be done by using the constructor
WiringType(source, destination, symbolicNames), where source,
destination and symbolicNames are ArrayList of String. Another possibility
consists in using a static method implemented in the class WiringType, i.e.
fromPeisTuple(s), which returns a WiringType object, and where s is a String
specifying the wiring instructions according to the format
“<source1,destination1>…<sourceN,destinationN>[output1]...[outputM]”.

3. Construct the task information
Construct a TaskType object. This can be done by using the constructor TaskType(type,
granularity, dataType, outputType), where type, granularity, dataType and
outputType are String objects. Another possibility is to use a static method implemented

RUBICON D2.2 Core Learning Service API V1.0 RUBICON: Project No.: 22699145

18/10/2012 Page 30

in the class TaskType, i.e. fromPeisTuple(s), which returns a TaskType object, and
where s is a String specifying the task information according to the format
"{type}{granularity}{data_type}{output_type}"

4. Allocate the task
Allocate the new task by calling the TrainingAgent method allocate_task(wiring,
taskInfo, nodeID), which returns the ID of the allocated task.

5. Provide the training data
Provide training examples for the computational task by using the TrainingAgent method
new_training_data(sample), where sample is a TrainingData object specifying the
input, the desired output and a list of task ID to which the sample should be associated.

6. Train the Learning Modules
Train the ESNs corresponding to the new task, by using the method do_training(taskID),
where taskID is the integer ID of the task. When training is completed, the learning modules
are automatically deployed (see section 2.4.3), and the Forward Computation is activated
(see section 2.2.4).

2.5 Graphical User Interface

A GUI for configuration and control of the Learning Layer is delivered together with the CLS Java API
1.0: the Java package gui, available in the WP2 folder of the RUBICON repository, contains all the
classes needed to instantiate the GUI. We reiterate that the GUI is not officially part of this
deliverable D2.2. and it is provided in a beta version for a preview of its functionalities.

The GUI allows the user to organize and access the distributed learning system implemented by the
CLS API, providing a straightforward means for adjusting the Learning Layer configuration, controlling
its execution and monitoring the LN outputs. The key class of the GUI is gui.main.StartWindow,
which also includes the implementation of the main() method for running the interface. The GUI
accesses the LN through the CLS API: it reads the LN predictions from the LNOutputs component
and invokes the methods defined in manager.SupervisorInterface and
manager.ControlInterface. Further, the GUI interfaces with a (optional) sniffer to receive and
publish, at runtime, the values circulating in the synaptic connections as well as the current
transducer readings. Finally, the GUI implements a JDBC interface (package gui.database) that
allows connecting to a PostgreSQL database storing information concerning experiments performed
with the LN. This information includes the layout of the LN, including the composing devices, the
learning modules and the associated Synaptic Connections. By this means, experiments can be
retrieved for future execution/analysis.

A screen-shot of the typical appearance of an experiment in the GUI is shown in Figure 9. Here, the
structure of the LN is represented as a graph in which nodes are devices and arcs are Synaptic
Connections between them. Each arc is labelled with the symbolic names of the neurons connected
in the two devices. As connections between modules are usually quite rich, the interface allows to
select a single device to focus only on its connections (the red node in the picture). Figure 9, for
instance, shows a red node receiving three incoming Synaptic Connections for light, position_x and
position_y, and several outgoing Synaptic Connections to other devices.

RUBICON D2.2 Core Learning Service API V1.0 RUBICON: Project No.: 22699145

18/10/2012 Page 31

Figure 9 Screenshot of the Learning Layer GUI showing the LN layout.

The GUI provides a device manager where the user can access all the parameters of the learning
module on-board the device. The device manager is activated by double-clicking the node (Figure
10). Each device manager can be docked on the right part of the interface or detached to a new
window to ease user interaction. Through the device manager, the user can adjust the learning
module parameters defined in the generics.EchoStateNetwork class (e.g. the size of the reservoir)
as well as its connection topology with other learning modules (i.e. the Synaptic Connections).

Synaptic Connections can be established both via the device manager in Figure 10 as well as
graphically by drawing a connection in the canvas displaying the LN network, as in Figure 9. In both
cases, the user needs to specify the identifiers of the input and output neurons to be connected. A
new device can be added to the LN using the plus (+) button on the top-left corner of the GUI (see
Figure 10).

RUBICON D2.2 Core Learning Service API V1.0 RUBICON: Project No.: 22699145

18/10/2012 Page 32

Figure 10 Screenshot of the Learning Layer GUI showing the Device Manager.

Commands affecting the whole network can be issued from the “Network” tab menu on the right
side of the GUI (see Figure 9): for instance, it is possible to adjust the global RUBICON clock. The
download and upload buttons are designed to allow the user to deploy the whole LN configuration to
the actual devices, or to retrieve the configuration from the actual LN. The start/stop buttons
activate and disable the forward computation, while the whole LN network can be restarted, possibly
using a different configuration, using the resynch button. The last button allows to enable or disable
the optional sniffer. If the sniffer is active, it is possible to display the learning network outputs in the
lower part of the screen. The LN output menu allows to select which neuron output is shown at a
given time.

RUBICON D2.2 Core Learning Service API V1.0 RUBICON: Project No.: 22699145

18/10/2012 Page 33

3. Testing

3.1 Outline

Testing of a distributed learning system, such as the Learning Layer, entails assessing several
mechanisms that are pipelined to realize a distributed neural computation. The first step of the chain
requires training a set of learning modules on some computational learning tasks (i.e. in the TM
subsystem). These are then deployed to the devices constituting the LN through appropriate
communication mechanisms. After that, the pipeline requires the creation of the synaptic
connections linking the single learning modules into a distributed system (the LN). Only then, we are
allowed to start the distributed computation, which we refer to as the feedforward computation, in
the following. The result of such feedforward step are the LN predictions (or outputs), that are
published to the higher level components of the RUBICON stack, thus concluding the deployment
pipeline.

The debugging and assessment process described in this section focuses on testing the CLS API V1.0
functionalities with respect to the 3 characterizing aspects of D2.2, as per RUBICON DoW
description, that are

1. Core Learning Services: this pertains testing the instantiation of the Learning Layer
infrastructure, including the successful activation of all the software components and their
inter-thread communication mechanisms, as well as testing the deployment of local and
remote synaptic connections.

2. Local Learning: this includes testing forward computation, with only local input sources, and
the mechanisms to upload/download learning modules to/from the LN.

3. Integration with Control Layer: this involves the integration with the PEIS tuplespace to
receive control and configuration commands from the Control Layer (or any Layer that is
integrated in PEIS, e.g. the Cognitive Layer) as well as to publish the LN predictions.

These 3 aspects have been assessed with targeted tests scripts whose experimental setup and results
are presented in detail in the following subsections. Nevertheless, all the scripts needed to reproduce
the tests described here can be found in the LearningLayerApi.test package of the CLS Java API.
The key classes of this package are

 supervisorEntity – a stand-alone implementation of the Supervisor for testing and
experimentation purposes; it provides a set of example script including control commands
that exercise the various functionalities and configuration options of the Learning Layer.

 GatewayWrapperDummy - a stub components that wraps the Rubicon Gateway functionalities
needed by the Learning Layer and allows testing the Java objects without needing to be
connected with an actual LN; it collects all command and configuration commands from the
LearningNetworkWrapper component and responds with appropriate acknowledgment
messages.

3.2 Testing Core Learning Services

3.2.1 Test configuration

The assessment of the Core Learning Services in the CLS API V1.0. entails testing

1. Creation, runtime execution and destruction of the software components composing the
Learning Layer (see Figure 2).

2. Inter-thread communication mechanisms, as well as handling of control and status messages.

RUBICON D2.2 Core Learning Service API V1.0 RUBICON: Project No.: 22699145

18/10/2012 Page 34

3. Deployment and management of the synaptic connections, including activation and halting
of synaptic streaming.

4. Collection and publishing of the LN predictions on the output interface component.
The hardware configuration used in the tests comprises:

 1 PC (coherent with the platform requirements in 1.4.2.1) running the CLS Java API.

 1 sink mote (coherent with the platform requirements in 1.4.2.2) attached to the PC through
USB and running the sink-specific code of the TinyOS CLS API.

 2 motes (coherent with the platform requirements in 1.4.2.2) equipped with light and
temperature transducers and running the TinyOS CLS API.

3.2.2 Offline Test

The first round of tests is intended to assess the Java-based components offline with respect to the
LN. To this end, we have employed the stub GatewayWrapperDummy component, that implements the
same interface of the actual GatewayWrapper but does not interact with an actual LN. Instead, it
receives all control and configuration commands from the Learning Layer, queues them and
responds with appropriate acknowledgement messages after some delay, simulating interaction with
the network.

Test 1 Description

The first test script, implemented by the supervisorEntity.set_configuration_1() method, is
organized as follows

1. Creates the main LearningLayer object and the associated components.
2. Allocates 2 local synaptic connections per mote, whose sources are the light and

temperature transducers, by calling create_synaptic_connections().
3. Implements a stub forward computation that copies the value red by the local synaptic

connection into 2 output neurons.
4. Allocates 2 remote synaptic connections linking the output neurons on each mote to the

sink, to simulate the LN predictions.
5. Set the RUBICON clock to 500msec by set_rubicon_clock().
6. Starts the synaptic streaming (and stub forward computation) using both the single

broadcast command activate_forward_computation() and multiple point-to-point
commands activate_learn_module().

7. Collects and publishes LN predictions for 30seconds.
8. Stops the synaptic streaming (stop_forward_computation() or stop_learn_module())

and sends termination signals to the Learning Layer components.

Test 1 Outcome

The offline execution of this script produces the correct activation of all the Java objects and threads
composing the Learning Layer. The invocation of the synaptic connection create command, correctly
allocates new synapses in the LNControlAgent.synConList repository: the state of the synapses in
the repository is maintained coherent with the deployment status advertised for the connections
(e.g. the remote connections’ state is set to READY only when the LNControlAgent receives
acknowledgement for both connection’ ends).

The request queue LearningNetworkWrapper.requestState correctly handles the pending
messages and the associated acknowledgments. The LN status messages are correctly delivered by
the LearningNetworkWrapper to the other components. The stub forward computation progresses

RUBICON D2.2 Core Learning Service API V1.0 RUBICON: Project No.: 22699145

18/10/2012 Page 35

without problems for 30seconds and a default prediction value is published by the LNOutputs
component. Termination of the synaptic streaming is correctly propagated to the stub gateway and
all the Learning Layer thread terminate gracefully without errors.

Test 2 Description

The second test script, implemented by the supervisorEntity.set_configuration_2() method,
aims at assessing the mechanisms for connecting and disconnecting devices from the LN. The script:

1. Creates a capability specification object nodeInfo for each mote ;
2. Instructs the Learning Layer to connect the associated devices ;
3. After a delay of 5 seconds, requests the disconnection of the devices and terminates.

Test 2 Outcome

Execution of the script correctly places the new devices in the LNControlAgent.deviceRepository
with the appropriate INITING status, that is changed to CONNECTED upon reception of the
acknowledgment message from the gateway. When the disconnection message is received, the
device state is changed to DISCONNECTED and the Learning Layer terminates without errors.

Test 3 Description

The third test script, implemented by the supervisorEntity.set_configuration_3() method,
aims at assessing the LNControlAgent.deploy_synaptic_connections() mechanism for the
deployment of a bundle of synaptic connections associated to a computational learning task.

The test configuration comprises the deployment of the same local and remote connections in
supervisorEntity.set_configuration_1().

Test 3 Outcome

Execution of the script produces the correct instantiation of the synaptic connections, as for the first
test.

3.2.3 Online Testing

The second round of tests assesses the full CLS API, including both the Java components on the
gateway and the TinyOS components onboard the motes. The stub GatewayWrapperDummy is
replaced with the working GatewayWrapper object that interacts with the LN through the sink mote
connected on the PC USB port.

Test 4 Description

The first online test uses the supervisorEntity.set_configuration_1() script with actual motes.
The execution of the script replicates the steps of the successful offline execution.

Test 4 Outcome

All the synaptic connections are correctly deployed and acknowledged. The activation of synaptic
streaming delivers the transducer readings (light and temperature) from the motes to the LNOutput
interface, that publishes them to the standard out. Streaming of the transducer readings is
maintained for 30 seconds, after which it is terminated by the supervisorEntity with all threads
exiting without errors and the motes acknowledging the stopping of the transmission.

RUBICON D2.2 Core Learning Service API V1.0 RUBICON: Project No.: 22699145

18/10/2012 Page 36

Test 5 Description

The second online test assesses the mechanisms for connecting and disconnecting devices from the
LN using self-joining messages sent by the motes. Differently from the script in
supervisorEntity.set_configuration_2() the availability of a device is not signalled by the
supervisor. Rather, the device itself advertises its availability through a SerialJoinedMsg that is
notified to the LearningNetworkWrapper.

Test 5 Outcome

The test script supervisorEntity.set_configuration_2online() starts the Learning Layer and
waits for joining messages. Execution of the script shows that the two motes send their joining
messages, that are received by the LearningNetworkWrapper which notifies the LNControlAgent
through the connect_node() method. The device repository LNControlAgent.deviceRepository is
correctly updated to reflect the availability of the motes, whose state is assigned to CONNECTED as
soon as the acknowledgment message is received.

Testing of the online deployment of a bundle of synaptic connections (e.g. as in the
supervisorEntity.set_configuration_3() script) is shown in the next section together with the
deployment of a local learning task.

3.3 Testing Local Learning

These rounds of tests focus on the deployment of learning modules, the creation of a new
computational task and training of the learning modules. Moreover, in this section, we show in
Figure 11 an example of the standard out produced by the Learning Layer Java API during a typical
script execution.

Test 6 Description

The first test uses the script supervisorEntity.set_configuration_6() script, using one
mote (whose information are added to the device repository by using the same protocol described in
the previous section 3.2.2). In this script:

1. An EchoStateNetwork object is created adopting default values for the reservoir
parameters and explicitly specifying only the network ID and the input and output
dimensions.

2. The upload of the ESN is requested by invoking the method upload_module in the
LNControlAgent object.

Test 6 Outcome

The ESN relevant parameters, i.e. the weight matrices for the input-to-reservoir, recurrent reservoir
and reservoir-to-readout connections, are correctly uploaded to the mote.

Test 7 Description

A second test concerns all the steps which are necessary for the creation of a new learning task,
training of the corresponding learning network and deployment of the trained network onboard the
mote. The script used for this test is supervisorEntity.set_configuration_7() which in
turn calls the script new_task_example() implemented in the TrainingAgent class. This script
contains an example of the necessary instructions for the allocation and training of a new task (see

RUBICON D2.2 Core Learning Service API V1.0 RUBICON: Project No.: 22699145

18/10/2012 Page 37

section 2.4.4), i.e. construction of the wiring table, construction of the task information, construction
of the wiring instructions, allocation of the new task and training of the associated learning network.
More in detail:

1. A wiring table with six entries is created, containing the wiring information related to light
and temperature sensors, two input neurons and two output neurons where the prediction
output will be produced.

2. A TaskType object is created, specifying a sequence-to-sequence regression task, which
deals with sensory information and produces a sensor refined prediction.

3. A WiringType object is created, to associate the input sensory readings to the input
neurons

4. The new task is allocated; this step also instantiate and initializes a new
EchoStateNetwork object in the Network Mirror, based on the information provided on
the new task.

5. A dummy training set containing 100 training samples is created and its elements are passed
to the TrainingAgent one by one.

6. The ESN module is trained.
7. The ESN module is deployed on the mote. This last step included the deployment of the

necessary synaptic connections, which are obtained by the Training Agent based on the
wiring instructions and the wiring table, and passed to the LNControlAgent object
(through a call to the deploy_synaptic_connections method).

Test 7 Outcome

The wiring table, the task information and the wiring instructions are correctly created. The new task
is successfully instantiated, together with the EchoStateNetwork object in the NetworkMirror.
The training samples in the dummy training set are correctly generated and inserted in the
TaskData object associated to the newly created task. The ESN module associated to the task is
successfully trained and deployed on the mote.

Figure 11 shows the standard out produced by the Java API for this script, grouping all the output
lines based on the main steps in the script. In particular, the output concerning the local learning
functionalities (i.e. the mean absolute error on the training set before and after learning) is
highlighted in Figure 11.

3.4 Integration with Control Layer

The last round of tests focuses on assessing the mechanisms needed by the Control Layer (or any
other PEIS-enabled component, e.g. the Cognitive Layer) to act as a Supervisor of the Learning Layer.
This involves testing the invocation of control and configuration commands from 3 PEIS tuples

 PeisSymbols.CONTROL_CMD - Publishes commands from manager.SupervisorInterface
that serve to control the activation/stop of forward computation, set the clock, etc.

 PeisSymbols.WIRING_CMD – Publishes a single command requesting the creation of a new
computational learning task.

 PeisSymbols.TRAINING_SAMPLE – Serves to provide training data to the TM subsystem.

In addition to the 3 tuples above, we test the publication of the LN predictions in PEIS through the
PeisSymbols.OUTPUT_ID_VALUE tuple.

RUBICON D2.2 Core Learning Service API V1.0 RUBICON: Project No.: 22699145

18/10/2012 Page 38

Figure 11 The standard out produced by the script supervisorEntity.set_configuration_7() used in Test
7. The output lines are grouped according to the corresponding steps in the script. The output
concerning the training functionalities is highlighted.

Test 8 Description

The supervisorEntity.set_configuration_peis1() script tests the Control Layer interface
through the PeisSymbols.CONTROL_CMD and the PeisSymbols.OUTPUT_ID_VALUE tuples. It
replicates the same LN configuration described in supervisorEntity.set_configuration_peis1(),
however, control and configuration commands are sent through PEIS tuples instead of using local
method calls. This script allows to test the full feedforward chain that leads to the computation,
propagation and publishing of the LN outputs as depicted in Figure 12:

1. The LN predictions are computed by the output neurons of learning modules residing on the
single motes.

2. Such predictions are transferred to the island sink by means of remote synapses.
3. The sink assembles the predictions generated by the motes and sends the resulting output

vector to the LNWrapper component on the attached RUBICON gateway (i.e. through its
serial interface).

4. The LNWrapper propagates the predicted values to the PEISWrapper component, which
publishes them in PEIS, in the PeisSymbols.OUTPUT_ID_VALUE tuple.

5. The Control Layer (or any other PEIS-enabled component, e.g. the Cognitive Layer) reads the
LN prediction from the tuple.

[GATEWAY Wrapper]: Gateway Wrapper started.serial@/dev/ttyUSB0:115200: resynchronising
[LN Control Agent] : Thread started
[Training Agent] : Thread started
[Network Mirror] : Thread started
[LN Wrapper] : Thread started
[Supervisor] : Thread started
[GATEWAY Wrapper]: Sending a message
[LN Wrapper] : Inserted Request 1
[LN Wrapper] : Removed Request Seq1
[LN Wrapper] : Removed Request 1
[Supervisor] Device Connected - nodeID: 1
[Echo State Network] : Mean Absolute Error before training:
[Echo State Network] : * Output dimension 1: 823.1689
[Echo State Network] : * Output dimension 2: 776.32007
[Echo State Network] : Mean Absolute Error after training:
[Echo State Network] : * Output dimension 1: 0.01434305
[Echo State Network] : * Output dimension 2: 0.015766002
[GATEWAY Wrapper]: Sending a message
[LN Wrapper] : Inserted Request 2
[LN Wrapper] : Inserted Request 4
[LN Wrapper] : Inserted Request 5
[LN Wrapper] : Inserted Request 6
[LN Wrapper] : Removed Request Seq2
[LN Wrapper] : Removed Request 2
[GATEWAY Wrapper]: Sending a message
[GATEWAY Wrapper]: Sending a message
[LN Wrapper] : Removed Request Seq4
[LN Wrapper] : Removed Request 4
[GATEWAY Wrapper]: Sending a message
[GATEWAY Wrapper]: Sending a message
[LN Wrapper] : Removed Request Seq5
[LN Wrapper] : Removed Request 5
[GATEWAY Wrapper]: Sending a message
[GATEWAY Wrapper]: Sending a message
[GATEWAY Wrapper]: Sending a message
[GATEWAY Wrapper]: Sending a message
[GATEWAY Wrapper]: Sending a message
[LN Wrapper] : Removed Request Seq6
[LN Wrapper] : Removed Request 6

Initialization

Node joins the Learning Layer

Training of the Echo State Network

Upload of the Echo State Network
on the mote

RUBICON D2.2 Core Learning Service API V1.0 RUBICON: Project No.: 22699145

18/10/2012 Page 39

Figure 12 Information flow in the feedforward chain leading to the delivery of the LN predictions to
the Control (or Cognitive) Layer.

Test 8 Outcome

Execution of the supervisorEntity.set_configuration_peis1() script replicates the results of
the supervisorEntity.set_configuration_peis1() procedure, while using the
PeisSymbols.CONTROL_CMD tuple to send control commands to:

1. set the RUBICON clock ;
2. activate forward computation , and
3. stop the single learning modules.

The first command requires a single argument (i.e. the clock value); the second command has no
arguments, while the third command type has two arguments. By these means we have tested all
possible command configurations of the PeisSymbols.CONTROL_CMD tuple. Figure 13 shows the
content of Tuplespace during the execution of the script using the Tupleview utility: on the left, we
see an active instance of the PeisWrapper component that has created 5 interface tuples. The
current value of the PeisSymbols.CONTROL_CMD tuple is shown on the right, and encodes the stop
learning module command directed to the learning module with netd=3 on-board the device with
nodeID=2.

Similarly, can inspect the content of the output interface towards the Control Layer, realized through
the PeisSymbols.OUTPUT_ID and PeisSymbols.OUTPUT_ID_VALUE tuples, that provide the current
symbolic name and value of the LN predictions, respectively. Figure 14 and Figure 15 show a
snapshot of the values assigned to the tuples during the execution of the script. These values
represent the temperature and light readings of the two motes involved in the test, and are fully
coherent with those captured by the supervisorEntity.set_configuration_peis1() script.

RUBICON D2.2 Core Learning Service API V1.0 RUBICON: Project No.: 22699145

18/10/2012 Page 40

Figure 13 Screenshot of the content of the PeisSymbols.CONTROL_CMD tuple during the execution of
the supervisorEntity.set_configuration_peis1() script.

Test 9 Description

The supervisorEntity.set_configuration_peis2() script completes the test of the Control Layer
integration by exercising the training interface provided by the PeisSymbols.WIRING_CMD and the
PeisSymbols.TRAINING_SAMPLE tuples.

Test 9 Outcome

Execution of the script produces the instantiation of a new computational learning task and the setup
of a bundle of synaptic connections in response to posting wiring and task information in the
PeisSymbols.WIRING_CMD tuple. After that, the test script starts posting training data through the
PeisSymbols.TRAINING_SAMPLE tuple. The training data is received by the PeisWrapper component
and forwarded to the TrainingAgent for storage into the training repository. The script can be
complemented with the instructions for the deployment of the synaptic connection bundle and of
the trained learning modules to reproduce the results of the tests in Section 3.3.

RUBICON D2.2 Core Learning Service API V1.0 RUBICON: Project No.: 22699145

18/10/2012 Page 41

Figure 14 Screenshot of the content of the PeisSymbols.OUTPUT_ID_VALUE tuple during the
execution of the supervisorEntity.set_configuration_peis1() script. The current values
represent the light and temperature readings of the transducers on-board the 2 motes. The sharp
difference in the readings of the 2 light sensors (i.e. the first and third values) are due to a
malfunctioning transducer on the second mote.

Figure 15 Screenshot of the content of the PeisSymbols.OUTPUT_ID tuple during the execution of the
supervisorEntity.set_configuration_peis1() script.

RUBICON D2.2 Core Learning Service API V1.0 RUBICON: Project No.: 22699145

18/10/2012 Page 42

4. Conclusions

4.1 Compliance to Workplan

We summarize this report with an overview of the status of the WP2 tasks and Deliverables at Month
18, discussing their compliance with the workplan detailed in the RUBICON DoW.

Task 2.1 - Learning Layer Specification (M1-M6 + M12-M16): the activities have been performed as
planned and the task is now completed. The results of the first part of this task (M1-M6) are
documented in D2.1, which provides the Learning Layer specification used to guide the
implementation activities documented in this report. The result of the specification refinement phase
(M12-M16) are included in this deliverable D2.2: in particular, Section 1.3.1 reports the architectural
changes with respect to the preliminary specification in D2.1.

Task 2.2 - Core Learning Services (M6-M26): the activities are progressing as planned and have
contributed to the implementation of the Learning Layer infrastructure in the CLS API V1.0. These
contributions are documented in this report as follows:

 Section 2.2.3 describes the Synaptic Communication mechanism ;

 Section 2.2.5 describes the software component wrapping the distributed learning network
functionalities ;

 Section 2.3 describes the implementation of the manager component of the Learning Layer ;

 Section 2.4 describes the implementation to the Training Manager subsystem.
The T2.2 activities will continue until M26 progressing the development of the CLS API, with the
incremental addition of new functionalities and a continuous activity of code refinement.

Task 2.3 - Local Learning (M8-18): the activities have been performed as planned and the task is now
completed. The results of the task are documented in the CLS API V1.0 and in this associated report.
In particular:

 Section 2.2.2 describes the NesC and Java components implementing the local learning
modules ;

 Section 2.2.4 describes the implementation of the local forward computation producing the
local LN predictions ;

 Sections 2.4.2, 2.4.3 and 2.4.4 describe the training of a local learning module , its
deployment to a LN device and a summary of the required instructions for the allocation and
training of a new task, respectively.

Task 2.4 - Distributed Adaptive Memory (M16-24): the task is currently on-going as planned and will
implement a distributed neural computation on the top of the services released in the CLS API V1.0.
The results of this task will be reported in D2.3 at M30, with the release 2.0 of the CLS API.

Deliverable D2.1 - Functional Design & Specification document (M6): it has been delivered as
scheduled in the form of a report documenting the detailed architecture of the RUBICON Learning
Layer and the specification of its software components.

Deliverable D2.2 - Core Learning Services API and Documentation, version 1.0 (M18): delivered in the
form of the CLS Java and NesC API V1.0 available in the (timestamped) RUBICON software repository,
along with this report, providing an high-level description of the developed software, and the
Javadoc documentation, whose full HTML version is available in the RUBICON repository. The CLS API
V1.0 contains all the code needed for the execution of the Learning Layer and the example scripts
needed to replicate the testing described in Section 3.

RUBICON D2.2 Core Learning Service API V1.0 RUBICON: Project No.: 22699145

18/10/2012 Page 43

The deliverable description, as per RUBICON DoW, is the following:

“The release (code, reference manual/specifications, testing & benchmarks) will include the
following features:

A1. Implementation of the core learning service platform on top of the communication layer
(data-structures, learning layer skeleton, remote synapses)

A2. Implementation of local learning functionalities
A3. Integration with Control Layer“

These points are addressed in this report as follows:

 The implementation of the core learning service platform (A1) is described in:
o Section 2.2.3: implementation of local and remote synapses;
o Sections 2.2, 2.3 and 2.4: implementation of main data-structures and Learning Layer

skeleton (all 3 subsystems) ;
o Section 3.2 : testing of the core learning services.

 The implementation of the local learning functionalities (A2) is described in:
o Section 2.2.2 : implementation of NesC and Java components realizing the local

learning modules ;
o Section 2.2.4 : implementation of the local forward computation ;
o Sections 2.4.2 and 2.4.3: implementation of mechanisms for training a local learning

module and for its deployment to a LN device ;
o Section 3.3 : testing of the local learning functionalities.

 The integration with Control Layer (A3) is described in:
o Section 2.2.4 : implementation of the output interface towards the Control and

Cognitive layer using PEIS tuplespace ;
o Section 2.3.2 implementation of the control and configuration interface from the

Control and Cognitive layer using PEIS tuplespace ;
o Section 3.4 : testing of the integration between the Learning and Control Layer.

4.2 Impact on project

The Learning Layer development has progressed as expected and has been made available to the rest
of the RUBICON project partners through the shared code repository.

The software is currently present at and in active use by the project partners. Based on the feedback
of the partners, additional requirements are expected to emerge on the Learning Layer and these
requirements will be addressed in the continuation of task 2.2 during months M18-M26, culminating
in the release of the final Learning Layer in deliverable D2.3 at M30, which will also integrate the
outcome of the research activities in Task 2.4 and 2.5.

4.3 New developments and unforeseen issues

The RUBICON Learning Layer depends on a number of enabling mechanisms provided by the
Communication Layer, including the Synaptic communication support and the RUBICON gateway.
Currently, such support is limited to single independent islands of TinyOS devices: therefore, the
current CLS release is limited to such architecture. Updates of the CLS are expected to be delivered as
soon as the corresponding enabling mechanisms are made available.

RUBICON D2.2 Core Learning Service API V1.0 RUBICON: Project No.: 22699145

18/10/2012 Page 44

No other significant unexpected developments have occurred during WP2 research and development
activities interested by the current deliverable.

RUBICON D2.2 Core Learning Service API V1.0 RUBICON: Project No.: 22699145

18/10/2012 Page 45

5. Appendix A – Reference Manual

In the following, we provide a snapshot of the full Javadoc reference manual for the Learning Layer
Java API V1.0, including only the package-level documentation. A full HTML version of the manual is
available on the RUBICON SVN repository.

Learning Layer API V1.0 Documentation

Package Summary Page

generics
Provides the classes implementing the data structures shared across the Learning
Layer subsystems, the standard interface of the Learning Layer threads, the inter-
thread communication mechanisms as well as some general macros.

learningnetwork
Provides the classes for accessing the distributed Learning Network, implementing
methods to send command and configuration messages to the single learning
modules and to receive status updates from the Learning Network.

main
Provides the definition of the main Learning Layer object, as well as the classes
necessary to create the output interface of the Learning Layer and the wrapper to
access the PEIS functionalities.

manager
Provides the classes implementing the Learning Network Manager (LNM) subsystem,
that is responsible for the configuration and control of the Learning Layer.

test
Includes example scripts and stub implementations for testing and experimenting
with the Learning Layer API.

training
Provides the classes for accessing the Training Manager subsystem, implementing
methods for instantiating and managing the datasets, training the learning modules
and deploying them to the devices in the LN.

RUBICON D2.2 Core Learning Service API V1.0 RUBICON: Project No.: 22699145

18/10/2012 Page 46

Package generics

Provides the classes implementing the data structures shared across the Learning Layer subsystems, the
standard interface of the Learning Layer threads, the inter-thread communication mechanisms as well as some
general macros.

See:

Description

Interface Summary Page

LLRunnableInterface
The interface provides methods for controlling the activation and termination of
the Learning Layer threads.

LNInformationListener
Interface that must be implemented by any object interested in receiving LL
status messages through the LL information dispatchers.

Class Summary Page

DeviceRepository

Repository of devices connected to the LL through the joining command
SupervisorInterface.connect_node(int, NodeInformation)

defined in the Supervisor Interface.

EchoStateNetwork This class implements the Echo State Network

EsnUpload
Class encapsulating the readout weights of an ESN for transferring them from

the LN Wrapper to the Network Mirror via message queues.

HashCodeUtil Collected methods which allow easy implementation of hashCode.

LNInformationDispatcher
Defines the information dispatcher of the Learning Layer status messages

defined in LLMessages.

LNInformationEvent<T>

Defines a specific event object for the notification of LL status messages

generated by the Learning Manager and directed towards its Supervisor,

Control and Training interfaces.

LNInformationMsg<T> Class encapsulating the type and payload of LL status messages.

LNOutType Deprecated.

NodeInformation
Specification of the devices sensing and actuator capabilities, as well as their

basic network information, including island and node address.

SynapticConnection

Models the synaptic connection abstraction: stores information on the

source and destination peers of the connection, as well as its deployment

status.

TaskData Implements the task abstraction used in the Network Mirror.

TaskType Contains the information associated to a computational task.

TrainingData
Implements the Training Agent software component within the Training

Manager in the RUBICON Learning Layer

TrainingDataset
Implements a training dataset, i.e. a collection of examples to be used for

neural network training.

file:///C:/Users/bacciu/Documents/Software/pdfJavadoc/docflex-doclet-1.6.1/out/LLApi1.0.rtf%23b26
file:///C:/Users/bacciu/Documents/Software/pdfJavadoc/docflex-doclet-1.6.1/out/LLApi1.0.rtf%23b1115
file:///C:/Users/bacciu/Documents/Software/pdfJavadoc/docflex-doclet-1.6.1/out/LLApi1.0.rtf%23b82
file:///C:/Users/bacciu/Documents/Software/pdfJavadoc/docflex-doclet-1.6.1/out/LLApi1.0.rtf%23b86
file:///C:/Users/bacciu/Documents/Software/pdfJavadoc/docflex-doclet-1.6.1/out/LLApi1.0.rtf%23b96
file:///C:/Users/bacciu/Documents/Software/pdfJavadoc/docflex-doclet-1.6.1/out/LLApi1.0.rtf%23b127
file:///C:/Users/bacciu/Documents/Software/pdfJavadoc/docflex-doclet-1.6.1/out/LLApi1.0.rtf%23b119
file:///C:/Users/bacciu/Documents/Software/pdfJavadoc/docflex-doclet-1.6.1/out/LLApi1.0.rtf%23b131
file:///C:/Users/bacciu/Documents/Software/pdfJavadoc/docflex-doclet-1.6.1/out/LLApi1.0.rtf%23b137
file:///C:/Users/bacciu/Documents/Software/pdfJavadoc/docflex-doclet-1.6.1/out/LLApi1.0.rtf%23b139
file:///C:/Users/bacciu/Documents/Software/pdfJavadoc/docflex-doclet-1.6.1/out/LLApi1.0.rtf%23b164
file:///C:/Users/bacciu/Documents/Software/pdfJavadoc/docflex-doclet-1.6.1/out/LLApi1.0.rtf%23b183
file:///C:/Users/bacciu/Documents/Software/pdfJavadoc/docflex-doclet-1.6.1/out/LLApi1.0.rtf%23b215
file:///C:/Users/bacciu/Documents/Software/pdfJavadoc/docflex-doclet-1.6.1/out/LLApi1.0.rtf%23b245
file:///C:/Users/bacciu/Documents/Software/pdfJavadoc/docflex-doclet-1.6.1/out/LLApi1.0.rtf%23b257
file:///C:/Users/bacciu/Documents/Software/pdfJavadoc/docflex-doclet-1.6.1/out/LLApi1.0.rtf%23b270

RUBICON D2.2 Core Learning Service API V1.0 RUBICON: Project No.: 22699145

18/10/2012 Page 47

WiringSpecification
This class implements an item in the Wiring Table described in Section 5.4.2

of Deliverable 2.1

WiringTable Implements the Wiring Table as described in Section 5.4.2 of Deliverable 2.1

WiringType Contains the information associated to a wiring instruction.

Enum Summary Page

DeviceRepository.DeviceState Service class describing the current state of the device

LLMessages
List of messages exchanged by the Learning Layer components
either through message queues or by the information dispatchers of
the LNControlAgent.

SynapticConnection.synapticState
Enumerated type defining the deployment states of a synaptic
connection

SynapticConnection.synapticType Enumerated type of synaptic connections

TaskData.taskState

Exception Summary Page

SynapticConnection.SynapseException
Exception thrown when creating a local synapse with improper
parameters.

Package generics Description

Provides the classes implementing the data structures shared across the Learning Layer subsystems, the
standard interface of the Learning Layer threads, the inter-thread communication mechanisms as well as some
general macros.

file:///C:/Users/bacciu/Documents/Software/pdfJavadoc/docflex-doclet-1.6.1/out/LLApi1.0.rtf%23b290
file:///C:/Users/bacciu/Documents/Software/pdfJavadoc/docflex-doclet-1.6.1/out/LLApi1.0.rtf%23b300
file:///C:/Users/bacciu/Documents/Software/pdfJavadoc/docflex-doclet-1.6.1/out/LLApi1.0.rtf%23b310

RUBICON D2.2 Core Learning Service API V1.0 RUBICON: Project No.: 22699145

18/10/2012 Page 48

Package learningnetwork

Provides the classes for accessing the distributed Learning Network, implementing methods to send command
and configuration messages to the single learning modules and to receive status updates from the Learning
Network.

See:

Description

Interface Summary Page

GatewayInterface
Interface for sending LL configuration and control commands to the
modules of the distributed Learning Network.

LNMessageListenerInterface
Interface that must be implemented by objects interested in receiving
messages from the Learning Network through the Gateway component.

Class Summary Page

BroadcastCmdMsg This class is automatically generated by mig.

CommandMsg This class is automatically generated by mig.

GatewayWrapper
Preliminary implementation of the
GatewayInterface wrapping the Rubicon Gateway
functionalities needed by the Learning Layer.

GatewayWrapper.LearningModuleFloatQueue
Helper class for maintaining a queue of float weight
matrices, needed to complete the upload of a learning
module in a target node of the LN.

GatewayWrapper.LearningModuleShortQueue
Helper class for maintaining a queue of short weight
matrices, needed to complete the upload of a learning
module in a target node of the LN.

LearningModuleCmdMsg This class is automatically generated by mig.

LearningModuleDownMsg This class is automatically generated by mig.

LearningModuleFloatCmdMsg This class is automatically generated by mig.

LearningNetworkWrapper
Implements a component that abstracts the
distributed nature of the Learning Network.

LearningNotificationMsg This class is automatically generated by mig.

LearningOutputMsg This class is automatically generated by mig.

NetIdCmdMsg This class is automatically generated by mig.

SerialDataMsg This class is automatically generated by mig.

SerialJoinedMsg This class is automatically generated by mig.

SynCreateCmdMsg This class is automatically generated by mig.

RUBICON D2.2 Core Learning Service API V1.0 RUBICON: Project No.: 22699145

18/10/2012 Page 49

Package learningnetwork Description

Provides the classes for accessing the distributed Learning Network, implementing methods to send command
and configuration messages to the single learning modules and to receive status updates from the Learning
Network.

The LearningNetworkWrapper class defines a unified point of access to the Learning Network and interfaces
with the RUBICON gateway that offers the communication facilities to the Learning Layer. The package includes
a GatewayWrapper class that wraps the RUBICON Gateway functionalities needed by the Learning Layer and
that currently supports communication with TinyOS devices.

RUBICON D2.2 Core Learning Service API V1.0 RUBICON: Project No.: 22699145

18/10/2012 Page 50

Package main

Provides the definition of the main Learning Layer object, as well as the classes necessary to create the output
interface of the Learning Layer and the wrapper to access the PEIS functionalities.

See:

Description

Class Summary Page

LearningLayer Creates the main Learning Layer object.

LNOutputs Provides access to the LL predictions generated by the Distributed Learning Network.

PeisSymbols
Provides the vocabulary of strings used as tuple-keys to implement the PEIS interface
of the Learning Layer, as well as the int encoding of the commands written in the
tuples.

PeisWrapper

Realizes the PEIS interface between the Learning Layer and the Control and Cognitive
Layer (Supervisors) Provides mechanisms for writing into the appropriate interface
tuples and notifies the reception of messages to the appropriate Java components of
the Learning Layer.

Package main Description

Provides the definition of the main Learning Layer object, as well as the classes necessary to create the output
interface of the Learning Layer and the wrapper to access the PEIS functionalities.

The constructor of the LearningLayer class instantiate all necessary objects of the Learning Layer. A
component possessing the reference to a LearningLayer object can control the Learning Layer. Alternatively,
the LearningLayer class implements a main method to activate a stand-alone instance of the Learning Layer
from the command line.

See Also:

peisjava

RUBICON D2.2 Core Learning Service API V1.0 RUBICON: Project No.: 22699145

Package manager

Provides the classes implementing the Learning Network Manager (LNM) subsystem, that is responsible for the
configuration and control of the Learning Layer.

See:

Description

Interface Summary Page

ControlInterface
Defines the LN Manager interface towards an high level controlling component
such as the LL Graphical User Interface.

SupervisorInterface
Defines the LN Manager interface towards an high level component acting as
Supervisor, e.g. the Control and Cognitive Layer.

TrainingInterface Defines the LN Manager interface towards the Training Manager subsystem.

Class Summary Page

LNControlAgent
Implement the LNM agent that collects configuration and control messages from the
Supervisor and routes them to the components of the LL.

Package manager Description

Provides the classes implementing the Learning Network Manager (LNM) subsystem, that is responsible for the
configuration and control of the Learning Layer.

The LNM is implemented by a single software component implemented by the LNControlAgent class. The
package defines three interfaces that serve to interact with the Learning Layer. The SupervisorInterface
regulates the interaction with Supervisor components by providing methods for controlling the single devices
and learning modules of the LN, as well as the activation of the forward computation phase. The
ControlInterface complements the control and configuration functionalities advertised by the
SupervisorInterface. The TrainingInterface regulates the interaction with the Trainin Manager
subsystem by providing methods for controlling the deployment of synaptic connection bundles associated to
computational learning tasks.

See Also:

main

RUBICON D2.2 Core Learning Service API V1.0 RUBICON: Project No.: 22699145

18/10/2012 Page 52

Package test

Includes example scripts and stub implementations for testing and experimenting with the Learning Layer API.

See:

Description

Class Summary Page

GatewayWrapperDummy
Stub implementation of the GatewayInterface wrapping the Rubicon
Gateway functionalities needed by the Learning Layer.

supervisorEntity
Stand-alone implementation of the Supervisor component for testing and
experimentation purposes.

Package test Description

Includes example scripts and stub implementations for testing and experimenting with the Learning Layer API.

The supervisorEntity class provides a test Supervisor component with example scripts that exercise the
various learning layer functionalities. The GatewayWrapperDummy class provides a stub implementation of the
RUBICON gateway that does not require the availability of a fully deployed Learning Network: it receives
Learning Layer commands and respond with appropriate acknowledgement messages.

See Also:

learningnetwork, main

RUBICON D2.2 Core Learning Service API V1.0 RUBICON: Project No.: 22699145

18/10/2012 Page 53

Package training

Provides the classes for accessing the Training Manager subsystem, implementing methods for instantiating
and managing the datasets, training the learning modules and deploying them to the devices in the LN.

See:

Description

Class Summary Page

NetworkMirror
Implements the Network Mirror component: it maintains an up-to-date mirror of the
modules in the LN and performs the training routines.

TrainingAgent
Implements the Training Agent software component within the Training Manager in
the RUBICON Learning Layer.

Package training Description

Provides the classes for accessing the Training Manager subsystem, implementing methods for instantiating
and managing the datasets, training the learning modules and deploying them to the devices in the LN.

The TrainingAgent class defines the agent controlling the Training Manager subsystem: it receives training
samples and requests for the instantiation of new computational learning tasks. The NetworkMirror
component maintains an up-to-date mirror of the modules in the LN and performs the training routines.

Java API documentation generated with DocFlex/Doclet v1.6.1

DocFlex/Doclet is both a multi-format Javadoc doclet and a free edition of DocFlex/Javadoc. If you need to customize your

Javadoc without writing a full-blown doclet from scratch, DocFlex/Javadoc may be the only tool able to help you! Find out more
at www.docflex.com

http://www.filigris.com/products/docflex_javadoc/#docflex-doclet
http://www.filigris.com/products/docflex_javadoc/
http://www.docflex.com/

