
ar
X

iv
:1

30
6.

57
82

v1
 [

cs
.D

C
]

 2
4

Ju
n

20
13

A Tool for Programming Embarrassingly Task

Parallel Applications on CoW and NoW

Patrizio Dazzi

ISTI - CNR, Italy,
patrizio.dazzi@isti.cnr.it,

http://hpc.isti.cnr.it/~dazzi

Abstract. Embarrassingly parallel problems can be split in parts that
are characterized by a really low (or sometime absent) exchange of in-
formation during their computation in parallel. As a consequence they
can be effectively computed in parallel exploiting commodity hardware,
hence without particularly sophisticated interconnection networks. Ba-
sically, this means Clusters, Networks of Workstations and Desktops as
well as Computational Clouds. Despite the simplicity of this compu-
tational model, it can be exploited to compute a quite large range of
problems. This paper describes JJPF, a tool for developing task parallel
applications based on Java and Jini that showed to be an effective and
efficient solution in environment like Clusters and Networks of Worksta-
tions and Desktops.

Keywords: Embarrassingly parallel application; Parallel framework; Jini

1 Introduction

Parallel computing, in a nutshell, is a form of computation in which many com-
putations are performed simultaneously, it is based on the principle that large
problems can often be approached by dividing them into smaller ones, which are
then solved concurrently.

In parallel computing a problem that can be computed, without a particular
effort, separating it into a number of tasks to compute in parallel is generally
referred as an embarrassingly parallel problem. Often these tasks have no de-
pendency one each others, hence they tend to require little or no communication
of results between tasks, and are thus different from more complex computing
problems that may require information exchange between tasks, e.g. the com-
munication of intermediate results.

Parallel applications realized according to this model are not only easier
to implement than more complex kinds of parallel applications; they also do
not require high-speed (and expensive) communication infrastructures to scale
efficiently when the number of resources involved in the computation increases
significatively. As a consequence, typically, this kind of applications are run on
clusters, networks of workstations and, more recently, on Clouds and Federation
of Clouds. Basically these environments consist of infrastructures that allow to

http://arxiv.org/abs/1306.5782v1

2

deal with a huge amount of computational resources but usually characterized
by a limited range of guarantees on network subsystems [4,6]. Anyway, in spite of
the quite simple structure of this parallel paradigm, several kinds of application
can be effectively and efficiently realized according to it.

Examples include:

– Distributed relational database queries using distributed set processing
– Webservers
– Several fractal calculations, basically all the ones where each point can be

calculated independently
– Brute-force searches in cryptography
– Large scale image recognition softwares
– Computer simulations comparing many independent scenarios, such as cli-

mate models
– Genetic algorithms as well as other evolutionary computation meta-heuristics
– Numerical weather prediction
– Simulations of particle physics

Not having any particular requirement in terms of data exchange, embarrass-
ingly parallel problem can be computed on server farms built with commodity
hardware, which do not have any of the special communication and data storage
infrastructure, like the ones used in supercomputers. They are, thus, well suited
to large, internet based distributed software platforms, e.g. Condor, BOINC, etc.

In a previous paper we presented JJPF [8], which main features are reported
in this paper in Section 2. Basically, it consists in a tool for implementing embar-
rassingly parallel applications, written in Java and exploiting Jini [13] (formerly
known as Jini) for resource discovery and job assignment. JJPF provides some
interesting features, like:

– load balancing across the computing elements participating in the computa-
tion

– automatic resource discovering and recruiting exploiting standard Jini mech-
anisms

– fault tolerance achieved by substituting faulty resources with other ones (if
any) in a seamless and automatic way.

2 JJPF

JJPF provides to programmers a user-friendly tool for programming task par-
allel application in Java that can be run on Networks or Clusters of Worksta-
tions. JJPF basically resemble a master-slaves structure. It is based on a set
of distributed slaves providing a stream parallel application computation ser-
vice. Programmers must write their applications as an arbitrary composition of
task farm and pipeline computation patterns. Task farm only applications are
directly executed by the distributed slaves, whereas applications made of a com-
position of task farm and pipeline patterns are automatically pre-processed to

3

get their normal form [1] and are then submitted to the distributed slaves for
their execution.

Using JJPF, programmers can express a parallel computation exploiting the
task farm pattern simply using the following two statements:

BasicClient cm = new BasicClient(program,null,input,output);

cm.compute();

Where input (output) is a Collection of input (output) tasks and program

is an array hosting the code that slaves have to compute on their sides. The
code consists in a Class object relative to the user worker code. Such code must
implement a ProcessIf interface. The interface requires the three methods:
one to provide the input task data (void setData(Object task)), another one
to retrieve the result data (Object getData()) and, finally, a last method to
compute results out of task data (void run()).

This single pair of lines of code indeed defines the parallel computation to
be executed, starts its execution and terminates when the parallel execution
is terminated. JJPF basic architecture uses two kinds of components: clients
(consisting in the user programs) and services, namely the instances of the dis-
tributed servers that actually compute results out of input task data to execute
client programs.

The Algorithms 1 and 2 report the pseudo-code of client and service compo-
nents, respectively.

The client component recruits available services and forks a control thread
for each one of them. The control thread, in turn, fetches the task items to
compute from the task vector, delivers them to the remote service and retrieves
the computed results, storing them to the result vector. Service recruiting is
performed exploiting the support of Jini. The first step consists in finding a
lookup service, using standard Jini API, then such service is queried for available
services (i.e. the slaves). Each service descriptor obtained from lookup is passed
to a distinct control thread.

Result: Compute an Application exploiting Services
1 network discovery of the LookupService;
2 query lookup for registered services;
3 if services are available then

4 foreach service do

5 fork a specific control thread;
6 end

7 wait the end of computation;

8 end

9 terminate the program;
Algorithm 1: Client side of JJPF

4

Result: Compute an Application exploiting Services
1 network discovery of the LookupService;
2 while not terminated do

3 register into lookup;
4 wait for requests;
5 unregister from the lookup;

6 end

7 terminate the program;
Algorithm 2: Server side of JJPF

The behavior of the services is reported in Algorithm 2. Basically, each service
registers its own descriptor to the Jini lookup and waits for incoming client
requests. Once a request is received, it assumes to be recruited by the client that
issued it. Then the service un-registers itself from the lookup and starts serving
the task computation requests of the client. It is easy to see that this implies
that each service serves only a single client.

In order to use JJPF on a workstation network or cluster, just the following
three steps have to be performed:

1. Jini has to be installed and configured,

2. JJPF services has to be started at the machines that will eventually be used
to run the JJPF distributed server

3. a JJPF client such as the one sketched above has to be prepared, compiled
and run on the user workstation.

The key concept in JJPF is that resource discovery is automatically per-
formed in the client run time support. No code dealing with service discovery or
recruiting is to be provided by application programmers.

This happens because JJPF strongly relies on the Jini technology and inherits
its features. The Jini technology is indeed suitable for running on workstation
clusters within local area networks.

JJPF uses two distinct mechanisms to recruit services to clients. One syn-
chronous and one asynchronous (in fact it consists in a sort of publish-subscribe
approach). The synchronous mechanism directly queries the Lookup Service
about the Service Ids of the available services, i.e. of the slaves currently running
the JJPF. The asynchronous mechanisms works by registering to the Lookup Ser-
vice an observer object that will alert the client of in case new services becoming
available, so that they can be recruited.

JJPF achieves automatic load balancing among the recruited services, due
to the scheduling approach adopted in the control threads managing the remote
services. Each control thread fetches tasks to be delivered to the remote nodes
from a centralized, synchronized task repository. JJPF also automatically han-
dles faults in service nodes. That is, it takes care of the tasks assigned to a service
node in such a way that in case the node does not respond any more they can
be rescheduled to other service nodes.

5

This is possible because, as we introduced before, the only kind of parallel
applications that are supported in JJPF, are the ones relying on stream parallel
computations. In this case, there are natural descheduling points that can be
chosen to restart the computation of one of the input tasks, in case of failure of
a service node. A trivial one is the start of the computation of the task. Provided
that a copy of the task data is kept on the client side, the task can be rescheduled
as soon as the control thread understands that the corresponding service node
has been disconnected or it is non responding. This is the choice we actually
implemented in JJPF, inheriting the design from muskel [9,10,2].

3 Related work

Another of our previous developed structured, parallel programming environ-
ment muskel already provides automatic discovery of computational resource in
the context of a distributed workstation network. muskel was based on plain
RMI Java technology, however and the discovery was simply implemented us-
ing multicast datagrams and proper discovery threads. The muskel environment
also introduces the concept of application manager that binds computational re-
source discovery with autonomic application control in such a way that optimal
resource allocation can be dynamically maintained upon specification by the
user of a performance contract to be satisfied [9,10,2]. Several other researchers
proposed or currently propose environments supporting stream parallel compu-
tations on workstation networks and clusters. Among the others, we mention
Cole’s eskel library running on top of MPI [5], Kuchen’s C++/MPI skeleton
library [17] and CO2P2S from the University of Alberta [18]. The former two
environments are libraries designed according to the algorithmic skeleton con-
cept. The latter is based on parallel design patterns. Several papers are related
to PageRank Algorithm, Haveliwala [15] explores memory-efficient computation,
in [16]. Kamvar et al. discuss some methods for accelerating PageRank calcu-
lation and in [14] Gleich, Zhukov and Berkhin demonstrate that linear system
iterations converge faster than the simple power method and are less sensitive
to the changes in teleportation. Rungsawang and Manaskasemsak in [20] e [19]
evaluate the performance supplied by an approximated PageRank computation
on a Cluster of Workstation using a low-level peer-to-peer MPI implementation.

4 Conclusions and Future Work

We described JJPF, a framework supporting the execution of stream parallel
application on cluster or networks of workstations. The framework exploits plain
Java technology, using Jini to address resource discovery and task assignment.

Resources are discovered and recruited automatically to compute user ap-
plications. Fault tolerance features have been included in the framework such
that the execution of a parallel program can transparently resist to node or net-
work faults. Load balancing is guaranteed across the recruited computational
resources, even in case of resources with fairly different computing capabilities.

6

JJPF can be used as a building block for more complex parallel environments,
like it happened for PAL [11,7,12]. In the future we plan to adopt it again,
possibly in different kind of scenarios and environment.

We are currently working to a new version of JJPF that will include a support
for optimizing task execution on multicore processors as well as the introduction
of futures for reducing the number of thread required on client side to manage
the computation.

References

1. M. Aldinucci and M. Danelutto. Stream parallel skeleton optimisations. In Proc.
of the IASTED International Conference Parallel and Distributed Computing and
Systems, pages 955–962. IASTED/ACTA Press, November 1999. Boston, USA.

2. Marco Aldinucci, Marco Danelutto, and Patrizio Dazzi. Muskel: an expandable
skeleton environment. Scalable Computing: Practice and Experience, 8(4), 2001.

3. David P Anderson. Boinc: A system for public-resource computing and storage.
In Grid Computing, 2004. Proceedings. Fifth IEEE/ACM International Workshop
on, pages 4–10. IEEE, 2004.

4. Emanuele Carlini, Massimo Coppola, Patrizio Dazzi, Laura Ricci, and Giacomo
Righetti. Cloud federations in contrail. In Euro-Par 2011: Parallel Processing
Workshops, pages 159–168. Springer, 2012.

5. M. Cole and A. Benoit. The eSkel home page, 2005.
http://homepages.inf.ed.ac.uk/abenoit1/eSkel/.

6. Massimo Coppola, Patrizio Dazzi, Aliaksandr Lazouski, Fabio Martinelli, Paolo
Mori, Jens Jensen, Ian Johnson, and Philip Kershaw. The contrail approach to
cloud federations. Proceedings of the International Symposium on Grids and Clouds
(ISGC12), 2012.

7. M. Danelutto, P. Dazzi, D. Laforenza, M. Pasin, L. Presti, and M. Vanneschi.
Pal: High level parallel programming with java annotations. In CoreGRID Inte-
gration Workshop 2006 Integrated Research in Grid Computing, pages 189–200.
CYFRONET AGH, October 2006.

8. Marco Danelutto and Patrizio Dazzi. A java/jini framework supporting stream
parallel computations. ParCo 2005, John von Neumann Institute for Computing
Series, 33:681–688, 2005.

9. Marco Danelutto and Patrizio Dazzi. Joint structured/non structured parallelism
exploitation through data flow. 2006.

10. Marco Danelutto and Patrizio Dazzi. Joint structured/unstructured parallelism
exploitation in muskel. In Computational Science–ICCS 2006, pages 937–944.
Springer, 2006.

11. Marco Danelutto, Marcelo Pasin, Marco Vanneschi, Patrizio Dazzi, Domenico
Laforenza, and Luigi Presti. Pal: exploiting java annotations for parallelism. In
Achievements in European Research on Grid Systems, pages 83–96. Springer, 2008.

12. Patrizio Dazzi. Let’s annotate to let our code run in parallel. CoRR, abs/1306.2267,
2013.

13. Apache Foundation. Apache river. http://river.apache.org.
14. D. Gleich, L. Zhukov, and P. Berkhin. Fast Parallel PageRank: A Linear System

Approach. Technical report, Yahoo research lab, 2004.
15. Taher Haveliwala. Efficient Computation of PageRank. Technical Report 1999-31,

Stanford University, Stanford, CA, 1999.

7

16. S. Kamvar, T. Haveliwala, C. Manning, and G. Golub. Extrapolation methods for
accelerating PageRank computations, 2003.

17. H. Kuchen. A Skeleton Library. In Euro-Par 2002, Parallel Processing, number
2400 in LNCS, pages 620–629. ”Springer” Verlag, August 2002.

18. S. MacDonald, J. Anvik, S. Bromling, J. Scaheffer, D. Szafron, and K. Tan. From
patterns to frameworks to parallel programs. Parallel Computing, 28(12), 2002.

19. Bundit Manaskasemsak and Arnon Rungsawang. Parallel PageRank Computation
on a Gigabit PC Cluster. In AINA (1), pages 273–277, 2004.

20. Arnon Rungsawang and Bundit Manaskasemsak. PageRank Computation Using
PC Cluster. In PVM/MPI, pages 152–159, 2003.

	A Tool for Programming Embarrassingly Task Parallel Applications on CoW and NoW

