
www.ascens-ist.eu

ASCENS
Autonomic Service-Component Ensembles

TR 09: Coalgebraic Bisimulation of FuTS

Grant agreement number: 257414
Funding Scheme: FET Proactive
Project Type: Integrated Project
Latest version of Annex I: 7.6.2010

Author(s): D. Latella (ISTI), M. Massink (ISTI), E. P. de Vink (De-
partment of Mathematics and Computer Science, Eindhoven University
of Technology, Eindhoven and Centrum Wiskunde en Informatica,
Amsterdam)

Date of technical report: January 16, 2013
Revision: V1
Classification: PU

Project coordinator: Martin Wirsing (LMU)
Tel: +49 89 2180 9154
Fax: +49 89 2180 9175
E-mail: wirsing@lmu.de

Partners: LMU, UNIPI, UDF, Fraunhofer, UJF-Verimag, UNIMORE,
ULB, EPFL, VW, Zimory, UL, IMT, Mobsya, CUNI

TR 09: Coalgebraic Bisimulation of FuTSs (V1) January 16, 2013

Coalgebraic Bisimulation of FuTS

January 16, 2013

abstract

Labeled state-to-function transition systems, FuTSs for short, capture transition schemes incorporat-
ing multiplicities from states to functions of finite support over general semirings. As such FuTSs
constitute a convenient modeling instrument to deal with process languages and their stochastic ex-
tensions in particular. In this paper, the notion of bisimulation induced by a FuTS is addressed from
a coalgebraic point of view. A correspondence result is established stating that FuTS-bisimilarity co-
incides with behavioural equivalence of the associated functor. Moreover, it is shown that for FuTSs
involving a specific type of semiring only, weak pullbacks are preserved. As a consequence, for these
FuTSs, behavioural equivalence coincides with coalgebraic bisimilarity. As generic examples, the
equivalences underlying the stochastic process algebras PEPA and IML are related to the bisimilar-
ity of specific FuTSs. By the correspondence result coalgebraic justification of the equivalences of
these calculi is obtained. Further illustrations of FuTS semantics are discussed for deterministically
(discrete) timed process algebras and Markov Automata.

Contents

1 Introduction 3

2 Preliminaries 6

3 State-to-Function Labelled Transition Systems 8

4 FuTSs coalgebraically 10

5 FuTS-semantics for a elementary process language 17

6 FuTS Semantics of PEPA 23

7 FuTS Semantics of IML 28

8 Discussion 32

9 Concluding remarks 34

ASCENS 2

TR 09: Coalgebraic Bisimulation of FuTSs (V1) January 16, 2013

1 Introduction

In the last couple of decades, qualitative process description languages have been enriched with quan-
titative information. In the qualitative case, process description languages equipped with formal op-
erational semantics have proven to be successful formalisms for the modelling of concurrent systems
and the analysis of their behaviour. Generally, the operational semantics of a qualitative process de-
scription language is given by means of a labelled transition system (LTS), with states being process
terms and actions and interactions decorating the transitions between states. Typically, based on the
induced transition system relation, a notion of process equivalence is defined, providing means to
compare systems and to reduce their representation to enhance subsequent verification.

Extensions of qualitative description languages allowing a stochastic representation of time, usu-
ally referred to as stochastic process algebras, or stochastic process calculi (SPCs), are one of the
quantitative enrichments of process languages that have received particular attention. For SPCs
the main aim has been the integration of qualitative descriptions with quantitative ones in a sin-
gle mathematical framework, building on the combination of LTSs and continuous-time Markov
chains. The latter is one of the most successful approaches to modelling and performance anal-
ysis of (computer) systems and networks. An overview of SPCs, equivalences and related analy-
sis techniques can be found in [Hermanns et al.(2002), Baier et al.(2004), Bernardo(2007)], for ex-
ample. A common feature of many SPCs is that actions are augmented with the rates of expo-
nentially distributed random variables that characterise their duration. Alternatively, actions are
assumed to be instantaneous, in which case random variables are used for modelling delays, as
in [Hermanns(2002)]. Although exploiting the same class of distributions, the models and techniques
underlying the definition of the calculi turn out to be significantly different in many respects. A
prominent difference concerns the modelling of the race condition by means of the choice operator,
and its relationship to the issue of transition multiplicity. In the quantitative setting, multiplicities
can make a crucial distinction between processes that are qualitatively equivalent. Several differ-
ent approaches have been proposed for handling transition multiplicity. The proposals range from
multi-relations [Hillston(1996), Hermanns(2002)], to proved transition systems [Priami(1995)], to
LTSs with numbered transitions [van Glabbeek et al.(1995), Hermanns et al.(2002)], to unique rate
names [De Nicola et al.(2005)], just to mention a few.

In [De Nicola et al.(2009)], Latella, Massink et al. proposed a variant of LTSs, called Rate Tran-
sition Systems (RTSs). In LTSs, a transition is a triple (P, α, P′) where P and α are the source state
and the label of the transition, respectively, while P′ is the target state reached from P via a transition
labelled with α. In RTSs, a transition is a triple of the form (P, α,P). The first and second com-
ponent are the source state and the label of the transition, as in LTSs, while the third component P
is a continuation function which associates a non-negative real value to each state P′. A non-zero
value for the state P′ represents the rate of the exponential distribution characterising the time for the
execution of the action represented by α, necessary to reach P′ from P via the transition. If P maps
P′ to 0, then state P′ cannot be reached from P via this transition with label α. The use of con-
tinuation functions provides a clean and simple solution to the transition multiplicity problem and
make RTSs particularly suited for SPC semantics. In order to provide a uniform account of the many
SPCs proposed in the literature, in previous joint work of the first two authors [De Nicola et al.(2011)]
State-to-Function Labelled Transition Systems (FuTSs) have been introduced as a natural generalisa-
tion of RTSs. In FuTSs the codomain of the continuation functions are arbitrary semirings, rather
than just the non-negative reals. This provides increased flexibility while preserving basic properties
of primitive operations like sum and multiplication. Furthermore, FuTSs are equipped with a rich set
of (generic) operations on continuation functions, which makes the framework very well suited for
the compositional definition of the operational semantics of process calculi, including SPCs and mod-

ASCENS 3

TR 09: Coalgebraic Bisimulation of FuTSs (V1) January 16, 2013

els where both non-deterministic behaviour and stochastic delays are modelled, like in the Language
of Interactive Markov Chains [Hermanns(2002)]. Finally, FuTSs are equipped with a natural notion
of bisimilarity which, as we will see, coincides for the concrete cases we studied with the notion of
process (strong) equivalences reported in the literature.

In this paper we present a coalgebraic treatment of FuTSs that allows multiple state-to-function
transition relations involving arbitrary semirings. Given label sets L i and semirings R i, a FuTS takes
the general format S = (S , 〈�i 〉

n
i=1) with transition relations�i ⊆ S × L i × FS(S ,R i). Here,

FS(S ,R i) are the sets of total functions from S to R i of finite support, a sub-collection of functions
also occurring in other work combining coalgebra and quantitative modelling. We will see that that S
is a coalgebra of the product of the functors FS(·,R i)L i . For this to work, we need the relations�i to
be total and deterministic for the coalgebraic modelling as a function. Maybe surprisingly, this is not a
severe restriction at all in the presence of continuation functions: as we will see, the zero-continuation
function, which maps every s′ to 0 will be associated to a state s and a transition, in order to indicate
that no state s′ is reachable from s via that transition, in the usual LTS-sense; if s allows a transition
to some state s1 as well as to a state s2, then the continuation function will simply yield a non-zero
value for s1 and for s2. Therefore, it is no essential limitation to restrict our investigations to total
and deterministic FuTSs. For example, by using boolean functions, we can model non-deterministic
behaviour, as done in Section 5 and Section 7.

The notion of S-bisimilarity that arises from a FuTS S is reinterpreted coalgebraically in the
present paper. Following a familiar argument, we first prove that the functor associated with a FuTS
possesses a final coalgebra and therefore has an associated notion of behavioural equivalence. Then
it is shown that behavioural equivalence of the functor induced by S coincides with bisimilarity for
FuTS. Pivotal for the proof is the absence of multiplicities in the FuTS treatment of quantities at the
level of the transitions. In fact, quantities are accumulated in the function values of the continuations
and hidden at the higher level of abstraction. It is noted, in the presence of a final coalgebra for FuTS
a more general definition of behavioural equivalence based on cospans coincides with the one given
here, cf. [Kurz(2000)]. The relationship with coalgebraic bisimulation is also investigated and we
prove that, under the condition that the underlying semirings admit a (right) multiplicative inverse
for non-zero elements, and satisfy the zero-sum property, i.e. a sum in the semiring is equal to zero
if and only if all summands are zero, the functors associated to FuTSs preserve weak pullbacks.
Consequently, by exploiting a general result on coalgebras, we get that for these functors behavioural
equivalence coincides with coalgebraic bisimilarity.

Using the bridge established by the correspondence results, we continue by showing for two
well-known stochastic process algebras, viz. Hillston’s PEPA [Hillston(1996)] and Hermanns’s IML
[Hermanns(2002)], that their standard notion of strong equivalence and strong bisimilarity coincide
with bisimilarity of the associated FuTS (and thus with behavioural equivalence and coalgebraic
bisimilarity of the corresponding functor). PEPA stands out as one of the prominent Markovian pro-
cess algebras, and IML specifically provides separate prefix constructions for actions and for delays.
The equivalences of PEPA and of IML are compared with the bisimulations of the respective FuTSs
as given by an alternative operational semantics involving the state-to-function scheme. In passing,
the multiplicities have to be dealt with. Appropriate lemmas are provided relating the relation-based
cumulative treatment with FuTSs to the multi-relation-based explicit treatment of PEPA and IML. It
is noted that in our treatment below we restrict to the key-fragment of these two SPCs.

We finally discuss how FuTSs can be used also for the definition of the semantics of determinis-
tically discrete timed process algebras as well as for models which incorporate at the same time non-
determinism, discrete probabilities and Markovian randomised delays, like it is the case in Markov

ASCENS 4

TR 09: Coalgebraic Bisimulation of FuTSs (V1) January 16, 2013

Automata as presented in [Eisentraut et al.(2010a), Eisentraut et al.(2010b)].

Related work on coalgebra includes the papers [de Vink & Rutten(1999), Klin & Sassone(2008)] and
[Sokolova(2011)]. These papers also cover measures and congruence formats, a topic not touched
upon here. For the discrete parts, regarding the correspondence of bisimulations, our work aligns
with the approach of the papers mentioned. In this paper the bialgebraic perspective of SOS and
bisimulation [Turi & Plotkin(1997)] is left implicit. An interesting direction of research combin-
ing coalgebra and quantities studies various types of weighted automata, including linear weighted
automata, and associated notions of bisimulation and languages, as well as algorithms for these no-
tions [Boreale(2009), Klin(2009), Silva et al.(2011), Bonchi et al.(2011)]. Klin considers weighted
transition systems, labeled transition systems that assign a weight to each transition. For commuta-
tive monoids the notion of a weighted transition system compares with our notion of a FuTS, and for
which, when casted to the coalgebraic setting, the associated concept of bisimulation coincides with
observational equivalence. Building on a result on bounded functors [Gumm & Schröder(2001)], it is
shown in [Bonchi et al.(2011)] for a functor involving functions of finite support over a field that the
final coalgebra exists. In the present paper, we have followed the scheme of [Bonchi et al.(2011)] to
obtain such a result for a functor induced by a FuTS. The process languages with stochastic delays
we consider in the sequel, based on PEPA and IML, involve a multi-way CSP-like parallel operator;
components proceed simultaneously when synchronization on an action from the synchronization al-
phabet that indexes the parallel operator is possible. However, here we do not distinguish between
internal and external non-determinism, cf. [Hoare(1985)], as an explicit representation of such a dis-
tinction is neither contemplated in PEPA, nor in IML. A coalgebraic treatment of this distinction is
proposed in [Wolter(2002)], which uses a functor for so-called non-deterministic filter automata, viz.
P(P(A)) × [A 7→ Pf (·)] involving partial functions from a set of actionsA to a finite power-set. Via
currying, this can be brought in the form FS(·,B)L for L = P(P(A)) × A, fitting in the format of
the functor for the FuTSs considered here. In [Boreale & Gadducci(2006)] processes are interpreted
as formal power-series over a semiring in the style of [Rutten(2003)]. This allows to compare testing
equivalence for a CSP-style language and bisimulation in a Moore automaton. It is noted, that the
notions of equivalence addressed in this paper, as often in coalgebraic treatments of process relations,
are all strong bisimilarities.

Structure of the paper The present paper is organised as follows: Section 2 briefly discusses some
material on semirings and coalgebras. FuTSs as well as the associated notion of bisimulation are
presented in Section 3. The coalgebraic counterparts of FuTSs and FuTS-bisimilarity are defined
in Section 4, where we also establish the correspondence with behavioural equivalence of the final
coalgebra and with coalgebraic bisimilarity. As a stepping stone towards the treatment of PEPA
and IML, we discuss in Section 5 an elementary process language that constitutes the qualitative core
of the two SPCs. In Section 6 the standard equivalence of PEPA is identified with the bisimulation
of a FuTS and, hence, with behavioural equivalence and coalgebraic bisimilarity. In Section 7 the
same is done for the language of IMCs where actions and delays are present on equal footing. A
discussion of our results and possible extensions is presented in Section 8. Finally, Section 9 wraps
up and discusses directions of future research.

An extended abstract of part of this manuscript has appeared as [Latella et al.(2012)]. The addi-
tional contributions of the present paper include a detailed proof of the existence of the final coalgebra
of the relevant functors and the investigation on the relationship between FuTS bisimilarity and be-
havioural equivalence, on one side, and coalgebraic bisimilarity, on the other. In particular, it is shown
that the functor type involved preserves weak pullbacks when the underlying semiring, amongst other,
satisfy the zero-sum property. As illustration we insert the modelling of a basic qualitative process lan-

ASCENS 5

TR 09: Coalgebraic Bisimulation of FuTSs (V1) January 16, 2013

guage with FuTSs. Finally, we provide a discussion of the FuTS-based approach and its coalgebraic
view to deterministically discrete timed process algebras and Markov Automata.

2 Preliminaries

A tuple R = (R, +, 0, ∗, 1) is called a semiring, if (R, +, 0) is a commutative monoid with neutral
element 0, (R, ∗, 1) is a monoid with neutral element 1, ∗ distributes over +, and 0 ∗ r = r ∗ 0 = 0 for
all r ∈ R. As examples of a semiring we will use the booleans B = { false, true } with disjunction as
sum and conjunction as multiplication, and the non-negative reals R>0 with the standard operations.
We will consider, for a semiring R and a function ϕ : X → R, countable sums

∑
x ∈ X′ ϕ(x) in R,

for X′ ⊆ X. For such a sum to exist we require ϕ to be of finite support, i.e. the support set spt(ϕ) =

{ x ∈ X | ϕ(x) , 0 } is finite. Finally, for ϕ : X → R, and X′ ⊆ X, we let ϕ[X′] = {ϕ(x) | x ∈ X′ }.
We use the notation FS(X,R) for the collection of all functions of finite support from the set X

to the semiring R. A construct [x1 7→ r1, . . . , xn 7→ rn], with, for i = 1 . . . n, xi ∈ X all distinct and
ri ∈ R, denotes the mapping that assigns ri to xi, i = 1 . . . n, and assigns 0 to all x ∈ X different from
all xi. In particular [], or more precisely []R, is the constant function x 7→ 0 and DR,x = [x 7→ 1] is
the Dirac function on R for x ∈ X; in the sequel we will often drop the subscript R from []R and DR,x,
when the semiring is clear from the context.

We use ⊕ϕ for the value
∑

x∈X ϕ(x) in R. For ϕ, ψ ∈ FS(X,R), the function ϕ + ψ is the pointwise
sum of ϕ and ψ, i.e. (ϕ + ψ)(x) = ϕ(x) + ψ(x) ∈ R. Clearly, ϕ + ψ is of finite support as ϕ and ψ are.
Given an injective operation | : X × X → X, we define ϕ | ψ : X → R, by (ϕ | ψ)(x) = ϕ(x1) ∗ ψ(x2) if
x = x1 | x2 for some x1, x2 ∈ X, and (ϕ | ψ)(x) = 0 otherwise. Injectivity of the operation | guarantees
that ϕ | ψ is well-defined. Again, ϕ | ψ is of finite support as ϕ and ψ are. This is used in the setting
of syntactic processes P that may have the form P1 | P2 for two processes P1 and P2 and a syntactic
operator |. We have the following properties.

Lemma 1 Let X be a set, R a semiring, and | an injective binary operation on X. For ϕ, ψ ∈ FS(X,R)
it holds that ⊕ (ϕ + ψ) = ⊕ϕ + ⊕ψ and ⊕ (ϕ | ψ) = (⊕ϕ) ∗ (⊕ψ). �

We recall some basic definitions from coalgebra. See e.g. [Rutten(2000)] for more details. For a
functor F : Set → Set on the category Set of sets and functions, a coalgebra of F is a set X together
with a mapping α : X → F (X). A homomorphism between two F -coalgebras (X, α) and (Y, β) is a
function f : X → Y such that F (f) ◦α = β ◦ f . See Figure 1. An F -coalgebra (ΩF , ωF) is called final,
if there exists, for every F -coalgebra S = (X, α), a unique homomorphism [[·]]S

F
: (X, α)→ (ΩF , ωF).

Two elements x1, x2 of a F -coalgebra S = (X, α) are called behavioural equivalent with respect to F
if [[x1]]S

F
= [[x2]]S

F
, denoted x1 ≈

S
F

x2. In the notation [[·]]S
F

as well as ≈S
F

, the indication of the specific
coalgebra S will be omitted, when clear from the context.

Using a characterisation of [Gumm & Schröder(2002)], a functor F on Set is bounded, if there
exist sets A and B and a surjective natural transformation η : A× (·)B ⇒ F . Here, A× (·) is the functor
that maps a set X to the Cartesian product A × X and maps a function f : X → Y to the mapping
A × f : A × X → A × Y with (A × f)(a, x) = (a, f (x)), while (·)B denotes the functor that maps a
set X to the function space XB of all functions from B to X and that maps a function f : X → Y to the
mapping f B : XB → YB with f B(ϕ)(b) = f (ϕ(b)).

In order to deal with product functors in the sequel, we will use the following lemma, where
B1 + · · · + Bn is the disjoint union of B1, . . . , Bn and � denotes restriction on functions.

ASCENS 6

TR 09: Coalgebraic Bisimulation of FuTSs (V1) January 16, 2013

Figure 1: Diagrams of coalgebra morphism and coalgebraic bisimulation

Lemma 2 Let A1, . . . , An, B1, . . . , Bn be sets and F1, . . .Fn be functors on Set. Suppose η i : Ai ×

(·)Bi ⇒ Fi is a natural transformation such that η i
X : Ai × XBi → Fi(X), i = 1 . . . n, is surjective.

Then η : A1 × · · · × An × (·) B1+···+Bn ⇒ F1 × · · · × Fn with ηX : A1 × · · · × An × (X) B1+···+Bn →

F1(X) × · · · × Fn(X) such that

ηX(〈a1, . . . , an〉, ϕ) = 〈η1
X(a1, ϕ�B1), . . . , ηn

X(an, ϕ�Bn)〉

is a natural transformation. Moreover, for each set X, the mapping ηX is surjective. �

The lemma can be straightforwardly checked. Thus, a product functor F1× · · · ×Fn on Set, for which
each factor Fi, i = 1 . . . n, meets the criterion of [Gumm & Schröder(2002)], also meets the criterion
itself and hence F1 × · · · × Fn is bounded.

For bounded functors we have the following result, see [Gumm & Schröder(2001)] for a proof.

Theorem 3 If a functor F : Set→ Set is bounded, then its final coalgebra exists. �

An F -coalgebra (R, γ) with R ⊆ X × Y is called a coalgebraic bisimulation of two F -coalgebras
(X, α) and (Y, β) if α ◦ π1 = F (π1) ◦ γ and β ◦ π2 = F (π2) ◦ γ. Here π1 : R→ X and π2 : R→ Y are the
projections from R to X and Y , respectively. See Figure 1. For a coalgebra S = (X, α), two elements
x1, x2 ∈ X are called coalgebraically bisimilar if there exists a coalgebraic bisimulation R of (X, α)
and (X, α) such that R(x1, x2), notation x1 ∼

S
F

x2, or simply x1 ∼F x2 when the coalgebra S is clear
from the context.

Given a cospan f1 : A → C and f2 : B → C, their pullback in Set is a set P together with a span
p1 : P→ A and p2 : P→ B such that f1 ◦ p1 = f2 ◦ p2, and, moreover, for any Q and span q1 : Q→ A
and q2 : Q → B satisfying f1 ◦ q1 = f2 ◦ q2 there exists a unique mapping m : Q → P, called the
mediating morphism, such that q1 = p1 ◦m and q2 = p2 ◦m. In case the mediating morphism need
not to be unique, we speak of a weak pullback of f1 : A → C and f2 : B → C. In Set, the pullback
of f1 : A → C and f2 : B → C is the set P = { (a, b) ∈ A × B | f1(a) = f2(b) } together with the
projections π1 : P→ A and π2 : P→ B.

If a functor F transforms a weak pullback diagram for f : A → C and g : B → C into a weak
pullback diagram of F (f) : F (A) → F (C), and F (g) : F (B) → F (C), the functor F is said to
preserve weak pullbacks. More explicitly, F preserves weak pullbacks, if for any cospan f : A → C
and g : B → C in Set, having a weak pullback W together with span w1 and w2, we have that
F (f) ◦F (w1) = F (f) ◦F (w2), and, for any set Q and span F : Q → F (A) and G : Q → F (B) with
F (f) ◦ F = F (g) ◦G, we can find a mediating morphism M : Q → F (W) such that F = F (w1) ◦M
and G = F (w2) ◦M. See Figure 2.

ASCENS 7

TR 09: Coalgebraic Bisimulation of FuTSs (V1) January 16, 2013

Figure 2: Functor F preserving weak pullbacks

In Set, for many functors coalgebraic bisimulation and behavioural equivalence coincide (but not
always, see [Bonchi et al.(2011), Section 2.2] for an example). A sufficient condition for the two
notions being equal is the preservation of weak pullbacks, which is for many functors the case (but
not all, in particular not for the Giry-functor on the category of measurable spaces and functions,
see [Viglizzo(2005), Marti & Venema(2012)]).

Theorem 4 [Rutten(2000), Theorem 9.3] If a functor F on Set preserves weak pullbacks, then coal-
gebraic bisimilarity and behavioural equivalence coincide, i.e. for any F -coalgebra S = (X, α) and
elements x1, x2 ∈ X it holds that x1 ∼

S
F

x2 iff x1 ≈
S
F

x2. �

A number of proofs of results on process languages P in this paper rely on so-called guarded re-
cursion [de Bakker & de Vink(1996)]. Typically, constants X, also called process variables, are a
syntactical ingredient in these languages. As usual, if X := P, i.e. the constant X is declared to have
the process P as its body, we require P to be prefix-guarded, i.e. any occurrence of a constant in the
body P is in the scope of a prefix-construct of the language. Guarded recursion assumes the existence
of a function c : P → N such that c(P) = 1 if P is a prefix construct, c(P1 • P2) > max{ c(P1), c(P2) }
for all other syntactic operators • of P, and moreover c(X) > c(P) if X := P.

3 State-to-Function Labelled Transition Systems

The definition of a state-to-function labelled transition system, FuTS for short, involves a set S of
states and one or more relations of states on the one hand, and functions from states into semirings on
the other hand. For sums over arbitrary subsets of states to exist, the functions are assumed to be of
finite support.

Definition 1 A FuTS S, in full ‘a state-to-function labelled transition system’, over a number of
label sets L i and semirings R i, i = 1 . . . n, is a tuple S = (S , 〈�i 〉

n
i=1) such that, for i = 1 . . . n,

�i ⊆ S × L i × FS(S ,R i). •

Similar as for state-to-state transitions of LTSs, for state-to-function transitions of FuTSs we write
s

`
�i v for (s, `, v) ∈ �i. For a FuTS S = (S , 〈�i 〉

n
i=1) the set S is called the set of states or the

carrier set. We refer to each�i as a state-to-function transition relation of S or just as a transition
relation. If for S we have that n = 1, i.e. there is only one state-to-function transition relation�,

ASCENS 8

TR 09: Coalgebraic Bisimulation of FuTSs (V1) January 16, 2013

Figure 3: FuTS for two standard processes and a probabilistic process.

then S is called simple. A FuTS S is called total and deterministic if for each transition relation�i ⊆

S ×L i×FS(S ,R i) involved and for all s ∈ S , ` ∈ L i, we have s
`
�i v for exactly one v ∈ FS(S ,R i).

In such a situation, the state-to-function relations�i correspond to functions S → L i → FS(S ,R i).
For the remainder of the paper, all FuTSs we consider will be total and deterministic, unless explicitly
stated otherwise. It is noted that Definition 1 slightly differs in formulation from the one provided
in [De Nicola et al.(2011)].

Examples For the modeling of standard interactive processes with FuTSs, we choose a set of ac-
tionsA as label set and the booleans B as semiring. Consider the two processes P = a.b.nil + a.c.nil
and Q = a.(b.nil + c.nil), their representation as a FuTS is depicted in Figure 3. For process P, on
the left of the figure, we have P

a
� [b.nil 7→ true, c.nil 7→ true], while for the process Q, in the

middle of the figure, we have Q
a
� [b.nil + c.nil 7→ true]. So, for P the two processes b.nil and c.nil

each are set to true and for Q only the process b.nil + c.nil is set to true. Since any finite number
of alternatives can be assigned a non-zero value by a function of finite support, deterministic FuTSs
are able to represent image-finite non-determinism; the branching is taken care of by the functions

from process terms to B. To complete the picture b.nil
b
� [nil 7→ true], c.nil

c
� [nil 7→ true],

b.nil + c.nil
b
� [nil 7→ true] and b.nil + c.nil

c
� [nil 7→ true].

As another example of a simple FuTS, Figure 3 displays at its right a FuTS over the action setA
and the semiring R>0 of the non-negative real numbers. The functions v0 to v3 used in the example
have the property that ⊕vi(s) = 1, for i = 0 . . . 3. More explicitly we have

s0
a
� [s0 7→

1
2 , s1 7→

1
2] s2

a
� [s2 7→

1
2 , s3 7→

1
2] s3

a
� [s0 7→

1
2 , s3 7→

1
2]

s1
a
� [s1 7→

1
2 , s2 7→

1
2] s1

b
� [s0 7→

1
6 , s2 7→

1
2 , s3 7→

1
3]

si
b
� []B for i = 0, 2, 3

Usually, such a FuTS over R>0 is called a (reactive) probabilistic transition system, using standard
terminology introduced in [van Glabbeek et al.(1995)].

In Section 7 we will provide semantics for the process language IML for interactive Markov
chains [Hermanns(2002), Hermanns & Katoen(2010)] using FuTSs. Unlike many other stochastic
process algebras, a single IML process can in general both perform action-based transitions and time-
delays governed by exponential distributions.

ASCENS 9

TR 09: Coalgebraic Bisimulation of FuTSs (V1) January 16, 2013

Below it will be notationally convenient to consider a (total and deterministic) FuTS as a tuple
(S , 〈 θi 〉

n
i=1) with transition functions θi : S → L i → FS(S ,R i), i = 1 . . . n, rather than using the

form (S , 〈�i 〉
n
i=1) that occurs more frequently for concrete examples in the literature. Alternatively,

using disjoint unions, one could see a FuTS represented by a function θ′ of type S →
⊕n

i=1L i →⊕n
i=1 FS(S ,R i) satisfying the additional property that θ′(s)(`) ∈ FS(S ,R i) if ` ∈ L i. As this fits

less smoothly with the category-theoretical approach of Section 4, we stick to the former format.
We will use the notation with transition functions θi : S → L i → FS(S ,R i) to introduce the

notion of bisimilarity for a FuTS.

Definition 2 Let S = (S , 〈 θi 〉
n
i=1) be a FuTS over the label sets L i and semirings R i, i = 1 . . . n. An

equivalence relation R ⊆ S × S is called an S-bisimulation if R(s1, s2) implies∑
t′∈[t]R θi (s1)(`)(t′) =

∑
t′∈[t]R θi (s2)(`)(t′) (1)

for all t ∈ S , i = 1 . . . n and ` ∈ L i, where we use the notation [t]R to denote the equivalence class
of t ∈ S with respect to R. Two elements s1, s2 ∈ S are called S-bisimilar if R(s1, s2) for some
S-bisimulation R for S. Notation x1 'S x2. •

Note that the sums in equation (1) exist since the functions θi (s1)(`), θi (s2)(`) ∈ FS(S ,R i), i =

1 . . . n, are of finite support.

For the combined FuTS of the two processes P = a.b.nil + a.c.nil and Q = a.(b.nil + c.nil) of
Figure 3, consider the equivalence relation R such that R(P, Q) and also R(b.nil, b.nil + c.nil),
R(b.nil, b.nil + c.nil), R(c.nil b.nil + c.nil), and R(nil, nil). Then R is not a FuTS-bisimulation.
Although, on the one hand,

∑
t′∈[nil]R θ(b.nil)(b)(t′) = θ(b.nil)(b)(nil) = true and, on the other hand,∑

t′∈[nil]R θ(b.nil + c.nil)(b)(t′) = θ(b.nil + c.nil)(b)(nil) = true, we have
∑

t′∈[nil]R θ(b.nil)(c)(t′) =

false, while
∑

t′∈[nil]R θ(b.nil + c.nil)(c)(t′) = true, taking sums, i.e. disjunctions, in B. As no other
equivalence relation fulfills the requirements of Definition 2 either, we conclude that the processes P
and Q are not bisimilar. See Section 5 for more detail.

For FuTSs that are neither total nor deterministic a variation of Definition 2 applies involving the usual
transfer conditions: if R(s1, s2) then

s1
`
�i v1 ∈ FS(S ,R i) =⇒ ∃v2 : s2

`
�i v2 ∈ FS(S ,R i) ∧ R̃(v1, v2)

s2
`
�i v2 ∈ FS(S ,R i) =⇒ ∃v1 : s1

`
�i v1 ∈ FS(S ,R i) ∧ R̃(v1, v2)

where the lifting R̃ on FS(S ,R i) × FS(S ,R i) is given by

R̃(v1, v2) ⇐⇒
∑

t′∈[t]R v1(t′) =
∑

t′∈[t]R v2(t′)

As we will consider total and deterministic FuTSs only, we stick to the more convenient formulation
involving transition functions of Definition 2.

4 FuTSs coalgebraically

In this section we will cast FuTSs in the framework of coalgebras and prove a correspondence result
of FuTS-bisimulation and behavioural equivalence for a suitable functor on Set. We also show that

ASCENS 10

TR 09: Coalgebraic Bisimulation of FuTSs (V1) January 16, 2013

for the functors associated with FuTSs, under mild conditions for the semirings involved, behavioural
equivalence and coalgebraic bisimulation coincide.

Definition 3 Let L be a set of labels and R a semiring. The functor UL
R

: Set → Set assigns to a
set X the function space FS(X,R)L of all functions ϕ : L → FS(X,R) and assigns to a mapping
f : X → Y the mappingUL

R
(f) : FS(X,R)L → FS(Y,R)L where

UL
R

(f)(ϕ)(`)(y) =
∑

x ∈ f −1(y) ϕ(`)(x)

for all ϕ ∈ FS(X,R)L, ` ∈ L and y ∈ Y. •

Again we rely on ϕ(`) ∈ FS(X,R) having a finite support for the sum to exist and for UL
R

to be
well-defined. In fact, we have spt(UL

R
(f)(ϕ)(`)) ⊆ { f (x) | x ∈ spt(ϕ)(`) }. We furthermore observe

that for any simple FuTS (S , θ) over L and R we have θ : S → L → FS(S ,R). Thus (S , θ) can be
interpreted as a UL

R
-coalgebra. In the sequel, we will abbreviate UL

R
with U whenever L and R are

clear from the context.
As we aim to compare our notion of bisimulation for FuTSs with behavioural equivalence for the

functorU, given a set of labels L and a semiring R, we need to check thatU possesses a final coalge-
bra. For this, we adapt the proof for the functor FS(·,M) : Set → Set whereM is a monoid (rather
than a semiring) as sketched in [Silva(2010)] to the setting here. The proof exploits the characterisa-
tion of [Gumm & Schröder(2002)], see Section 2. An alternative route to showing the existence of a
final coalgebra is followed in [Klin(2009)], also for commutative monoids, and relies on a finitarity
result of Barr, cf. [Barr(1993)].

Lemma 5 Let L be a set of labels, R a semiring. Then the functorU on Set is bounded.

Proof We verify that η : FS(N,R)L × (·)L×N ⇒ FS(·,R)L, defined by ηX : FS(N,R)L × XL×N →
FS(X,R)L such that ηX(ν, ξ)(`)(x) =

∑
(`,n) ∈ ξ−1(x) ν(`)(n), is a natural transformation with surjective

components. Note that η is of the form A × (·)B for the sets A = FS(N,R)L and B = L × N as the
characterisation requires.

For f : X → Y we check that the diagram

commutes, where f L×N : XL×N → YL×N is, as usual, given by f L×N(ξ) = f ◦ ξ. We have, for
ν ∈ FS(N,R)L, ξ ∈ XL×N, ` ∈ L and y ∈ Y , that

FS(f ,R)L
(
ηX(ν, ξ)

)
(`)(y)

=
∑

x ∈ f −1(y) ηX(ν, ξ)(`)(x) definition FS(f ,R)L

=
∑

x ∈ f −1(y)
∑

(` ,n) ∈ ξ−1(x) ν(`)(n) definition ηX

=
∑

(`,n) ∈ (f ◦ ξ)−1(y) ν(`)(n) (f ◦ ξ)−1(y) = ξ−1(f −1(y))

= ηY (ν, f ◦ ξ)(`)(y) definition ηY

= ηY
(
(idFS(N,R)L × fL×N)(ν, ξ)

)
(`)(y) definitions of idFS(N,R)L and fL×N

ASCENS 11

TR 09: Coalgebraic Bisimulation of FuTSs (V1) January 16, 2013

Thus, we have that FS(f ,R)L
(
ηX(ν, ξ)

)
= ηY

(
(idFS(N,R)L × fL×N)(ν, ξ)

)
and FS(f ,R)L ◦ ηX =

ηY ◦
(

idFS(N,R)L × fL×N
)
.

As to the surjectivity of ηX : FS(N,R)L × XL×N → FS(X,R)L, for any set X: Choose ϕ ∈
FS(X,R)L. Pick ` ∈ L. Suppose spt(ϕ(`)) = {x1, . . . , xs} ⊆ X. Pick x0 ∈ X arbitrary. We define
νϕ ∈ FS(N,R)L and ξ : L × N→ X as follows:

νϕ(`)(i) =

{
ϕ(`)(xi) for i = 1 . . . s

0 otherwise
and ξϕ(`, i) =

{
xi for i = 1 . . . s
x0 otherwise

Note, νϕ(`) has finite support, for ` ∈ L. Then we have

ηX(νϕ, ξϕ)(`)(x)

=
∑

(`,n) ∈ ξ−1
ϕ (x) νϕ(`)(n) definition ηX

=
∑

(`,i) ∈ ξ−1
ϕ (`,x), 16i6s νϕ(`)(i) νϕ(`)(n) = 0 for n , 1 . . . s

=

{
ϕ(`)(xi) if x = xi, i = 1 . . . s

0 otherwise
sums of 0 or 1 summand

= ϕ(`)(x) spt(ϕ)(`) = {x1, . . . , xs}

Hence ηX(νϕ, ξϕ) = ϕ and ηX is surjective.

Working with total and deterministic FuTSs, we can interpret a FuTS S = (S , 〈 θi 〉
n
i=1) over the label

sets L i and semirings R i, i = 1 . . . n, as a product θ1 × · · · × θn : S →
∏n

i=1 (L i → FS(S ,R i))
of functions θi : S → L i → FS(S ,R i). To push this idea a bit further, we want to consider the
FuTS S = (S, 〈 θi 〉

n
i=1) as a coalgebra of a suitable product functor on Set.

Definition 4 Let L = 〈L1, . . . ,Ln〉 be an n-tuple of label sets and R = 〈R1, . . . ,Rn〉 be an n-tuple of
semirings. The functorVL

R on Set is defined byVL
R =

∏n
i=1 U

L i
R i

=
∏n

i=1 FS(· ,R i)L i .

We note that any FuTS S = (S , 〈 θi 〉
n
i=1) over label sets Li and semirings Ri, for i = 1 . . . n, is a

VL
R -coalgebra. In the sequel, we shall use V as an abbreviation for VL

R whenever L = 〈L1, . . . ,Ln〉

and R = 〈R1, . . . ,Rn〉 are clear from the context. Similarly, and for the sake of readability, we shall
often abbreviateUL i

R i
byUi.

Under conditions that are generally met, coalgebras come equipped with a natural notion of be-
havioural equivalence that can act as a reference for strong equivalences, in particular of bisimulation
for FuTSs. Below, see Theorem 7, we prove that S-bisimilarity as given by Definition 2 coincides
with behavioural equivalence for the functor V as given by Definition 4, providing justification for
the notion of equivalence defined on FuTSs.

For the notion of behavioural equivalence for the functor V to be defined, we need to verify that
it possesses a final coalgebra.

Theorem 6 The functorV has a final coalgebra.

Proof From the proof of Lemma 5 we obtain that, for each factorUi ofV, there exist sets Ai and Bi

and a surjective natural transformation η i : Ai× (·)Bi ⇒Ui, i = 1 . . . n. By Lemma 2 it follows that we
can find sets A and B and a surjective natural transformation η : A× (·)B ⇒V. Hence, by Theorem 3,
it follows that the functorV possesses a final coalgebra (Ω, ω).

ASCENS 12

TR 09: Coalgebraic Bisimulation of FuTSs (V1) January 16, 2013

Since the functor V has a final coalgebra, we can speak of the behavioural equivalence ≈
V

on any
V-coalgebra or, equivalently, of the FuTS S. Writing [[·]]

V
for the final morphism of aV-coalgebra S

into (Ω, ω), we have
[[·]]
V

= [[·]]
U1
× · · · × [[·]]

Un

Next we establish, for a given FuTS S over L1, . . . ,Ln and R1 . . . ,Rn the correspondence of S-
bisimulation 'S as given by Definition 2 and the behavioural equivalence ≈

V
.

Theorem 7 Let S = (S , 〈 θi 〉
n
i=1) be a FuTS over the label sets L i and semirings R i , i = 1 . . . n, and

V as in Definition 4. Then s1 'S s2 ⇔ s1 ≈V s2, for all s1, s2 ∈ S .

Proof Let s1, s2 ∈ S . We first prove s1 'S s2 ⇒ s1 ≈V s2. So, assume s1 'S s2. Let R ⊆ S × S
be an S-bisimulation with R(s1, s2). Put θ = θ1 × · · · × θn. Note (S , θ) is aV-coalgebra. We turn the
collection of equivalence classes S/R into aV-coalgebra SR = (S/R, %R) by putting %R = %1× · · · ×%n

where
%i([s]R)(`)([t]R) =

∑
t′ ∈ [t]R θi(s)(`)(t′)

for s, t ∈ S , ` ∈ L i, i = 1 . . . n. This is well-defined since R is an S-bisimulation: if R(s, s′) then
we have

∑
t′∈[t]R θi(s)(`)(t′) =

∑
t′∈[t]R θi(s′)(`)(t′). The canonical mapping εR : S → S/R is a

V-homomorphism: For i = 1 . . . n, ` ∈ L i and t ∈ S , we have

Ui (εR)(θi(s))(`)([t]R)
=

∑
t′ ∈ ε−1

R ([t]R) θi(s)(`)(t′) by definition ofUi

=
∑

t′ ∈ [t]R θi(s)(`)(t′) by definition of εR

= %i ([s]R)(`)([t]R) by definition of %i

= %i (εR(s))(`)([t]R) by definition of εR

Thus, Ui(εR) ◦ θi = %i ◦ εR. Since V(εR) =
∏n

i=1 Ui(εR) it follows that εR is a V-homomorphism.
Therefore, by uniqueness of a final morphism, we have [[·]]S

V
= [[·]]SR

V
◦ εR. In particular, with respect

to S, this implies [[s1]]
V

= [[s2]]
V

since εR(s1) = εR(s2). Thus, s1 ≈V s2.
For the reverse, s1 ≈V s2 ⇒ s1 'S s2, assume s1 ≈V s2, i.e. [[s1]]

V
= [[s2]]

V
, for s1, s2 ∈ S .

Since the map [[·]]
V

: (S , θ) → (Ω, ω) is a V-homomorphism, the equivalence relation RS with
RS (s′, s′′) ⇔ [[s′]]

V
= [[s′′]]

V
is an S-bisimulation: Suppose RS (s′, s′′), i.e. s′ ≈

V
s′′, for some

s′, s′′ ∈ S . Assume ω = ω1 × · · · × ωn. Pick 1 6 i 6 n, ` ∈ L i, t ∈ S and assume [[t]]
V

= w ∈ Ω.
Since [[·]]

V
: (S , θ) → (Ω, ω) is a V-homomorphism we have, for i = 1 . . . n, that ωi ◦ [[·]]

V
=

Ui([[·]]V) ◦ θi . Hence, for s ∈ S , it holds that

ωi ([[s]]
V

)(`)(w) = Ui([[·]]V)(θi(s))(`)(w) =
∑

t′∈ [[·]]−1
V

(w) θi(s)(`)(t′) (2)

Therefore we have ∑
t′ ∈ [t]RS

θi(s′)(`)(t′)

=
∑

t′ ∈ [[·]]−1
V

(w) θi(s′)(`)(t′) by definition of RS and w

= ωi ([[s′]]
V

)(`)(w) by equation (2)
= ωi ([[s′′]]

V
)(`)(w) s′ ≈

V
s′′ by assumption

=
∑

t′ ∈ [[·]]−1
V

(w) θi(s′′)(`)(t′) by equation (2)

=
∑

t′ ∈ [t]RS
θi(s′′)(`)(t′) by definition of RS and w

ASCENS 13

TR 09: Coalgebraic Bisimulation of FuTSs (V1) January 16, 2013

Thus, if RS (s′, s′′) then
∑

t′ ∈ [t]RS
θi(s′)(`)(t′) =

∑
t′ ∈ [t]RS

θi(s′′)(`)(t′) for all t ∈ S , i = 1 . . . n, ` ∈ L i,
and therefore RS is an S-bisimulation. Since [[s1]]

V
= [[s2]]

V
, it follows that RS (s1, s2). Thus RS is

an S-bisimulation relating s1 and s2. Conclusion, it holds that s1 'S s2.

We continue with relating FuTS bisimilarity via behavioural equivalence to coalgebraic bisimulation.
We will show that, for a FuTS S over L = (L1, . . . ,Ln) and R = (R1, . . . ,Rn), when seen as a
coalgebra, behavioural equivalence ≈

V
and coalgebraic bisimulation ∼

V
coincide. Thus in view of

Theorem 7, we will have that FuTS bisimilarity 'S and coalgebraic bisimulation ∼
V

are the same. For
this, it suffices by Theorem 4 to verify that the functorV preserves weak pullbacks. However, our con-
struction below requires that the semirings involved satisfy two additional requirements: (i) existence
of a (right) multiplicative inverse for non-zero elements, i.e. for r ∈ R\{0R} it holds that r ∗R r′ = 1R
for some r′ ∈ R; (ii) the zero-sum property, stating that a sum r1 +R · · · +R rn = 0R iff each ri = 0R,
i = 1 . . . n. Thus, first, non-degenerate quotients exist, and, second, non-zero elements cannot be can-
celed out. In the concrete case of B and R>0, that will be used in the sequel, these requirements are
clearly fulfilled. For readability, we will use standard notation like r1/r2 rather than r1 ∗R r−1

2 .
We first consider the case of a simple FuTS and establish the preservation of weak pullbacks for

the functorU of Definition 3, moving to the functorV of Definition 4, of a general FuTS afterward.

Figure 4: FunctorU preserves weak pullbacks

Lemma 8 For a set of labels L and a semiring R, with multiplicative inverse and satisfying the zero-
sum property, the functorU of Definition 3 preserves weak pullbacks.

Proof See Figure 4. Let f : A→ C and g : B→ C be a cospan. Put P = { (a, b) ∈ A×B | f (a) = g(b) }
and let π1 : P → A and π2 : P → B be the projections. Then P is the pullback of f and g. Clearly,
U(f) ◦U(π1) = U(g) ◦U(π2) as f ◦ π1 = g ◦ π2.

Suppose F : Q → U(A) and G : Q → U(B) are such that U(f) ◦ F = U(g) ◦G. Then we define
N : Q→U(P) by

N(q)(`)(a, b) =


F(q)(`)(a) ∗G(q)(`)(b)
U(g)(G(q))(`)(f (a))

ifU(g)(G(q))(`)(f (a)) , 0

0 otherwise

for ` ∈ L and (a, b) ∈ P. Note that the above construction is well-defined as R is assumed to have
quotients. We claim that

F = U(π1) ◦N and G = U(π2) ◦N (3)

ASCENS 14

TR 09: Coalgebraic Bisimulation of FuTSs (V1) January 16, 2013

Note, for ` ∈ L, (a, b) ∈ P and q ∈ Q, we have

U(g)(G(q))(`)(f (a)) = U(g)(G(q))(`)(g(b)) = U(f)(F(q))(`)(g(b)) (4)

since f (a) = g(b) andU(f) ◦ F = U(g) ◦G. So, the definition of N is symmetric in a and b.
We verify that F = U(π1) ◦N. Pick q ∈ Q, ` ∈ L and a ∈ A. We must show F(q)(`)(a) =

U(π1)(N(q))(`)(a). We distinguish two cases.
Case I:U(g)(G(q))(`)(f (a)) = 0. Then we have

U(π1)(N(q))(`)(a) =
∑
{N(q)(`)(a, b) | b ∈ B : f (a) = g(b) } = 0

by definition of N.
On the other hand, if we haveU(g)(G(q))(`)(f (a)) = 0, then also haveU(f)(F(q))(`)(f (a)) = 0 since
U(f) ◦ F = U(g) ◦G. Since

U(f)(F(q))(`)(f (a)) =
∑

a′ ∈ f −1(f (a)) F(q)(`)(a′) =
∑

a′: f (a′)= f (a) F(q)(`)(a′)

we obtain
∑
{ F(q)(`)(a′) | a ∈ A : f (a′) = f (a) } = 0. In particular, by the zero-sum property of R,

F(q)(`)(a) = 0. Hence, both F(q)(`)(a) = 0 andU(π1)(N(q))(`)(a) = 0 and it follows that F(q)(`)(a) =

U(π1)(N(q))(`)(a).
Case II:U(g)(G(q))(`)(f (a)) , 0. Then we have, since (a, b) ∈ π−1

1 (a) iff f (a) = g(b),

U(π1)(N(q))(`)(a)

=
∑

b: f (a)=g(b) N(q)(`)(a, b) by definition ofU(π1)

=
∑

b: f (a)=g(b)
F(q)(`)(a) ∗G(q)(`)(b)
U(g)(G(q))(`)(f (a))

by definition of N

= F(q)(`)(a) ∗
∑

b: f (a)=g(b) G(q)(`)(b)
U(g)(G(q))(`)(f (a))

distributivity of R

= F(q)(`)(a) ∗
U(g)(G(q))(`)(f (a))
U(g)(G(q))(`)(f (a))

by definition ofU(g)

= F(q)(`)(a)

Hence, also for this case, F(q)(`)(a) = U(π1)(N(q))(`)(a). We conclude that F = U(π1) ◦N.
For proving the claim (3), it remains to check that G = U(π2) ◦N. Pick q ∈ Q, ` ∈ L and b ∈ B.

We now distinguish three cases.
Case I: g(b) < f [A]. Then, U(π2)(N(q))(`)(b) =

∑
a: f (a)=g(b) N(q)(`)(a, b) = 0 as the index set is

empty. On the other hand,

∑
b′:g(b′)=g(b) G(q)(`)(b′)

=
∑

b′ ∈ g−1(g(b)) G(q)(`)(b′) g(b′) = g(b) iff b′ ∈ g−1(g(b))

= U(g)(G(q))(`)(g(b)) by definition ofU

= U(f)(F(q))(`)(g(b)) sinceU(f) ◦ F = U(g) ◦G

=
∑

a′ ∈ f −1(g(b)) F(q)(`)(a) by definition ofU

=
∑

a: f (a)=g(b) F(q)(`)(a) a′ ∈ f −1(g(b)) iff f (a) = g(b)

= 0 again because the index set is empty

ASCENS 15

TR 09: Coalgebraic Bisimulation of FuTSs (V1) January 16, 2013

Since
∑

b′:g(b′)=g(b) G(q)(`)(b′) = 0, it follows from the zero-sum property of R that G(q)(`)(b′) = 0
for each b′ ∈ B such that g(b′) = g(b). In particular, G(q)(`)(b) = 0 and therefore G(q)(`)(b) =

U(π2)(N(q))(`)(b).
Case II: g(b) = f (a) for some a ∈ A and U(g)(G(q))(`)(f (a)) = 0. Note that the latter equality

is independent of the choice of a by equation (4). On the one hand, we have U(π2)(N(q))(`)(b) =∑
a: f (a)=g(b) N(q)(`)(a, b) = 0, since by definition of N we have N(q)(`)(a, b) = 0 for each a ∈ A such

that f (a) = g(b) in this case, asU(g)(G(q))(`)(f (a)) = 0. On the other hand,
∑

b′:g(b′)=g(b) G(q)(`)(b′) =

U(g)(G(q))(`)(g(b)) = U(g)(G(q))(`)(f (a)) = 0 by assumption. Again, by the zero-sum property
of R, we obtain in particular that G(q)(`)(b) = 0. It follows that G(q)(`)(b) = U(π2)(N(q))(`)(b).

Case III: g(b) = f (a) for some a ∈ A andU(g)(G(q))(`)(f (a)) , 0. Then it holds that

U(π2)(N(q))(`)(b)

=
∑

a ∈ π−1
2 (b) N(q)(`)(a, b) by definition ofU(π2)

=
∑

a: f (a)=g(b) N(q)(`)(a, b) a ∈ π−1
2 (b) iff f (a) = g(b)

=
∑

a: f (a)=g(b)
F(q)(`)(a) ∗G(q)(`)(b)
U(g)(G(q))(`)(f (a))

by definition of N

=
∑

a ∈ f −1(g(b))
F(q)(`)(a) ∗G(q)(`)(b)
U(g)(G(q))(`)(f (a))

f (a) = g(b) iff a ∈ f −1(g(b))

=

∑
a ∈ f −1(g(b)) F(q)(`)(a)
U(f)(F(q))(`)(g(b))

∗G(q)(`)(b) by equation (4) and distributivity of R

=
U(f)(F(q))(`)(g(b))
U(f)(F(q))(`)(g(b))

∗G(q)(`)(b) by definition ofU(f)

= G(q)(`)(b)

Thus, also in this case G(q)(`)(b) = U(π2)(N(q))(`)(b) and we conclude that G = U(π2) ◦N. This
proves the claim.

Now, let W with span w1 : W → A and w2 : W → B be any weak pullback for f and g. See again
Figure 4. Since W is a weak pullback of f and g, and π1 and π2 satisfy f ◦ π1 = g ◦ π2, there exists
a mapping m : P → W such that π1 = w1 ◦m and π2 = w2 ◦m. Suppose again that F : Q → U(A)
and G : Q → U(B) is a span such that U(f) ◦ F = U(g) ◦G. To prove the lemma we need to show
that there exists M : Q → U(W) such that F = U(w1) ◦M and G = U(w2) ◦M. Put M = U(m) ◦N.
Clearly, U(π1) = U(w1) ◦U(m) and U(π2) = U(w2) ◦U(m). Therefore we have, by equation (3),
F = U(π1) ◦N = U(w1) ◦U(m) ◦N = U(w1) ◦M, and similarly G = U(w2) ◦M, as was to be shown.
In [Bonchi et al.(2011), Section 2.2], in the setting of weighted automata, a counter example is given
for the general case of Lemma 8. The construction there involves the semiring Z and, specifically the
fact that 1 + (−1) = 0. Thus the construction of [Bonchi et al.(2011)] exploits in particular that the
semiring involved does not have the zero-sum property.

The proof of Lemma 8, in line with [de Vink & Rutten(1999)], explictly constgructs the mediating
morphism N. One can also appeal to a generalization of the so-called Row-Column Theorem, as
coined by Moss in [Moss(1999)]. An outline of such a proof is sketched in [Klin(2009)]. For a version
of the Row/Column Theorem dealing with infinite matrices, see [Sokolova(2005), Lemma 3.5.5]. In a
setting with finite sums, [Gumm & Schröder(2001)] provides a characterization of the monoidsM for
which the functor FS(· ,M)L preserves weak pullbacks, viz. those monoids with have the zero-sum
property and for which the Row/Column Theorem holds too.

With the Lemma 8 in place we are in a position to relate behavioural equivalence and coalgebraic
bisimulation as induced by a FuTS. Note, as for Lemma 8, the proof relies on the semirings to have
the zero-sum property.

ASCENS 16

TR 09: Coalgebraic Bisimulation of FuTSs (V1) January 16, 2013

Theorem 9 Let S = (S , 〈 θi 〉
n
i=1) be a FuTS over the label sets L i and semirings R i , i = 1 . . . n, with

multiplicative inverse and satisfying the zero-sum property. ForV as in Definition 4 it holds that ≈
V

and ∼
V

coincide.

Proof We recall that the functor V on Set is defined by V =
∏n

i=1 Ui, where, for i = 1 . . . n,
Ui = FS(· ,R i)L i . By Lemma 8, each factorUi, i = 1 . . . n, preserves weak pullbacks.

Let f : A → C and g : B → C be a cospan and let W with w1 : W → A and w2 : W → B
be a weak pullback for f and g. Suppose F : Q → V(A) and G : Q → V(B) is a span such that
V(f) ◦ F = V(g) ◦G. See Figure 5.

By Lemma 8 we have, for all i = 1 . . . n, that Ui(W) with Ui(w1) and Ui(w2) is a weak pullback
of Ui(f) and Ui(g). Since, for the projections πA

i : V(A) → Ui(A), πB
i : V(B) → Ui(B) and

πC
i : V(C) → Ui(C), we haveUi(f) ◦ πA

i ◦ F = πC
i ◦V(f) ◦ F = πC

i ◦V(g) ◦G = Ui(g) ◦ πB
i ◦G, there

exists a mapping ni : Q→Ui(W) such that πA
i ◦ F = Ui(w1) ◦ ni and πB

i ◦G = Ui(w2) ◦ ni by the weak
pullback property, for each index i = 1 . . . n. Define N : Q → V(W) by N = n1 × · · · × nn. Then we
have, for any q ∈ Q,

(V(w1) ◦N)(q) = V(w1)(〈n1(q), . . . , nn(q) 〉) =

〈U1(w1)(n1(q)), . . . ,Un(w1)(nn(q)) 〉 = 〈πA
1 (F(q)), . . . , πA

n (F(q))〉 = F(q)

Thus V(w1) ◦N = F. Similarly, V(w2) ◦N = G. We conclude that V(W) with V(w1) and V(w2) is
a weak pullback of V(f) and V(g) and that the functor V preserves weak pullbacks. Therefore, by
Theorem 4, the result follows.

Figure 5: FunctorV preserves weak pullbacks too, since each factorUi does

In the sequel we will provide a FuTS semantics for three representative process languages, one with
qualitative non-determinacy, one quantitative with stochastic-time non-determinacy, and a mixed one
having both qualitative and quantitative stochastic-time non-determinacy. For these languages we will
establish that their standard notions of strong equivalence as known in the literature coincide with the
notion of strong bisimulation as induced by the FuTS semantics. The results of this section imply
that the standard notions of strong equivalence on the one hand, and behavioural equivalence and
coalgebraic bisimulation on the other hand, are all the same. The notion of bisimulation for FuTS
plays an intermediary role, it bridges between the standard notion of concrete equivalence and the
abstraction notions from coalgebra.

5 FuTS-semantics for a elementary process language

As a first example of a formal semantics based on FuTSs and of an illustration of the compari-
son with standard semantics using LTSs, we first consider a minimal process language common

ASCENS 17

TR 09: Coalgebraic Bisimulation of FuTSs (V1) January 16, 2013

to many process algebras [Hoare(1985), Milner(1989), Baeten et al.(2009)] involving action prefix,
non-deterministic choice and recursion via process variables. Then we consider an extension of the
language with a parallel operator. The language comprises the basis for many of the SPCs proposed
in the literature, and in particular those we discuss in Sections 6 and 7. In fact, the language is a
sublanguage of IML (see Section 7).

Definition 5 LetA be a set of actions, ranged over by a, and let X be the set of constants, or process
variables, ranged over by X. The set Pelm of ‘elementary’ process terms is given by the grammar
P ::= nil | a.P | P + P | X. •

We associate with each X ∈ X a unique process P ∈ Pelm, notation X := P. It is required that each
occurrence of a constant in the body P of the constant definition is in the scope of a prefix.

The semantics of elementary processes is given as a FuTS over the action setA and the semiring
of booleans B.

Definition 6 The FuTS semantics of Pelm is given by the simple FuTS Selm = (Pelm, �elm) where
the transition relation �elm ⊆ Pelm × A × FS(Pelm,B) is the least relation satisfying the rules of
Figure 6. •

(NIL)
nil

a
�elm []B

(PREF1)
a.P

a
�elm [P 7→ true]

(PREF2) a , b
a.P

b
�elm []B

(CHO) P
a
�elm P Q

a
�elm Q

P + Q
a
�elm P + Q

(CNS) P
a
�elm P X := P

X
a
�elm P

Figure 6: FuTS semantics for elementary processes.

The nil process does not display any activity. Therefore, for every action a ∈ A, the function that
records the possible continuations of nil has an empty support, i.e. nil

a
�elm []B, which is exactly

rule (NIL). Recall, false is the 0-element of the semiring B and []B : Pelm → B is defined by
[]B(P) = false for every P ∈ Pelm. An action-prefix process a.P executes a and continues to behave
as P. This is captured by rule (PREF1). For any other action b, there is no continuation of a.P, see
rule (PREF2). With respect to the action b the processes a.P and nil behave the same.

In dealing with non-deterministic choice we take advantage of the additive structure of the semir-
ing, that extends pointwise to functions. If P1, . . . , Pn are all possible continuations for the process P
after executing a, and Q1, . . . , Qm are all possible continuations for the process Q after executing a,
then after doing a the process P + Q has the possibilities P1, . . . , Pn as well as Q1, . . . , Qm. In
case P = [Pi 7→ true]n

i=1 and Q = [Q j 7→ true]m
j=1, this is represented in rule (CHO) by the

function P + Q = [Pi 7→ true]n
i=1 + [Q j 7→ true]m

j=1 = [P1 7→ true, . . . , Pn 7→ true, Q1 7→

true, . . . ,Qm 7→ true]. The rule (CNS) for the constant simply copies the transition for the ‘body’ P
of the constant X if we have X := P. Note, that such is well-defined as P is required to be guarded.

It can be straightforwardly shown by guarded induction that the FuTS Selm is total and determinis-
tic: Clearly, for each a ∈ A there exists a unique P ∈ FS(Pelm,B) with nil

a
�elm P , viz. []B. Also,

for each b ∈ A, either b = a or b , a, there exists a unique P ∈ FS(Pelm,B) with a.P
b
�elm P . In

case a = b we have P = [P 7→ true], in case a , b we have P = []B. Assuming there exist, for
given a ∈ A, unique P and Q such that P

a
�elm P and Q

a
�elm Q, respectively, it follows, since

ASCENS 18

TR 09: Coalgebraic Bisimulation of FuTSs (V1) January 16, 2013

only rule (CHO) applies, that there exists a unique P ∈ FS(Pelm,B), namely P + Q that aggregates
the results for P, given by P , and the results for Q, given by Q. Finally, for X := P, by the induction
hypothesis there exists a unique P such that P

a
�elm P , for a ∈ A. Then, by virtue of rule (CNS),

P is also unique such that X
a
�elm P .

In the following we will use θelm : Pelm → A → FS(Pelm,B) for the function corresponding to
the relation�elm. We have, P

a
�elm P iff θelm(P)(a) = P .

In Figure 7 we provide the SOS for elementary processes in the LTS -based approach defining the
transition relation→elm. We have→elm ⊆ Pelm × A × Pelm. We discuss the various differences of the
FuTS and LTS semantics. In the standard semantics there is no rule for the nil process, i.e. there is
no transition for nil. The FuTS semantics provides nil

a
�elm []B for every action a. However, the

latter expresses θelm(nil)(a)(P′) = 0 for every a ∈ A and P′ ∈ Pelm, or, in standard terminology, nil
has no transition. The standard approach provides only one rule for the prefix construct, rule (PREF).
The FuTS approach has two rules for this, rule (PREF1) and (PREF2), as it also explicitly expresses
by way of rule (PREF2) that there is no standard transition labeled with another label than a for the
process a.P.

The choice rules (CHOa) and (CHOb) for the LTS semantics similarly differ from the choice
rule (CHO) for the FuTS semantics. In the standard approach the non-determinism is resolved by
choosing the rule. The FuTS semantics, developed with stochastic process languages in mind where
multiplicities matter (see Sections 6 and 7), combines the two branches into one function. The treat-
ment of process variables is the same for the two approaches.

(PREF)
a.P

a
→elm P

(CNS) P
a
→elm P′ X := P

X
a
→elm P′

(CHOa) P
a
→elm P′

P + Q
a
→elm P′

(CHOb) Q
a
→elm Q′

P + Q
a
→elm Q′

Figure 7: Standard SOS for elementary processes.

As we will show, see Theorem 11, for Selm = (Pelm, �elm) like for other FuTSs to follow, the
standard notion of strong bisimulation [Park(1981), Milner(1980)] identifies the same processes as
Selm-bisimulation as obtained from Definition 2 and denoted by 'Selm . We first observe the following
lemma.

Lemma 10 Let P ∈ Pelm and a ∈ A. Suppose P
a
�elm P . Then P(R) ⇐⇒ P

a
→ R, for all

R ∈ Pelm.
Proof Guarded induction on P: Clear for nil, as P(R) = []B(R) = false and nil

a
→elm R for no

R ∈ Pelm. For b.P, we have P(R) iff b = a and [P 7→ true](R) iff b = a and P = R, and also
b.P

a
→elm R iff b = a and P = R. For P + Q, it holds that P = P ′ + P ′′ where P

a
�elm P ′

and Q
a
�elm P ′′. Thus P(R) iff (P ′ + P ′′)(R) iff P ′(R) or P ′′(R) iff, by induction hypothesis,

P
a
→elm R or Q

a
→elm R iff P + Q

a
→elm R. For X with X := P, we have X

a
�elm P iff P

a
�elm P , and

X
a
→elm R iff P

a
→elm R. Thus P(R) iff, by induction hypothesis, P

a
→elm R iff X

a
→elm R.

Now, following the usual terminology, a relation R ⊆ Pelm × Pelm is called a strong bisimulation
on Pelm if P1

a
→elm P′1 ⇒ ∃P′2 : P2

a
→elm P′2 ∧ R(P′1, P

′
2) and P2

a
→elm P′2 ⇒ ∃P′1 : P1

a
→elm

ASCENS 19

TR 09: Coalgebraic Bisimulation of FuTSs (V1) January 16, 2013

P′1 ∧ R(P′1, P
′
2) whenever R(P1, P2). Two elements P1, P2 ∈ Pelm are called strongly bisimilar if there

exists a strong bisimulation R on Pelm relating P1 and P2, notation P1 ∼elm P2. It is well-known that
we can require R to be an equivalence relation, a so-called strong bisimulation equivalence, as the
equivalence closure of R is a strong bisimulation if R is.

In order to relate strong bisimilarity and FuTS-bisimilarity we observe the following: If R is a
strong bisimulation equivalence, with equivalence classes [P]R for P ∈ Pelm, then it holds for P1, P2 ∈

X with R(P1, P2) that

∃P′ ∈ [P]R : P1
a
→elm P′ ⇐⇒ ∃P′′ ∈ [P]R : P2

a
→elm P′′ (5)

For, if P1
a
→elm P′ and R(P′, P), then, since R is a bisimulation, for some suitable P′′ we have P2

a
→elm

P′′, R(P′, P′′) and R(P′, P), but then also P2
a
→elm P′′ and R(P′′, P), since R is an equivalence. We

use this in the proof that strong bisimilarity ∼elm and FuTS-bisimilarity 'Selm for Selm coincide.

Theorem 11 For any two processes P1, P2 ∈ Pelm, it holds that P1 ∼elm P2 iff P1 'Selm P2.
Proof Pick P1, P2 ∈ Pelm. To verify that P1 ∼elm P2 implies P1 'Selm P2 we assume there exists an
equivalence relation R that is a strong bisimulation such that R(P1, P2). Then, for arbitrary a ∈ A,
we have ∑

Q′∈[Q]R θelm(P1)(a)(Q′)

⇐⇒ ∃Q′ ∈ [Q]R : θelm(P1)(a)(Q′)

⇐⇒ ∃Q′ ∈ [Q]R : P1
a
→elm Q′ by Lemma 10

⇐⇒ ∃Q′′ ∈ [Q]R : P2
a
→elm Q′′ by equation (5)

⇐⇒ ∃Q′ ∈ [Q]R : P2
a
→elm Q′ α-conversion

⇐⇒ ∃Q′ ∈ [Q]R : θelm(P2)(a)(Q′) by Lemma 10

⇐⇒
∑

Q′∈[Q]R θelm(P2)(a)(Q′)

for all Q ∈ Pelm, i.e. for all equivalence classes of R. Hence, R is also an Selm-bisimulation and, since
R(P1, P2), we conclude P1 'Selm P2.

To show the reverse, that P1 'Selm P2 implies P1 ∼elm P2, let R be an Selm-bisimulation with
R(P1, P2). We have

P1
a
→elm Q′

=⇒ θelm(P1)(a)(Q′) by Lemma 10

=⇒
∑

Q∈[Q′]R θelm(P1)(a)(Q) property B

=⇒
∑

Q∈[Q′]R θelm(P2)(a)(Q) R is an Selm-bisimulation

=⇒ ∃Q ∈ [Q′]R : θelm(P2)(a)(Q) property B

=⇒ ∃Q′′ ∈ [Q′]R : θelm(P2)(a)(Q′′) α-conversion

=⇒ ∃Q′′ : P2
a
→elm Q′′ ∧ R(Q′,Q′′) by Lemma 10

Thus, the first transfer condition is met. By symmetry it follows that R is a strong bisimulation on Pelm

and R(P1, P2). Thus P1 ∼elm P2.

Next we augment the collection of elementary processes with a(n extension of a) CSP-like parallel
operator. Its treatment is slightly involved since a little extra semantic machinery for continuation
functions to reflect the syntactic operator is needed. As this obscures a bit the general explanation, we
kept initially the parallel construct out of Definition 5, as our main purpose of considering a qualitative
process language here is to illustrate the overall approach with FuTS in the quantitative setting.

ASCENS 20

TR 09: Coalgebraic Bisimulation of FuTSs (V1) January 16, 2013

(PAR1) P
a
�elm P Q

a
�elm Q a < A

P ‖A Q
a
�elm (P ‖A DQ) + (DP ‖A Q)

(PAR2) P
a
�elm P Q

a
�elm Q a ∈ A

P ‖A Q
a
�elm P ‖A Q

Figure 8: FuTS semantics for the parallel operator ‖A

We extend Pelm to allow processes of the form P ‖A Q, for every subset A of the set of actionsA.
The computational intuition is that in P ‖A Q the processes P and Q interleave a-steps for each action
a < A and that P and Q synchronise a-steps when the action a ∈ A.

We redefine the process language Pelm to be given by the grammar

P ::= nil | a.P | P+P | P ‖A P | X

for a ∈ A, A ⊆ A and X ⊆ X. To handle the parallel construct P ‖A Q with FuTSs we extend the
state-to-function relation�elm by adding the operational rules (PAR1) and (PAR2) of Figure 8.

Rule (PAR1) treats the case where the two parallel operands do not synchronise. If the process
P ‖A Q executes an action a ∈ A, this either stems from P or from Q. In the former case Q remains as
is, in the latter case P. Following the description introduced in Section 2 for injective binary operation
‖A on process terms, we here consider

‖A : (Pelm → FS(Pelm,B)) × (Pelm → FS(Pelm,B))→ (Pelm → FS(Pelm,B))

as the semantical counterpart, by putting (P2 ‖A P2)(R) = P1(R1) ∧P2(R2) if R = R1 ‖A R2. More
specifically, for any subset A ⊆ A,(

[P1 7→ true, . . . , Pn 7→ true] ‖A [Q1 7→ true, . . . , Qm 7→ true]
)
(R)

=
∑

R1,R2 : R1 ‖A R2=R[P1 7→ true, . . . , Pn 7→ true](R1)∗[Q1 7→ true, . . . , Qm 7→ true](R2)

=
∨

R1,R2 : R1 ‖A R2=R (
∨n

i=1(R1 = Pi)) ∧ (
∨m

j=1(R2 = Q j))

=
∨n

i=1
∨m

j=1 (R = Pi ‖A Q j)

Note, if existent, a split-up R = R1 ‖A R2 is unique here, as we do not deal with congruence classes
directly, cf. [Cardelli & Mardare(2010)]. For the carrier Pelm and the semiring B we have the Dirac
functions DQ : Pelm → B and DQ = [Q 7→ true], for Q ∈ Pelm. Thus, unfolding the various
definitions, we get

((P ‖A DQ) + (DP ‖A Q))(R)

⇐⇒ by definition of + on FS(Pelm,B)

(P ‖A DQ)(R) ∨ (DP ‖A Q)(R)

⇐⇒ by definition of ‖A on FS(Pelm,B)(
(R = R1 ‖A R2) ∧ P(R1) ∧ DQ(R2)

)
∨

(
(R = R1 ‖A R2) ∧ DP(R1) ∧ Q(R2)

)
⇐⇒

(
(R = R1 ‖A Q) ∧ P(R1)

)
∨

(
(R = P ‖A R2) ∧ Q(R2)

)
In other words, if P

a
�elm P and Q

a
�elm Q then ((P ‖A DQ) + (DP ‖A Q))(R) = true iff

R = R1 ‖A Q and P(R1) = true or R = P ‖A R2 and Q(R2) = true.

ASCENS 21

TR 09: Coalgebraic Bisimulation of FuTSs (V1) January 16, 2013

Rule (PAR1) deals with interleaving for actions a < A only. Synchronization of P and of Q for
P ‖A Q on actions a ∈ A is incorporated in rule (PAR2). As both process P and process Q need to
progress, with respect to the action a ∈ A, the continuation P for P and the continuation Q for Q can
be combined directly. For the extended state-to-function transition relation totality and determinacy
is straightforward to check.
Example Consider the process P = a.P1 + b.P2 + c.P3 + d.P4 and Q = a.Q1 + b.Q2 + b.Q3 + c.Q4.
Let A = {a, b}. Then we have

P
a
�elm [P1 7→ true] Q

a
�elm [Q1 7→ true]

P
b
�elm [P2 7→ true] Q

b
�elm [Q2 7→ true, Q3 7→ true]

P
c
�elm [P3 7→ true] Q

c
�elm [Q4 7→ true]

P
d
�elm [P4 7→ true] Q

d
�elm []B

Therefore, by rule (PAR2) for actions a and b and by rule (PAR1) for actions c and d, we have

P ‖A Q
a
�elm [P1 ‖A Q1 7→ true]

P ‖A Q
b
�elm [P2 ‖A Q2 7→ true, P2 ‖A Q3 7→ true]

P ‖A Q
c
�elm [P3 ‖A Q 7→ true, P ‖A Q4 7→ true]

P ‖A Q
d
�elm [P4 ‖A Q 7→ true]

The standard SOS rules for the operator ‖A, for A ⊆ A are given in Figure 9: the two rules (PAR1a)
and (PAR1b) for the interleaving case, the rule (PAR2) for the synchronising case. For the extended
language of elementary processes Lemma 10 holds as well. For the corresponding extension of the
proof only one other case for the induction step needs to be considered (split up in a subcase for an
action a < A and one for a ∈ A):

For the case P1 ‖A P2 where P1 ‖A P2
a
�elm P for a < A, suppose P1

a
�elm P1 and P2

a
�elm P2.

We have, for R ∈ Pelm,

P(R) ⇐⇒ rule (PAR1) for�elm

(P1 ‖A DP2)(R) ∨ (DP1 ‖A P2)(R)

⇐⇒ definition ‖A and DP1 , DP2(
∃R1 : R = R1 ‖A P2 ∧ P1(R1)

)
∨

(
∃R2 : R = P1 ‖A R2 ∧ P2(R2)

)
⇐⇒ by induction hypothesis(

∃R1 : R = R1 ‖A P2 ∧ P1
a
→elm R1

)
∨

(
∃R2 : R = P1 ‖A R2 ∧ P2

a
→elm R2

)
⇐⇒ both (PAR1) rules for→elm(

∃R1 : R = R1 ‖A P2 ∧ P1 ‖A P2
a
→elm R1 ‖A P2

)
∨(

∃R2 : R = P1 ‖A R2 ∧ P1 ‖A P2
a
→elm P1 ‖A R2

)
⇐⇒ P1 ‖A P2

a
→elm R

For the case P1 ‖A P2 where P1 ‖A P2
a
�elm P for a ∈ A, suppose P1

a
�elm P1 and P2

a
�elm P2.

We have, for R ∈ Pelm,

ASCENS 22

TR 09: Coalgebraic Bisimulation of FuTSs (V1) January 16, 2013

(PAR1a) P
a
→elm P′ a < A

P ‖A Q
a
→elm P′ ‖A Q

(PAR1b) Q
a
→elm Q′ a < A

P ‖A Q
a
→elm P ‖A Q′

(PAR2) P
a
→elm P Q

a
→elm Q a ∈ A

P ‖A Q
a
�elm P′ ‖A Q′

Figure 9: Standard semantics for the parallel operator ‖A

P(R) ⇐⇒ rule (PAR2) for�elm

(P1 ‖A P2)(R)
⇐⇒ definition ‖A on FS(Pelm,B)

∃R1,R2 : R = R1 ‖A R2 ∧ P1(R1) ∧ P2(R2)
⇐⇒ by induction hypothesis

∃R1,R2 : R = R1 ‖A R2 ∧ P1
a
→elm R1 ∧ P2

a
→elm R2

⇐⇒ rule (PAR2) for→elm

∃R1 : R = R1 ‖A R2 ∧ P1 ‖A P2
a
→elm R1 ‖A R2

⇐⇒ P1 ‖A P2
a
→elm R

With the extension of Lemma 10 in place it follows that Theorem 11 is also valid for the extended set
of processes.

Restriction and relabelling operators can be handled straightforwardly in the FuTS framework. A
treatment of a CCS-style parallel operator with FuTS proceeds along the same lines, in particular when
the set of actions A is assumed to be finite. For a countably infinite set A, the complication arises
that potentially unbounded sums need to be considered, as for every matching pair of actions a and ā
such that P1

a
�P1 and P2

ā
�P2 the combined continuation of P1 and P2 needs to be taken into

account. It can be proven, but we do not so here, that the summations in the particular synchronization
rule for the parallel operator are well-defined, using the fact that the processes involved admit finitely
many transition only to a continuation different from []B.

6 FuTS Semantics of PEPA

Next we will consider a significant part of the process algebra PEPA [Hillston(1996)], including the
parallel operator implementing the scheme of so-called minimal apparent rates, and provide a FuTS
semantics for it. We point out that there is no technical difficulty in extending the FuTS approach
to the full language; we do not do so here since its treatment does not add any conceptual benefit to
the present paper. We will show that PEPA’s notion of equivalence ∼pepa , called strong equivalence
in [Hillston(1996)], fits with the bisimilarity 'Spepa arising from the FuTS semantics.

Definition 7 The set Ppepa of PEPA processes is given by the grammar below:

P ::= nil | (a, λ).P | P + P | P BCA P | X

where a ranges over the set of actionsA, λ over R>0, A over the set of finite subsets ofA, and X over
the set of constants X. •

ASCENS 23

TR 09: Coalgebraic Bisimulation of FuTSs (V1) January 16, 2013

(NIL)
nil

δa
�pepa []R>0

(RAPF1)
(a, λ).P

δa
�pepa [P 7→ λ]

(RAPF2)
b , a

(a, λ).P
δb
�pepa []R>0

(CHO) P
δa
�pepa P Q

δa
�pepa Q

P + Q
δa
�pepa P + Q

(CNS) P
δa
�pepa P X := P

X
δa
�pepa P

(PAR1) P
δa
�pepa P Q

δa
�pepa Q a < A

P BCA Q
δa
�pepa (P BCA DQ) + (DP BCA Q)

(PAR2) P
δa
�pepa P Q

δa
�pepa Q a ∈ A

P BCA Q
δa
�pepa arf(P ,Q) · (P BCA Q)

Figure 10: FuTS semantics for PEPA.

For X ∈ X, the notation X := P indicates that the process P is associated with the constant X. It is
required that each occurrence of a process constant in the body P of the definition X := P is guarded
by a prefix.

PEPA, like many other SPCs, e.g. [Hermanns et al.(1998), Bernardo & Gorrieri(1998)], couples
actions and rates. The prefix (a, λ) of the process (a, λ).P expresses that the duration of the execution
of the action a ∈ A is sampled from a random variable with an exponential distribution of rate λ. The
CSP-like parallel composition P BCA Q of a process P and a process Q for a set of actions A ⊆ A allows
for the independent, asynchronous execution of actions of P or Q not occurring in the subset A, on the
one hand, and requires the simultaneous, synchronised execution of P and Q for the actions occurring
in A, on the other hand. The FuTS-semantics of the fragment of PEPA that we consider here, is given
in Figure 10, on which we comment below.

Characteristic for the PEPA language is the choice to model parallel composition, or cooperation
in the terminology of PEPA, scaled by the minimum of the so-called apparent rates. By doing so,
PEPA’s strong equivalence becomes a congruence [Hillston(1996)]. Intuitively, the apparent rate ra(P)
of an action a for a process P is the sum of the rates of all possible a-executions for P. The apparent
rate ra(P) can easily be defined recursively on the structure of P (see [Hillston(1996), Definition 3.3.1]
for details); accordingly, in the sequel we will refer to ra(P) as the ‘syntactic’ apparent rate. When
considering the parallel composition P BCA Q, with cooperation set A, an action a occurring in A has to
be performed by both P and Q. The rate of such an execution is governed by the slowest, on average,
of the two processes in this respect (one cannot take the slowest process per sample, because such an
operation cannot be expressed as an exponential distribution in general). Thus ra(P BCA Q) for a ∈ A is
the minimum min{ ra(P), ra(Q) }. Now, if P schedules an execution of a with rate r1 and Q schedules
a transition of a with rate r2, in the minimal apparent rate scheme the combined execution yields the
action a with rate r1 · r2 · arf(P,Q). Here, the ‘syntactic’ scaling factor arf(P,Q), the apparent rate
factor, is defined by

arf(P,Q) =
min{ ra(P), ra(Q) }

ra(P) · ra(Q)

assuming ra(P), ra(Q) > 0, otherwise arf(P,Q) = 0. Organising the product r1 ·r2 ·arf(P,Q) differently
as r1/ra(P) · r2/ra(Q) · min{ ra(P), ra(Q) } we see that for P BCA Q the minimum of the apparent rates
min{ ra(P), ra(Q) } is adjusted by the relative probabilities r1/ra(P) and r2/ra(Q) for executing a by P
and Q, respectively.

The FuTS semantics of PEPA has been proposed originally in [De Nicola et al.(2011)]. The def-
inition of the transition relation is recalled in Figure 10. The set of labels involved is ∆A defined by
∆A = { δa | a ∈ A }. In the context of FuTS semantics considered in this paper, we conventionally
use the special symbol δ for denoting a random delay with a negative exponential distribution. The

ASCENS 24

TR 09: Coalgebraic Bisimulation of FuTSs (V1) January 16, 2013

symbol δa denotes the duration of the execution of the action a (assuming such a duration be random,
exponentially distributed). The underlying semiring for the simple FuTS for PEPA is the semiring R>0
of non-negative reals.

Definition 8 The FuTS Spepa = (Ppepa,�pepa) over ∆A and R>0 has its transition relation given by
the rules of Figure 10. •

We discuss the rules of Figure 10. The FuTS semantics provides nil
δa
�pepa []R>0 , for every action a,

with []R>0 the 0-function of R>0. Therefore we have θpepa(nil)(δa)(P′) = 0 for every a ∈ A and
P′ ∈ Ppepa, or, in standard terminology, nil has no transition. For the rated action prefix (a, λ) we
distinguish two cases: (i) execution of the prefix in rule (RAPF1); (ii) no execution of the prefix
in rule (RAPF2). In the case of rule (RAPF1) the label δa signifies that the transition involves the
execution of the action a. The continuation [P 7→ λ] is the function that assigns the rate λ to the
process P. All other processes are assigned 0, i.e. the zero-element of the semiring R>0. In the
second case, rule (RAPF2), for labels δb with b , a, we do have a state-to-function transition, but
it is a degenerate one. The two rules for the prefix, in particular having the ‘null-continuation’ rule
(RAPF2), support the unified treatment of the choice operator in rule (CHO) and the parallel operator
in rules (PAR1) and (PAR2). The treatment of constants is as usual.

Note the semantic sum of functions P + Q replacing the syntactic sum in P + Q and the semantic
product P BCA Q used in rules (PAR1) and (PAR2) and, we recall, is defined as follows, for all R ∈
Ppepa:

(P BCA Q)(R) =

{
P(R1) ·Q(R2) if R = R1 BCA R2 for some R1,R2 ∈ Ppepa

0 otherwise

Note that the syntactic construct BCA of PEPA is trivially injective. Regarding the parallel operator BCA ,
with respect to some cooperation set A ⊆ A there are again two rules. Now the distinction is between
interleaving and synchronisation. In the case of a label δa involving an action a not in the subset A,
either the P-operand or the Q-operand of P BCA Q makes progress. For example, the effect of the
pattern P BCA DQ is that the value P(P′) · 1 is assigned to a process P′ BCA Q, the value P(P′) · 0 = 0
to a process P′ BCA Q′ for all Q′ , Q, and the value 0 for a process not of the form P′ BCA Q′. Here, as
in all other rules, the right-hand sides of the transitions only involve functions in FS(Ppepa,R>0) and
operators on them.

For the synchronization case of the parallel construct, assuming P
δa
�pepa P and Q

δa
�pepa Q, the

‘semantic’ scaling factor arf(P ,Q) is applied to P BCA Q. This scaling factor defined for functions
in FS(Ppepa,R>0), is, very much similar to its ‘syntactic’ counterpart, given by

arf(P , Q) =
min { ⊕P , ⊕Q }
⊕P · ⊕Q

provided ⊕P ,⊕Q > 0, and arf(P , Q) = 0 otherwise. For a process R = R1 BCA R2 we obtain the
value arf(P , Q) · (P BCA Q)(R1 BCA R2) = arf(P , Q) ·P(R1) ·Q(R2).

The following lemma establishes the relationship between the ‘syntactic’ and ‘semantic’ apparent
rate factors defined on processes and on continuation functions, respectively.

Lemma 12 Let P ∈ Ppepa and a ∈ A. Suppose P
δa
�pepa P . Then ra(P) = ⊕P . �

The proof of the lemma is straightforward (relying on the obvious definition of ra(P), omitted above,
which can be found in [Hillston(1996)]). It is also easy to prove, by guarded induction, that the FuTS
Spepa given by Definition 8 is total and deterministic. So, it is justified to write Spepa = (Ppepa, θpepa).
We use 'Spepa to denote the bisimilarity induced by Spepa.

ASCENS 25

TR 09: Coalgebraic Bisimulation of FuTSs (V1) January 16, 2013

(RAPF)
(a, λ).P

a,λ
→pepa P

(CHO1) P
a,λ
→pepa P′

P + Q
a,λ
→pepa P′

(CHO2) Q
a,λ
→pepa Q′

P + Q
a,λ
→pepa P′

(PAR1a) P
a,λ
→pepa P′ a < A

P BCA Q
a,λ
→pepa P′ BCA Q

(PAR1b) Q
a,λ
→pepa Q′ a < A

P BCA Q
a,λ
→pepa P BCA Q′

(CNS) P
a,λ
→pepa P′ X := P

X
a,λ
→pepa P′

(PAR2) P
a,λ1
→ P′ Q

a,λ2
→ Q′ a ∈ A

P BCA Q
a,λ
→pepa P′ BCA Q′

λ = arf(P,Q)·λ1·λ2

Figure 11: Standard semantics for PEPA.

Lemma 13 The FuTS Spepa is total and deterministic. �

Example To illustrate the ease to deal with multiplicities in the FuTS semantics, consider the PEPA

processes P1 = (a, λ).P and P2 = (a, λ).P+(a, λ).P for some P ∈ Ppepa. We have that P1
δa
�pepa [P 7→

λ] by rule (RAPF1), but P2
δa
�pepa [P 7→ 2λ] by rule (RAPF1) and rule (CHO). The latter makes us

to compute [P 7→ λ] + [P 7→ λ], which equals [P 7→ 2λ]. Thus, in particular we have P1 ;Spepa P2.
Intuitively it is clear that, in general we cannot have P + P ∼ P for any reasonable quantitative
process equivalence ∼ in the Markovian setting. Having twice as many a-labelled transitions, the
average number for (a, λ).P + (a, λ).P of executing the action a per time unit is double the average of
executing a for (a, λ).P.

The standard operational semantics of PEPA [Hillston(1996), Hillston(2005)] is given in Fig-
ure 11. The transition relation →pepa ⊆ Ppepa × (A × R>0) × Ppepa is the least relation satisfying
the rules. For a proper treatment of the rates, the transition relation is considered as a multi-transition

system, where also the number of possible derivations of a transition P
a,λ
→pepa P′ matters. We stress

that such bookkeeping is not needed in the FuTS-approach at all. In rule (PAR2) we use the ‘syntactic’
apparent rate factor for PEPA processes.
The so-called total conditional transition rate q[P,C, a] of a PEPA-process for a subset of processes
C ⊆ Ppepa and a ∈ A is given by (see, e.g. [Hillston(1996), Hillston(2005)]):

q[P,C, a] =
∑

Q ∈C
∑
{| λ | P

a,λ
→pepa Q |}.

Here, {| P
a,λ
→pepa Q |} is the multiset of transitions P

a,λ
→pepa Q and {| λ | P

a,λ
→pepa Q |} is the multiset of

all λ’s involved. The multiplicity of P
a,λ
→pepa Q is to be interpreted as the number of different ways

the transition can be derived using the rules of Figure 11. We are now ready to define PEPA’s notion
of strong equivalence1 [Hillston(1996), Hillston(2005)].

Definition 9 An equivalence relation R ⊆ Ppepa × Ppepa is called a strong equivalence if

q[P1, [Q]R, a] = q[P2, [Q]R, a]

for all P1, P2 ∈ Ppepa such that R(P1, P2), all Q ∈ Ppepa and all a ∈ A. Two processes P1, P2 ∈ Ppepa

are strongly equivalent if R(P1, P2) for a strong equivalence R, notation P1 ∼pepa P2. •

The next lemma couples, for a PEPA-process P, an action a and a function P ∈ FS(Ppepa,R>0), the
evaluation P(P′) with respect to the FuTS-semantics to the cumulative rate for P of reaching P′ by a
transition involving the label a in the standard operational semantics.

1In [Hillston(1996)] strong equivalence is denoted by �; in this paper, we use ∼pepa , instead, for notational uniformity.

ASCENS 26

TR 09: Coalgebraic Bisimulation of FuTSs (V1) January 16, 2013

Lemma 14 Let P ∈ Ppepa and a ∈ A. Suppose P
δa
�pepa P . The following holds: P(P′) =

∑
{| λ |

P
a,λ
→pepa P′ |} for all P′ ∈ Ppepa.

Proof Guarded induction on P. We only treat the cases for the parallel composition. Note, the
operation BCA : Ppepa × Ppepa → Ppepa with BCA (P1, P2) = P1 BCA P2 is injective. Recall, for P1,P2 ∈

FS(Ppepa,R>0), we have (P1 BCA P2)(P1 BCA P2) = P1(P1) ·P2(P2).

Suppose a < A. Assume P1
δa
�pepa P1, P2

δa
�pepa P2, P1 BCA P2

δa
�pepa P . We distinguish three

cases. Case (I), P′ = P′1 BCA P2, P′1 , P1. Then we have∑
{| λ | P1 BCA P2

a,λ
→pepa P′ |}

=
∑
{| λ | P1

a,λ
→pepa P′1 |} by rule (PAR1a)

= P1(P′1) by the induction hypothesis
= P1(P′1) · DP2(P2) since DP2(P2) = 1
= (P1 BCA DP2)(P′1 BCA P2) +

(DP1 BCA P2)(P′1 BCA P2) definition BCA on FS(Ppepa,R>0), DP1(P′1) = 0
= P(P′) by rule (PAR1)

Case (II), P′ = P1 BCA P′2, P′2 , P2: similar.
Case (III), P′ = P1 BCA P2. Then we have:∑

{| λ | P1 BCA P2
a,λ
→pepa P′ |}

=
(∑
{| λ | P1

a,λ
→pepa P1 |}

)
+(∑

{| λ | P2
a,λ
→pepa P2 |}

)
by rules (PAR1a) and (PAR1b)

= P1(P1) + P2(P2) by the induction hypothesis
= (P1 BCA DP2)(P1 BCA P2) +

(DP1 BCA P2)(P1 BCA P2) definition BCA on FS(Ppepa,R>0), DP1(P1), DP2(P2) = 1
= P(P′) again by rule (PAR1)

Suppose a ∈ A. Assume P1
δa
�pepa P1, P2

δa
�pepa P2, P1 BCA P2

δa
�pepa P . Without loss of

generality, P′ = P′1 BCA P′2 for suitable P′1, P
′
2 ∈ Ppepa.

∑
{| λ | P1 BCA P2

a,λ
→pepa P′ |}

=
∑
{| arf(P1, P2) · λ1 · λ2 | P1

a,λ1
→ pepa P′1, P2

a,λ2
→ pepa P′2 |} by rule (PAR2)

= arf(P1, P2) ·(∑
{| λ1 | P1

a,λ1
→ pepa P′1 |}

)
·
(∑
{| λ2 | P2

a,λ2
→ pepa P′2 |}

)
by distributivity

= arf(P1, P2) ·P1(P′1) ·P2(P′2) by the induction hypothesis
= arf(P1,P2) ·P1(P′1) ·P2(P′2) by Lemma 12
= arf(P1,P2) · (P1 BCA P2)(P′1 BCA P′2) definition BCA on FS(Ppepa,R>0)
= P(P′) by rule (PAR2)

The other cases are simpler and omitted here.
With the lemma in place we can prove the following correspondence result for Spepa-bisimilarity and
strong equivalence as given by Definition 9.

ASCENS 27

TR 09: Coalgebraic Bisimulation of FuTSs (V1) January 16, 2013

Theorem 15 For any two PEPA-processes P1, P2 ∈ Ppepa the following holds: P1 'Spepa P2 iff
P1 ∼pepa P2.

Proof Let R be an equivalence relation on Ppepa. Choose P,Q ∈ Ppepa and a ∈ A. Suppose P
δa
�pepa

P . Thus θpepa(P)(δa) = P . We have

q[P, [Q]R, a] =
∑

Q′ ∈ [Q]R

∑
{| λ | P

a,λ
→pepa Q′ |} by definition q[P, [Q]R, a]

=
∑

Q′ ∈ [Q]R P(Q′) by Lemma 14
=

∑
Q′ ∈ [Q]R θpepa(P)(a)(Q′) by definition θpepa

Therefore, for PEPA-processes P1 and P2 it holds that q[P1, [Q]R, a] = q[P2, [Q]R, a] for all Q ∈
Ppepa, a ∈ A iff

∑
Q′∈[Q]R θpepa(P1)(a)(Q′) =

∑
Q′∈[Q]R θpepa(P2)(a)(Q′) for all Q ∈ Ppepa, a ∈ A.

Thus, the equivalence relation R is a strong equivalence iff R is an Spepa-bisimulation, from which the
theorem follows.
In view of our general correspondence result Theorem 7, the above theorem shows that PEPA’s strong
equivalence ∼pepa is a behavioural equivalence, viz. the behavioural equivalence on the FuTS Spepa,
when seen as aV∆A

R>0
-coalgebra, which, in turn, coincides with the associated coalgebraic bisimilarity.

In other words, lettingVpepa abbreviateV∆A
R>0

, the following equalities hold:

∼pepa = 'Spepa = ≈
Spepa

Vpepa
= ∼

Spepa

Vpepa

Thus, PEPA’s standard, FuTS, behavioural and coalgebraic semantics coincide.

7 FuTS Semantics of IML

In this section we provide a FuTS semantics for a relevant part of IML, the language of Interac-
tive Markov Chains [Hermanns(2002)], IMCs for short. IMCs are automata that combine two types
of transitions: interactive transitions that involve the execution of actions and Markovian transitions
that represent the progress of time governed by exponential distributions. As a consequence, IMCs
embody both non-deterministic and stochastic behaviour. System analysis using IMCs proves to
be a powerful approach because of the orthogonality of qualitative and quantitative dynamics, their
logical underpinning and tool support, cf. [Bohnenkamp et al.(2006), Hermanns & Katoen(2010)]
and [Bozga et al.(2012)]. A number of behavioural equivalences, both strong and weak, are avail-
able for IMCs [Eisentraut et al.(2010a)]. In our treatment here, discussing a subset we call IMLs, we
do not deal with internal τ-steps and focus on strong bisimilarity. The FuTS semantics we consider in
the sequel has been proposed in [De Nicola et al.(2011)].

Definition 10 The set Piml of IML processes is given by the grammar below

P ::= nil | a.P | λ.P | P + P | P ‖A P | X

where a ranges over the set of actionsA, λ over R>0, A over the set of finite subsets ofA and X over
the set of constants X. •

We assume the same notation and guardedness requirements for constant definition and usage as in
Section 6 for PEPA.

In line with the discussion above, in IML there are separate prefix constructions for actions a.P and
for time-delays λ.P. No restriction is imposed on the alternative and parallel composition of processes.
For example, we have the process a.λ.nil + µ.b.nil in IML. It should be noted that for IMCs actions
are considered to take no time.

ASCENS 28

TR 09: Coalgebraic Bisimulation of FuTSs (V1) January 16, 2013

(NIL1) a ∈ A
nil

a
�1 []B

(NIL2)
nil

δ
�2 []R>0

(APF3)
a.P

δ
�2 []R>0

(APF1)
a.P

a
�1 [P 7→ true]

(APF2)
b , a

a.P
b
�1 []B

(RPF1) a ∈ A
λ.P

a
�1 []B

(RPF2)
λ.P

δ
�2 [P 7→ λ]

(PAR1)
P

α
�i P Q

α
�i Q α < A

P ‖A Q
α
�i (P ‖A D i

Q) + (D i
P ‖A Q)

(i = 1, 2) (PAR2) P
a
�1 P Q

a
�1 Q a ∈ A

P ‖A Q
a
�1 P ‖A Q

(CHO) P
α
�i P Q

α
�i Q

P + Q
α
�i P + Q

(i = 1, 2) (CON) P
α
�i P X := P

X
α
�i P

(i = 1, 2)

Figure 12: FuTS semantics for IML.

Definition 11 The formal semantics of Piml is given by the FuTS Siml = (Piml,�1,�2) over the
label sets A and ∆ = {δ } and the semirings B and R>0 with transition relations�1 ⊆ Piml × A ×

FS(Piml,B) and�2 ⊆ Piml × ∆ × FS(Piml,R>0) defined as the least relations satisfying the rules of
Figure 12. •

To accommodate for action-based and delay-related transitions, the FuTS Siml is non-simple, having
the two state-to-function relations�1 and�2. Actions a ∈ A decorate�1, the special symbol δ dec-
orates�2. Note rule (APF3) and rule (RPF1) involve the null-functions of R>0 and of B, respectively,
to express that a process a.P does not trigger a delay and a process λ.P does not execute an action.
For the parallel construct ‖A, interleaving applies both for non-synchronised actions a < A as well
as for delays (but not mixed). Therefore, rule (PAR1) pertains to both�1 and�2, with α ranging
overA∪∆. The same holds for non-deterministic choice, rule (CHO), and constants, rule (CON). Fi-
nally, IML does not provide synchronization of delays in the parallel construct. Rule (PAR2) only con-
cerns the transition relation�1. In rule (PAR1), for clarity, we decorated the characteristic functions,
writing Di

P , for i = 1, 2, for DP = [P 7→ true] in FS(Piml,B) and DP = [P 7→ 1] in FS(Piml,R>0).
We recall that for all R ∈ Piml:

(P ‖A Q)(R) =

{
P(R1) ·Q(R2), if R = R1 ‖A R2 for some R1,R2 ∈ Piml

0, otherwise

where · is the product in R>0 whenever P ,Q ∈ FS(Piml,R>0) and is the logical conjunction ∧ for
P ,Q ∈ FS(Piml,B).
Example Assume X := a.λ.b.X and Y := a.µ.b.Y . Put A = {a, b}. Then we have

X ‖A Y
a
�1 [λ.b.X ‖A µ.b.Y 7→ true] λ.b.X ‖A b.Y

δ
�2 [b.X ‖A b.Y 7→ λ]

b.X ‖A b.Y
b
�1 [X ‖A Y 7→ true] b.X ‖A µ.b.Y

δ
�2 [b.X ‖A b.Y 7→ µ]

λ.b.X ‖A µ.b.Y
δ
�2 [b.X ‖A µ.b.Y 7→ λ, λ.b.X ‖A b.Y 7→ µ]

It is not difficult to verify thatSiml is a total and deterministic FuTS. Below we useSiml = (Piml, θ1, θ2)
and write 'Siml for the associated bisimilarity.

Lemma 16 The FuTS Siml is total and deterministic. �

The standard SOS semantics of IML [Hermanns(2002)] is given in Figure 13 involving the transition
relations

→ ⊆ Piml ×A × Piml and d ⊆ Piml × R>0 × Piml

ASCENS 29

TR 09: Coalgebraic Bisimulation of FuTSs (V1) January 16, 2013

(APF)
a.P

a
→ P

(CHO1) P
a
→ R

P + Q
a
→ R

(CHO2) Q
a
→ R

P + Q
a
→ R

(CON1) P
a
→ Q X := P

X
a
→ Q

(PAR1a) P
a
→ P′ a < A

P ‖A Q
a
→ , P′ ‖A Q

(PAR1b) Q
a
→ Q′ a < A

P ‖A Q
a
→ P ‖A Q′

(PAR2) P
a
→ P′ Q

a
→ Q′ a ∈ A

P ‖A Q
a
→ P′ ‖A Q′

(RPF)
λ.P

λ
d P

(CHO3) P
λ
d R

P + Q
λ
d R

(CHO4) Q
λ
d R

P + Q
λ
d R

(CON2) P
λ
d Q X := P

X
λ
d Q

(PAR1c) P
λ
d P′

P ‖A Q
λ
d P′ ‖A Q

(PAR1d) Q
λ
d Q′

P ‖A Q
λ
d P ‖A Q′

Figure 13: Standard SOS rules for IML.

Below we will use the functions T and R based on → and d, cf. [Hermanns & Katoen(2010)]. We
have T : Piml ×A × 2Piml → B given by T(P, a,C) = true if the set { P′ ∈ C | P

a
→ P′ } is non-empty,

for all P ∈ Piml, a ∈ A and any subset C ⊆ Piml. For R : Piml × Piml → R>0 we put R(P, P′) =
∑
{| λ |

P
λ
d P′ |}. Here, as common for probabilistic and stochastic process algebras, the comprehension

is over the multiset of transitions leading from P to P′ with label λ. Alternatively, one could define
an explicit cnt -function, cnt : Piml × R>0 × Piml → R>0 returning the number of multiplicities of

a transition P
λ
d P′. We extend R to Piml × 2Piml by R(P,C) =

∑
P′ ∈C

∑
{| λ | P

λ
d P′ |}, for

P ∈ Piml, C ⊆ Piml . For IML we have the following notion of strong bisimulation [Hermanns(2002),
Hermanns & Katoen(2010)] that we will compare with the notion of bisimulation associated with the
FuTS Siml.

Definition 12 An equivalence relation R ⊆ Piml × Piml is called a strong bisimulation for IML if, for
all P1, P2 ∈ Piml such that R(P1, P2), it holds that

• for all a ∈ A and Q ∈ Piml: T(P1, a, [Q]R) ⇐⇒ T(P2, a, [Q]R)

• for all Q ∈ Piml: R(P1, [Q]R) = R(P2, [Q]R).

Two processes P1, P2 ∈ Piml are called strongly bisimilar if R(P1, P2) for a strong bisimulation R
for IML, notation P1 ∼iml P2. •

To establish the correspondence of FuTS bisimilarity 'Siml for Siml of Definition 11 and strong bisimi-
larity ∼iml for IML, we need to connect the state-to-function relation�1 and the transition relation→
as well as the state-to-function relation�2 and the transition relation d .

Lemma 17 (a) Let P ∈ Piml and a ∈ A. If P
a
�1 P then P

a
→ P′ ⇐⇒ P(P′) = true.

(b) Let P ∈ Piml . If P
δ
�2 P then

∑
{| λ | P

λ
d P′ |} = P(P′). �

Proof (a) Guarded induction. Let a ∈ A. We treat the typical cases λ.P and P1 ‖A P2 for a < A.
Case λ.P. Suppose λ.P

a
�1 P . Then we have P = []B. Both λ.P

a
→ P′ for no P′ ∈ Piml, as no

transition is provided in→, and P(P′) = false by definition of []B, for all P′ ∈ Piml.
Case P1 ‖A P2, a < A. Suppose P1

a
�1 P1, P2

a
�1 P2 and P1 ‖A P2

a
�1 P . Then it holds that

P = (P1 ‖A DP2) + (DP1 ‖A P2). Recall, for Q ∈ Piml and DQ ∈ FS(Piml,B), DQ(Q′) = true iff

ASCENS 30

TR 09: Coalgebraic Bisimulation of FuTSs (V1) January 16, 2013

Q′ = Q, for Q′ ∈ Piml. We have

P1 ‖A P2
a
→ P′

⇔ (P1
a
→ P′1 ∧ P′ = P′1 ‖A P2) ∨ (P2

a
→ P′2 ∧ P′ = P1 ‖A P′2)

by analysis of→
⇔ (P1(P′1) = true ∧ P′ = P′1 ‖A P2) ∨ (P2(P′2) = true ∧ P′ = P1 ‖A P′2)

by the induction hypothesis
⇔ (P1(P′1) · DP2(P2) = true ∧ P′ = P′1 ‖A P2) ∨

(DP1(P1) ·P2(P′2) = true ∧ P′ = P1 ‖A P′2)
by definition of DP1 and DP2

⇔ ((P1 ‖A DP2)(P′1 ‖A P2) = true ∧ P′ = P′1 ‖A P2) ∨
((DP1 ‖A P2)(P1 ‖A P′2) = true ∧ P′ = P1 ‖A P′2)

by definition of ‖A
⇔ (P1 ‖A DP2)(P′) = true ∨ (DP1 ‖A P2)(P′) = true

by definition of ‖A, DP1 and DP2

⇔ ((P1 ‖A DP2) + (DP1 ‖A P2))(P′) = true

by definition of + on FS(Piml,B)
⇔ P(P′) = true

The other cases are standard or similar and easier.
(b) Guarded induction. We treat the cases for µ.P and P1 ‖A P2. Case µ.P. Assume P

δ
�2 P .

Suppose P = µ.P′. Then it holds that P admits a single d -transition, viz. P
µ
d P′. Thus we have∑

{| λ | P
λ
d P′ |} = µ = [P′ 7→ µ](P′) = P(P′). Suppose P = µ.P′′ for some P′′ , P. Then we have∑

{| λ | P
λ
d P′ |} = 0 = [P′′ 7→ µ](P′) = P(P′).

Case P1 ‖A P2. Assume P1
δ
�2 P1, P2

δ
�2 P2 and P1 ‖A P2

δ
�2 P . It holds that P =

(P1 ‖A DP2) + (DP1 ‖A P2). We calculate∑
{| λ | P1 ‖A P2

λ
d P′ |}

=
∑
{| λ | P1

λ
d P′1, P′ = P′1 ‖A P2 |} +

∑
{| λ | P2

λ
d P′2, P′ = P1 ‖A P′2 |}

by analysis of d

= (if P′ = P′1 ‖A P2 then
∑
{| λ | P1

λ
d P′1 |} else 0 end) +

(if P′ = P1 ‖A P′2 then
∑
{| λ | P2

λ
d P′2 |} else 0 end)

= (if P′ = P′1 ‖A P2 thenP1(P′1) else 0 end) +

(if P′ = P1 ‖A P′2 thenP2(P′2) else 0 end)
by induction hypothesis for P1 and P2

= (P1 ‖A DP2)(P′) + (DP1 ‖A P2)(P′)
by definition of ‖A, DP1 ,DP2 and + on FS(Piml,R>0)

= P(P′)

The remaining cases are left to the reader.
We are now in a position to relate FuTS bisimilarity and standard strong bisimilarity for IML.

Theorem 18 For any two processes P1, P2 ∈ Piml it holds that P1 'Siml P2 iff P1 ∼iml P2.

ASCENS 31

TR 09: Coalgebraic Bisimulation of FuTSs (V1) January 16, 2013

Proof Let R be an equivalence relation on Piml. Pick P ∈ Piml, a ∈ A and choose any Q ∈ Piml.
Suppose P

a
�P . Thus θ1(P)(a) = P . Then we have

T(P, a, [Q]R) ⇔ ∃Q′ ∈ [Q]R : P
a
→ Q′ by definition of T

⇔ ∃Q′ ∈ [Q]R : P(Q′) = true by Lemma 17a
⇔

∑
Q′ ∈ [Q]R θ1(P)(a)(Q) = true by definition of θ1

Note, summation in B is disjunction. Likewise, on the quantitative side, we have

R(P, [Q]R) =
∑

Q′ ∈ [Q]R

∑
{| λ | P

λ
d Q′ |} by definition of R

=
∑

Q′ ∈ [Q]R P(Q′) by Lemma 17b
=

∑
Q′ ∈ [Q]R θ2(P)(δ)(Q) by definition of θ2

Combining the equations, we conclude that a strong bisimulation for IML is also an Siml-bisimulation
for the FuTS Siml, and vice versa. From this the theorem follows.
Again, as a corollary of the theorem above, we have for IML that its notion of strong bisimilarity
P1 ∼iml P2 is coalgebraically underpinned, as it coincides, calling to Theorem 7 once more, with
behavioural equivalence on the FuTS Siml, when seen as a V〈A,∆〉

〈B,R>0〉
-coalgebra, which, in turn, coin-

cides with the associated coalgebraic bisimilarity. In other words, lettingViml abbreviateV〈A,∆〉
〈B,R>0〉

, the
following equalities hold:

∼iml = 'Siml = ≈
Siml
Viml

= ∼
Siml
Viml

Thus, IML’s standard, FuTS, behavioural and coalgebraic semantics coincide.

8 Discussion

Above we have focused on the treatment with FuTSs of action prefix in the setting of an elementary
process language, stochastic prefix in the setting of PEPA and their mixing in the setting of IML
and studied the positioning of the associated notion of process strong bisimulation equivalences. The
semirings involved are the booleans B and non-negative reals R>0. The orthogonality of FuTSs allows
for superposition of various state-to-function transition relations, allowing e.g. to mingle with discrete
deterministic time, as we will sketch below. Also, when considering repeated application of functors
FS(·,R) more complex state-to-function transition system can be defined, for example to deal with
so-called Markov automata [Eisentraut et al.(2010a), Eisentraut et al.(2010b)].

With the help of the semiring of non-negative integers N, a FuTS-style semantics can be given
to discrete deterministic time processes where time elapses by the ticking of the clock. For exam-
ple, [Aldini et al.(2010)] discusses a small process language, called TPC, involving the prefix con-
struct (n).P, with n ∈ N, n > 0, expressing that the process P is to be executed after n time steps.
A FuTS for TPC can be of type (PTPC, �1, �2) over the label sets A and {

√
}—where A is a set

of actions as before and the special symbol
√

denotes a fixed discrete deterministic delay represent-
ing progress in time—and the semirings B and N. We have �1 ⊆ PTPC ×A × FS(PTPC,B) and
�2 ⊆ PTPC × {

√
} × FS(PTPC,N). The relevant rules involving the timed prefix construct are

(TPF1) a ∈ A
(n).P

a
�1 []B

(TPF2) P
√

�2 P

(n).P
√

�2 [n; P] + [P 7→ n] + (n + P)

The first timed prefix rule (TPF1) expresses that a timed prefix cannot perform an action (immedi-
ately). The second time prefix rule (TPF2) combines a possible evolution over time of the process P

ASCENS 32

TR 09: Coalgebraic Bisimulation of FuTSs (V1) January 16, 2013

into its continuation P with the elapse of the prefix. Note, the continuation in the conclusion of rule
(TPF2) is a sum of three parts, viz. [n; P], [P 7→ n], (n + P). The mappings [n; P] and (n + P) are
given by

[n; P](Q) =

{
m if 0 < m < n and Q = (n − m).P
0 otherwise

(n + P)(Q) =

{
n + P(Q) if P(Q) > 0

0 otherwise

Time progress taking fewer steps than n is covered by the continuation [n; P]. For m strictly between
0 and n, after m time steps there remains (n − m).P to be executed. After exactly n time steps, P is
to be executed. After more than n time steps, say n + m time steps, process Q is to be executed if
P(Q) = m, for m > 0.

The rules for the choice and parallel construct of TPC make use of corresponding operations
on FS(PTPC,N) such that so-called time-determinism and time-continuity principles are respected.
Again a total and deterministic FuTS is obtained this way. Also, along the lines of the correspon-
dence proofs for PEPA and IML, it can be shown that the notion of discrete-time bisimulation
of [Aldini et al.(2010), Baeten & Middelburg(2002)] and the notion of bisimulation for the FuTS
sketched above as well as the associated notion of behavioural equivalence coincide. Thus, also de-
terministic time can be handled with FuTSs. Note, as the semiring N does not possess multiplicative
inverses, we cannot appeal to Theorem 9 to connect to coalgebraic equivalence in this case.

Markov automata, as proposed in [Eisentraut et al.(2010a), Eisentraut et al.(2010b)], combine
non-deterministic and probabilistic behaviour with stochastic time. The combination of non-determi-
nistic and probabilistic behaviour provided by Markov automata can be easily achieved, at the linguis-
tic level by means of a combination of a standard choice operator, + , with the following probabilistic
extension of action prefix: a.{p1 :: P1� . . .�ph :: Ph} with a ∈ A, the set of actions, and h > 0,
p1, . . . , ph ∈ (0, 1] such that p1 + · · · + ph 6 1. The syntactic construct {p1 :: P1� . . .�ph :: Ph}

denotes the sub-distributionD{p1::P1�...�ph::Ph}) over processes defined by

D{p1::P1�...�ph::Ph} =
∑ h

i=1 [Pi 7→ pi]

The intuitive meaning is then obvious: process a.{p1 :: P1� . . .�ph :: Ph} performs action a and then
behaves as process P with probabilityD{p1::P1�...�ph::Ph}(P).

The amalgamation of action prefix and probabilistic choice leads to a nesting of the functors
involved. Now, transitions labelled by actions go from processes to sets of discrete sub-distributions.
In fact, following the FuTS approach, one encounters transitions of the form �1 ⊆ PMA × A ×

FS(SDistr (PMA) ,B) to deal with the non-deterministic/probabilistic aspect of the language as well
as transitions of the form�2 ⊆ PMA × ∆ × FS(PMA ,R>0) to handle stochastic delays, as we have
already seen in the previous section. Here, SDistr (·) is the functor associating finite sub-distributions
to a set, dealing with functions similar to the FuTS functors. More concretely, for the combined action
and probabilistic choice prefix, we have the rules

(APF1)
a.{p1 :: P1� . . .�ph :: Ph}

a
�1 [D({p1::P1�...�ph::Ph}) 7→ true]

(APF2)
b , a

a.{p1 :: P1� . . .�ph :: Ph}
b
�1 []B

(APF3)
a.{p1 :: P1� . . .�ph :: Ph}

δ
�2 []R>0

We expect that all coalgebraic reasoning will hold true for such nesting of functors. In particular, we
claim for a generalised notion of (deterministic and total) FuTS, viz. coalgebras (X, θ) of a functor
(F1 ◦ · · · ◦Fn)L or a product of such functors, where Fi = FS(·,Ri) for some semiring Ri, i = 1 . . . n.,

ASCENS 33

TR 09: Coalgebraic Bisimulation of FuTSs (V1) January 16, 2013

that the associated notion of FuTS bisimilarity coincides with behavioural equivalence, and, for semir-
ings having multiplicative inverses and meeting the zero-sum property (as discussed in Section 4),
with coalgebraic bisimilarity as well.

9 Concluding remarks

Total and deterministic state-to-function labeled transition systems, FuTSs, are a convenient instru-
ment to express the operational semantics of both qualitative and quantitative process languages. In
this paper we have discussed the notion of bisimilarity that arises from a FuTS, possibly involving
multiple transition relations, from a coalgebraic perspective. For FuTS models of two process lan-
guages based on prominent stochastic process algebras we related the induced notion of bisimulation
to the standard equivalences, thus providing these equivalence with a coalgebraic underpinning. The
main technical contribution of our paper is a correspondence result, Theorem 7, that relates bisimilar-
ity of a FuTS S to behavioural equivalence of the functor associated with S.

It is noted in [Bonchi et al.(2011)], in the context of weighted automata, that in general the
type of functors FS(·,R) may not preserve weak pullbacks and, therefore, the notions of coalge-
braic bisimilarity and of behavioural equivalence may not coincide. A counter example is provided,
cf. [Bonchi et al.(2011), Section 2.2]. Essential for the construction of the counter-example, in their
setting, is the fact that the sum of non-zero weights may add to weight 0. The same phenomenon
prevents a general proof, along the lines of [de Vink & Rutten(1999)], for coalgebraic bisimilarity
and FuTS bisimilarity to coincide. In the construction of a mediating morphism, going from FuTS
bisimulation to coalgebraic bisimulation a denominator may be zero, hence a division undefined, in
case the sum over an equivalence class cancels out. In the concrete case for [Klin & Sassone(2008)],
although no detailed proof is provided there, this will not happen with R>0 as underlying semiring.
Here we propose to consider semirings which admit a (right) multiplicative inverse for non-zero ele-
ments, and satisfy the so-called zero-sum property, stating that for a sum x = x1 + · · · + xn it holds
that x = 0 iff xi = 0 for all i = 1 . . . n. We have shown, Theorem 9, that, when the semirings involved
enjoy these properties, weak pullbacks are preserved by the associated functor. Therefore, coalgebraic
bisimilarity and behavioural equivalence are the same. As a consequence, under conditions which are
met by the SPCs proposed in the literature, we have that FuTS-bisimilarity, behavioural equivalence
and coalgebraic bisimilarity coincide.

For two prototypical stochastic process languages based on PEPA and on IMC we have shown
that the notion of strong equivalence and strong bisimilarity associated with these calculi, coincides
with the notion of bisimilarity of the corresponding FuTS. Using these FuTSs as a stepping stone,
the correspondence result bridges between the concrete notion of bisimulation for PEPA and IML,
and the coalgebraic notions of behavioural equivalence and coalgebraic bisimilarity. Hence, from this
perspective, the concrete notions are seen as the natural strong equivalence to consider. Obviously,
classical strong bisimilarity [Milner(1980), Park(1981)] and bisimilarity for FuTS over B coincide.
Also, strong bisimulation of [Hillston(1996)] involving, apart from the usual transfer conditions, the
comparison of state information, viz. the apparent rates, can be treated with FuTS. Again the two
notions of equivalence coincide. Finally, we gave an account how languages based on discrete deter-
ministic time as well as those where stochastic time is integrated with discrete probability and with
non-determinism can be easily treated in the FuTS framework. Future research needs to reveal under
what algebraic conditions of the semirings, or similar structures, or the coalgebraic conditions on the
format of the functors involved standard bisimulation, FuTS-bisimulation, coalgebraic bisimulation
and behavioural equivalence will amount to similar identifications also for the above mentioned mod-

ASCENS 34

TR 09: Coalgebraic Bisimulation of FuTSs (V1) January 16, 2013

els. In particular, the study of nested functors (i.e. compositions of functors) seems to be promising.

Acknowledgments The authors are grateful to Rocco De Nicola, Fabio Gadducci, Daniel Gebler,
Michele Loreti and Jan Rutten for fruitful discussions on the subject and useful suggestions. DL
and MM acknowledge support by EU Project n. 257414 Autonomic Service-Components Ensem-
bles (ASCENS). This research has been conducted while EV was spending a sabbatical leave at the
CNR/ISTI. EV gratefully acknowledges the hospitality and support during his stay in Pisa.

References

[Aldini et al.(2010)] Aldini, A., Bernardo, M., & Corradini, F. (2010). A Process Algebraic Approach
to Software Architecture design. Springer.

[Baeten & Middelburg(2002)] Baeten, J. & Middelburg, C. (2002). Process Algebra with Timing.
Springer.

[Baeten et al.(2009)] Baeten, J., Basten, T., & Reniers, M. (2009). Process Algebra: Equational
Theories of Communicating Processes, volume 50 of Cambridge Tracts in Theoretical Computer
Science. Cambridge University Press.

[Baier et al.(2004)] Baier, C., Haverkort, B., Hermanns, H., Katoen, J.-P., & Siegle, M., editors
(2004). Validation of Stochastic Systems – A Guide to Current Research. LNCS 2925.

[Barr(1993)] Barr, M. (1993). Terminal coalgebras in well-founded set theory. Theoretical Computer
Science, 221, 299–315.

[Bernardo(2007)] Bernardo, M. (2007). A survey of markovian behavioral equivalences. In
M. Bernardo and J. Hillston, editors, SFM 2007 Advanced Lectures, pages 180–219. LNCS 4486.

[Bernardo & Gorrieri(1998)] Bernardo, M. & Gorrieri, R. (1998). A tutorial on EMPA: a theory of
concurrent processes with non-determinism, priorities, probabilities and time. Theoretical Com-
puter Science, 202(1–2), 1–54.

[Bohnenkamp et al.(2006)] Bohnenkamp, H., D’Argenio, P., Hermanns, H., & Katoen, J.-P. (2006).
MODEST: A compositional modeling formalism for hard and softly timed systems. IEEE Trans-
actions on Software Engineering, 32(10), 812–830.

[Bonchi et al.(2011)] Bonchi, F., Bonsangue, M., Boreale, M., Rutten, J., & Silva, A. (2011). A
coalgebraic perspective on linear weighted automata. Technical Report SEN–1104, CWI. 31pp, to
appear in Information and Computation.

[Boreale(2009)] Boreale, M. (2009). Weighted bisimulation in linear algebraic form. In M. Bravetti
and G. Zavattaro, editors, Proc. CONCUR 2009, pages 163–177. LNCS 5710.

[Boreale & Gadducci(2006)] Boreale, M. & Gadducci, F. (2006). Processes as formal power series:
A coinductive approach to denotational semantics. Theoretical Computer Science, 360(1–3), 440–
458.

[Bozga et al.(2012)] Bozga, M., David, A., Hartmanns, A., Hermanns, H., Larsen, K., Legay, A., &
Tretmans, J. (2012). State-of-the-art tools and techniques for quantitative modeling and analysis
of embedded systems. In W. Rosenstiel and L. Thiele, editors, Proc. DATE 2012, pages 370–375.
IEEE.

ASCENS 35

TR 09: Coalgebraic Bisimulation of FuTSs (V1) January 16, 2013

[Cardelli & Mardare(2010)] Cardelli, L. & Mardare, R. (2010). The measurable space of stochastic
processes. In Proc. QEST 2010, Williamsburg, pages 171–180. IEEE Computer Society.

[de Bakker & de Vink(1996)] de Bakker, J. & de Vink, E. (1996). Control Flow Semantics. The MIT
Press.

[De Nicola et al.(2005)] De Nicola, R., Latella, D., & Massink, M. (2005). Formal modeling and
quantitative analysis of Klaim-based mobile systems. In H. H. et al., editor, Proc. SAC 2005, pages
428–435. ACM.

[De Nicola et al.(2009)] De Nicola, R., Latella, D., Loreti, M., & Massink, M. (2009). Rate-based
transition systems for stochastic process calculi. In S. Albers et al., editor, Proc. ICALP 2009, Part
II, pages 435–446. LNCS 5556.

[De Nicola et al.(2011)] De Nicola, R., Latella, D., Loreti, M., & Massink, M. (2011). State to
function labelled transition systems: a uniform framework for defining stochastic process calculi.
Technical Report ISTI-2011-TR-012, CNR/ISTI.

[de Vink & Rutten(1999)] de Vink, E. & Rutten, J. (1999). Bisimulation for probabilistic transition
systems: a coalgebraic approach. Theoretical Computer Science, 221, 271–293.

[Eisentraut et al.(2010a)] Eisentraut, C., Hermanns, H., & Zhang, L. (2010a). Concurrency and com-
position in a stochastic world. In P. Gastin and F. Laroussinie, editors, Proc. CONCUR 2010, pages
21–39. LNCS 6269.

[Eisentraut et al.(2010b)] Eisentraut, C., Hermanns, H., & Zhang, L. (2010b). On probabilistic au-
tomata in continuous time. In Proc. LICS, Edinburgh, pages 342–351. IEEE Computer Society.

[Gumm & Schröder(2001)] Gumm, H. & Schröder, T. (2001). Monoid-labeled transition systems.
Electronic Notes in Theoretical Computer Science, 44(1), 185–204.

[Gumm & Schröder(2001)] Gumm, H. & Schröder, T. (2001). Products of coalgebras. Algebra Uni-
versalis, 46, 163–185.

[Gumm & Schröder(2002)] Gumm, H. & Schröder, T. (2002). Coalgebras of bounded type. Mathe-
matical Structures in Computer Science, 12, 565–578.

[Hermanns(2002)] Hermanns, H. (2002). Interactive Markov Chains. LNCS 2428.

[Hermanns & Katoen(2010)] Hermanns, H. & Katoen, J.-P. (2010). The how and why of interactive
markov chains. In F. de Boer, M. Bonsangue, S. Hallerstede, and M. Leuschel, editors, Proc.
FMCO 2009, pages 311–337. LNCS 6286.

[Hermanns et al.(1998)] Hermanns, H., Herzog, U., & Mertsiotakis, V. (1998). Stochastic process
algebras – between LOTOS and Markov chains. Computer Networks and ISDN Systems, 30, 901–
924.

[Hermanns et al.(2002)] Hermanns, H., Herzog, U., & Katoen, J.-P. (2002). Process algebra for
performance evaluation. Theoretical Computer Science, 274(1–2), 43–87.

[Hillston(1996)] Hillston, J. (1996). A Compositional Approach to Performance Modelling, vol-
ume 12 of Distinguished Dissertations in Computer Science. Cambridge University Press.

ASCENS 36

TR 09: Coalgebraic Bisimulation of FuTSs (V1) January 16, 2013

[Hillston(2005)] Hillston, J. (2005). Process algebras for quantitative analysis. In Proc. LICS,
Chicago, pages 239–248. IEEE.

[Hoare(1985)] Hoare, C. (1985). Communicating Sequential Processes. Prentice Hall.

[Klin(2009)] Klin, B. (2009). Structural operational semantics for weighted transition systems. In
J. Palsberg, editor, Semantics and Algebraic Specification, pages 121–139. LNCS 5700.

[Klin & Sassone(2008)] Klin, B. & Sassone, V. (2008). Structural operational semantics for stochas-
tic process calculi. In R. Amadio, editor, Proc. FoSSaCS 2008, pages 428–442. LNCS 4962.

[Kurz(2000)] Kurz, A. (2000). Logics for coalgebras and applications to computer science. Ph.D.
thesis, LMU München.

[Latella et al.(2012)] Latella, D., Massink, M., & de Vink, E. (2012). Bisimulation of labeled state-
to-function transition systems of stochastic process languages. In T. Soboll and U. Golas, editors,
Proc. ACCAT 2012, Tallin. EPTCS 93, pages 23–43. EPTCS.

[Marti & Venema(2012)] Marti, J. & Venema, Y. (2012). Lax extensions of coalgebra functors. In
D. Pattinson and L. Schröder, editors, Proc. CMCS 2012. LNCS. To appear.

[Milner(1980)] Milner, R. (1980). A Calculus of Communicating Systems. LNCS 92.

[Milner(1989)] Milner, R. (1989). Communication and Concurreny. Prentice Hall.

[Moss(1999)] Moss, L. (1999). Coalgebraic logic. Annals of Pure and Applied Logic, 96, 277–317.

[Park(1981)] Park, D. (1981). Concurrency and automata on infinite sequences. In Proc. GI-
Conference 1981, Karlsruhe, pages 167–183. LNCS 104.

[Priami(1995)] Priami, C. (1995). Stochastic π-calculus. The Computer Journal, 38(7), 578–589.

[Rutten(2000)] Rutten, J. (2000). Universal coalgebra: a theory of systems. Theoretical Computer
Science, 249, 3–80.

[Rutten(2003)] Rutten, J. (2003). Behavioural differential equations: a coinductive calculus of
streams, automata, and power series. Theoretical Computer Science, 308(1–3), 1–53.

[Silva(2010)] Silva, A. (2010). Kleene Coalgebra. Ph.D. thesis, Radboud University Nijmegen.

[Silva et al.(2011)] Silva, A., Bonchi, F., Bonsangue, M., & Rutten, J. (2011). Quantitative kleene
coalgebras. Information and Computation, 209(5), 822–846.

[Sokolova(2005)] Sokolova, A. (2005). Coalgebraic Analysis of Probabilistic Systems. Ph.D. thesis,
Eindhoven University of Technology.

[Sokolova(2011)] Sokolova, A. (2011). Probabilistic systems coalgebraically: a survey. Theoretical
Computer Science, 412(38), 5095–5110.

[Turi & Plotkin(1997)] Turi, D. & Plotkin, G. (1997). Towards a mathematical operational semantics.
In Proc. LICS 1997, Warsaw, pages 280–291. IEEE.

[van Glabbeek et al.(1995)] van Glabbeek, R., Smolka, S., & Steffen, B. (1995). Reactive, generative
and stratified models of probabilistic processes. Information and Computation, 121(1), 59–80.

ASCENS 37

TR 09: Coalgebraic Bisimulation of FuTSs (V1) January 16, 2013

[Viglizzo(2005)] Viglizzo, I. (2005). Final sequences and final coalgebras for measurable spaces.
In J. Fiadeiro, , N. Harman, M. Roggenbach, and J. Rutten, editors, Proc. CALCO 2005, pages
395–407. LNCS 3629.

[Wolter(2002)] Wolter, U. (2002). CSP, partial automata, and coalgebras. Theoretical Computer
Science, 280, 3–34.

ASCENS 38

	Introduction
	Preliminaries
	State-to-Function Labelled Transition Systems
	FuTS 1mus coalgebraically
	FuTS 1mu-semantics for a elementary process language
	FuTS 1mu Semantics of PEPA
	FuTS 1mu Semantics of IML 1mu
	Discussion
	Concluding remarks

