
Let’s Annotate to Let Our Code Run in Parallel

Patrizio Dazzi
ISTI - CNR

patrizio.dazzi@isti.cnr.it

ABSTRACT
This paper presents an approach that exploits Java anno-
tations to provide meta information needed to automati-
cally transform plain Java programs into parallel code that
can be run on multicore workstation. Programmers just
need to decorate the methods that will eventually be exe-
cuted in parallel with standard Java annotations. Annota-
tions are automatically processed at launch-time and par-
allel byte code is derived. Once in execution the program
automatically retrieves the information about the executing
platform and evaluates the information specified inside the
annotations to transform the byte-code into a semantically
equivalent multithreaded version, depending on the target
architecture features. The results returned by the annotated
methods, when invoked, are futures with a wait-by-necessity
semantics.

Keywords
Asynchronous method invocation, wait-by-necessity, anno-
tations, skeletons, grids.

1. INTRODUCTION
Developing parallel applications is, in general, much more
complex than developing sequential applications. Besides
being in charge of the whole parallel application structure,
programmers have to deal with communications, synchro-
nization, mapping and scheduling structure. As the pro-
grammers usually write applications directly interacting with
the middleware, the whole process is cumbersome and er-
ror prone. So far, several efforts have been spent to face
this problem, and several approaches have been conceived
to design high-level programming languages/environments
that can automate most of the tasks required to implement
working and efficient parallel applications.

Other approaches offer a lower abstraction level but allow
more programming freedom and guarantee a higher level of
personalization. In other words, programmers can customize

their applications and deal with some aspects related to the
parallelism as, for example, parallelism degree and the par-
allel program structure.

The approaches belonging to this category force the pro-
grammer to structure the parallel application he wants to
implement adequately. Typically, such approaches allow the
application “business logic” to be separated from the activi-
ties required to coordinate and to synchronize parallel pro-
cesses [4]. On the other side, several environments have
been proposed to use more classical, low level programming
paradigms. However, all these approaches, while leaving the
programmer a higher freedom of structuring the parallel ap-
plications in an arbitrary way, require the programmers ex-
plicitly deal with all the awkward details mentioned above.

In this work, we describe Parallel Abstraction Layer (PAL),
originally presented in [16]. It aims at avoiding the prob-
lems typically present in a fully automated parallel approach
[5], PAL leaves to programmer the responsibility to choose
which parts of code have to be computed in parallel through
the insertion of non-functional requirements in the source
program code. Using the information provided by program-
mers PAL transforms the program code into a parallel one.

2. PARALLEL ABSTRACTION LAYER
PAL is an approach conceived around a quite simple but
very embraceable, well-known, opinion “...people know the
application domain and can better decompose the problem,
compilers can better manage data dependence and synchro-
nization” [17]. the PAL approach to parallel programming
fundamentally relies on programmer knowledge to properly
“structure” the parallel schema of an application and then
let to the compiler/run time tool ability to efficiently imple-
ment such schema.

Basically, this almost matches the algorithmic skeletons ap-
proach [11]. PAL represents a general-purpose mechanism
based on very simple applications structuring. In fact the
programmer is only required to specify some hints that are
exploited by the runtime support to implement a parallel
version of the application code. These hints are specified
through the annotation mechanisms provided by Java [1].

The programmers are required to give some kind of “paral-
lel structure” to the code directly at the source code level,
as it happens in the algorithmic skeleton case. However,
the approach discussed in this work presents at least two

ar
X

iv
:1

30
6.

22
67

v1
 [

cs
.P

L
]

 6
 J

un
 2

01
3

additional advantages.

• First, annotations can be ignored and the semantics of
the original sequential code is preserved. This means
that the programmer application code can be run through
a classical compiler/interpreter suite and debugged us-
ing normal debugging tools.

• Second, annotations are processed at load time, typi-
cally exploiting reflection properties of the hosting lan-
guage. As a consequence, while handling annotations,
a bunch of knowledge can be exploited which is not
available at compile time (e.g. running machines) and
this can lead to more efficient parallel implementations
of the user application.

In order to experiment the feasibility of the proposed ap-
proach, we considered the languages that natively support
code annotations for developing a validation prototype. Both
Java and .NET frameworks provide an annotation mech-
anism. They also provide an intermediate language (IL),
portable among different computer architecture (compile once
– run everywhere), and holding some information typically
only available at source code level (e.g. code annotations)
that can be used in the runtime for optimization purposes.

The transformation process is done at load time, namely
the time when we have all the information needed to opti-
mize the restructuring process with respect to the available
underlying resources. The code transformation works at IL
level thus it does not need that the application source code
is sent on target architecture. Furthermore, IL transforma-
tion introduces in general fewer overheads than the source
code transformations followed by re-compilation.

PAL transforms the annotated code in a parallel fashion
by asynchronously executing parts of the original code. The
parts to be executed asynchronously are individuated by the
user annotations. In particular, we used Java and therefore
the more natural choice was to individuate method calls as
the parts to be asynchronously executed. PAL translates
the IL codes of the “parallel” part by structuring them ac-
cording with the features of the target architecture. Asyn-
chronous execution of method code is achieved by exploiting
the concept of future [9, 10]. When a method is called asyn-
chronously it immediately returns a future, that is a stub
“empty” object. The caller can then go on with its own com-
putations and use the future object just when the method
call return value is actually needed. If in the meanwhile the
return value has already been computed, the call to reify
the future succeeds immediately, otherwise it blocks until
the actual return value is computed and then returns it.

PAL programmers have just to put a @Parallel annotation
on the line right before method declaration to mark that
method as a candidate for asynchronous execution. This
allows keeping applications similar to normal sequential ap-
plications, actually. Programmers may simply run the ap-
plication through standard Java tools to verify it is func-
tionally correct. The PAL approach also avoids the prolif-
eration of source files and classes, as it works transforming
IL code, but raises several problems related to data sharing

management. As an example, methods annotated with a
@Parallel cannot access class fields: they can only access
their own parameters and the local method variables. This
is due to the impossibility to intercept all the accesses to the
class fields, actually. Then, PAL automatically performs at
load time the activities aimed at achieving the asynchronous
and parallel execution of the PAL-annotated methods and
at managing any consistency related problems, without any
further programmer intervention.

3. THE PAL PROTOTYPE
To validate our approach, we implemented a PAL prototype
in Java, as it provides a manageable intermediate language
(Java byte-code [22]) and natively supports code annota-
tions. s The prototype works taking the program byte-code
as input and transforming it in a parallel byte-code. In order
to do this it uses ASM [6]: a Java byte-code manipulation
framework.

The current prototype accepts only one kind of attribute
to the @Parallel annotation: a parDegree denoting the
maximum number of processing elements to be used for the
method execution. PAL uses such information to make a
choice between the multithreaded and distributed version.
This choice is driven by the number of processors/cores
available on the host machine: if the machine owns a suffi-
cient number of processors the annotated byte-code directly
compiled from user code is transformed in a semantically
equivalent multithreaded version.

In order to enable the PAL features, the programmer has
only to add a few lines of code. As an example consider
a program computing the Mandelbrot set. The Mandelbrot

class uses a @Parallel annotation to state that all the input
data (e.g. createLines calls) should be computed in paral-
lel, with a specified parallelism degree. Unfortunately, due
to some Java limitations, the programmer must specify an
ad-hoc return type (PFFuture), and consequently return an
object of this type. PFFuture is a template defined by the
PAL framework. It represents a container needed to enable
the future mechanism. The type specified as argument is the
original method return type. Initially, we tried to have to a
more transparent mechanism for the future implementation,
without any explicit Future declaration. It consisted in the
load-time substitution of the return type with a PAL-type
inheriting from the original one. In our idea, the PAL-type
would have filtered any original type dereferentiation fol-
lowing the wait-by-necessity [8] semantics. Unfortunately,
we had to face two Java limitations that limit the current
prototype to the current solution.

These limitations regard the impossibility to extend some
widely used Java BCL classes (String, Integer,...) because
they are declared final, and the impossibility to intercept
all class field accesses.

In the Main class, the user just asks to transform the Main

and the Mandelbrot classes with PAL, that is, to process
the relevant PAL annotations and to produce an executable
IL which exploits parallelism according to the features (hw
and sw) of the target architecture where the Main itself is
being run.

4. RELATED WORK
PAL offers a simple yet expressive technique for parallel pro-
gramming. By exploiting “runtime compilation” it adapts
the executable code to different architectures. It does not
introduce a new or different paradigm, while exploiting par-
allelism at the method call level. So far have been proposed a
certain number of systems based on similar ideas. However,
although different experiments exist in the so-called concur-
rent object-oriented languages scenario (COOLs) [19], we
decided to discuss only those actually very similar to PAL. In
[18] the authors propose a Java version of OpenMP giving to
the programmers the possibility to specify some PRAGMAs
inside comments to source code. These pragmas are eventu-
ally used by a specific java HPC compiler to transform the
original program in a different one exploiting parallelism, for
instance through loop-parallelization. There are three im-
portant differences between this approach and the ours one:
first of all PAL works at method level making method invo-
cations asynchronous, while the work presented by Klemm
et al. mainly works at the loop-parallelization level. An-
other very important difference is related to the moment in
which the transformation is made: this approach works at
compile time starting from source-code, while PAL directly
transforms the byte-code at load and run time. As a con-
sequence, PAL may optimize its transformation choices ex-
ploiting the knowledge available on the features of the com-
puting resources of the target execution platform. Eventu-
ally, PAL uses java Annotations to enrich the source code,
instead the Java version of OpenMP uses the source code
comments. The former approach exploits Java basic fea-
tures, in particular annotations, which type and syntax are
checked by compiler, with the limitation that annotations
cannot be placed everywhere in the source code. the lat-
ter solution instead is more “artificial” but it is not limited
to classes, methods and class fields (as the java Annota-
tions) and it can be also applied to pure Java code blocks.
If we limit the discussion to the approaches that transform
a sequential object-oriented program into a concurrent one
by replacing method invocations with asynchronous calls,
(where parallelism can be easily extracted from sequential
code without modification, without changing the sequential
semantics and the wait for return values can be postponed
to the next usage, eventually using future objects) the num-
ber of approaches similar to PAL is small. However, some
other approaches share single points/features with our PAL
approach. Java made popular the remote method invocation
(RMI) for interaction between objects in disjoint memories.
The same properties that apply for parallelizing sequential
local calls apply for remote ones, with the advantage that
remote calls do not rely on shared memory. Parallelizing
RMIs scales much better than local calls, as the number of
local processors does not limit the number of parallel tasks.
This led to many implementations of asynchronous RMIs.
ProActive is a popular object oriented distributed program-
ming environment supporting asynchronous RMIs [21]. It
offers a primitive class that should be extended to create re-
mote callable active objects, as well as a runtime system to
remotely instantiate this type of objects. Any call to an ac-
tive object is done asynchronously, and values are returned
using future objects. Compilation is completely standard,
but instantiation must be done supplying the new object
location. All active objects must descend from the primi-
tive active object class, so existing code must be completely

1 2 4
Parallel Degree

0.95

0.96

0.97

0.98

0.99

1

Ef
fic

ie
nc

y

5 lines
20 lines
40 lines

Figure 1: Mandelbrot computation: efficiency com-
parison with different image resolution, processing
element number and task computational weight.

encapsulated to become active, as there is no multiple inher-
itance in Java. Although concurrency is available through
asynchronous calls, scalable parallelism is obtained creating
several distributed objects, instead of calling several concur-
rent methods, which is not always a natural way of structur-
ing the parallelism. Some other systems, at different levels,
offer asynchronous remote method calls, like JavaParty [20],
JJPF [13], Muskel [3, 15, 14] and Ibis [23]. They provide a
lower level of abstraction with respect to PAL, being more
concerned with the performance of RMI and efficient imple-
mentation of asynchronous mechanisms. Usually they offer a
good replacement for the original RMI system, either simpli-
fying object declaration or speeding up the communication.
Both rely on specific compilers to generate code, although
Ibis generate standard JVM byte-code that could therefore
be executed on any standard JVM.

5. EXPERIMENTAL RESULTS
To validate our approach we ran some experiments with
the current prototype. We conducted our tests on a hyper-
threaded bi-processors workstation (Intel Xeon 2Ghz, Linux
kernel 2.6).

Our test application is a fractal image generator, which com-
putes sections of the Mandelbrot set.

We picked up Mandelbrot set computation as it is a very
popular benchmark for embarrassingly parallel computation.
PAL addresses exactly these kinds of computations. Most
of times, the implementation of these applications requires
a significant programming effort, despite being “easy” em-
barrassingly parallel, far more consistent than the effort re-
quired to execute the same kind of application exploiting
PAL. To study in more detail the behavior of the trans-
formed version in several contexts, we ran the fractal gen-
erator setting different combinations of resolution (600x400,
1200x800, 2400x1600) and task computational weights, start-
ing from 5 up to 40 lines at time. Clearly when the task size
(number of lines to compute) increases, the total number of
tasks decreases.

6. CONCLUSION AND FUTURE WORK
In this paper we present PAL, an approach for easing mul-
ticore SMPD programming. PAL exploits the programmer
knowledge provided through annotations to restructure Java
programs and make them parallel. The whole process is
driven by the analysis of the degree of parallelism specified
through annotations. This process is executed at launch
time, directly at intermediate language level. This allows
obtaining and to exploit at the right time all the informa-
tion needed to parallelize the applications with respect to
the parallel tools available on the target execution environ-
ment and to the user supplied non-functional requirements.
A load time transformation allows hiding most of paralleliza-
tion issues. To validate the approach we developed a PAL
prototype that we used it to conduct some preliminary ex-
periments. The results are encouraging and show that the
overhead introduced by PAL is negligible, while keeping the
programmer effort to parallelize the code low. Anyway, the
prototype we developed presents some limitations. Basi-
cally, the class fields are not accessible from PAL-annotated
methods, moreover, the programmer has to include an ex-
plicit dereferentiation of objects returned by PAL-annotated
methods. In the next future we plan to refine the implemen-
tation to address some of these issues as well as extending
the approach to be useful also in distributed architectures
like Grids or Cloud (and Federation of Clouds too [7, 12]).
We think this will be interesting and will support cross-
fertilization between these concepts as happened in [2].

7. REFERENCES
[1] Java specification requests 175: A metadata facility

for the java programming language.
http://www.jcp.org, September 2004.

[2] M. Aldinucci, S. Campa, M. Danelutto, P. Dazzi,
D. Laforenza, N. Tonellotto, and P. Kilpatrick.
Behavioural skeletons for component autonomic
management on grids. In Making Grids Work, pages
3–15. Springer, 2008.

[3] M. Aldinucci, M. Danelutto, and P. Dazzi. Muskel: an
expandable skeleton environment. Scalable Computing:
Practice and Experience, 8(4), 2001.

[4] M. Aldinucci, M. Danelutto, and M. Vanneschi.
Autonomic qos in assist grid-aware components. In
Parallel, Distributed, and Network-Based Processing,
2006. PDP 2006. 14th Euromicro International
Conference on, pages 10 pp.–, 2006.

[5] G. S. Almasi and A. Gottlieb. Highly parallel
computing. Benjamin-Cummings Publishing Co., Inc.,
Redwood City, CA, USA, 1989.

[6] C. T. Bruneton E, Lenglet R. Asm: a code
manipulation tool to implement adaptable systems,
grenoble, france. Adaptable and Extensible
Component Systems, Nov. 2002.

[7] E. Carlini, M. Coppola, P. Dazzi, L. Ricci, and
G. Righetti. Cloud federations in contrail. In Euro-Par
2011: Parallel Processing Workshops, pages 159–168.
Springer, 2012.

[8] D. Caromel. Service, asynchrony, and
wait-by-necessity. Journal of Object-Oriented
Programming, Nov/Dec 1989.

[9] D. Caromel and L. Henrio. A Theory of Distributed
Object. Springer-Verlag, 2005.

[10] D. Caromel, L. Henrio, and B. Serpette. Asynchronous
and deterministic objects, 2004.

[11] M. Cole. Bringing Skeletons out of the Closet: A
Pragmatic Manifesto for Skeletal Parallel
Programming. Parallel Computing, 30(3):389–406,
2004.

[12] M. Coppola, P. Dazzi, A. Lazouski, F. Martinelli,
P. Mori, J. Jensen, I. Johnson, and P. Kershaw. The
contrail approach to cloud federations. Proceedings of
the International Symposium on Grids and Clouds
(ISGC 12), 2012.

[13] M. Danelutto and P. Dazzi. A java/jini framework
supporting stream parallel computations. ParCo 2005,
John von Neumann Institute for Computing Series,
33:681–688, 2005.

[14] M. Danelutto and P. Dazzi. Joint structured/non
structured parallelism exploitation through data flow.
2006.

[15] M. Danelutto and P. Dazzi. Joint
structured/unstructured parallelism exploitation in
muskel. In Computational Science–ICCS 2006, pages
937–944. Springer, 2006.

[16] M. Danelutto, M. Pasin, M. Vanneschi, P. Dazzi,
D. Laforenza, and L. Presti. Pal: exploiting java
annotations for parallelism. In Achievements in
European Research on Grid Systems, pages 83–96.
Springer, 2008.

[17] A. S. Grimshaw. The mentat computation model
data-driven support for object-oriented parallel
processing. Technical Report CS-93-30, 28, 1993.

[18] M. Klemm, R. Veldema, M. Bezold, and
M. Philippsen. A proposal for openmp for java. In
Proceedings of the International Workshop on
OpenMP, June 2006.

[19] M. Philippsen. A survey of concurrent object-oriented
languages. Concurrency: Practice and Experience,
12(10):917–980, 2000.

[20] M. Philippsen and M. Zenger. JavaParty – transparent
remote objects in Java. Concurrency: Practice and
Experience, 9(11):1225–1242, Nov. 1997.

[21] O. team. Proactive home page, 2006.
http://www-sop.inria.fr/oasis/proactive/.

[22] F. Y. Tim Lindholm. The Java Virtual Machine
Specification. Sun Microsystems Press, second edition
edition, 2004.

[23] R. V. van Nieuwpoort, J. Maassen, G. Wrzesinska,
R. Hofman, C. Jacobs, T. Kielmann, and H. E. Bal.
Ibis: a flexible and efficient java-based grid
programming environment. Concurrency and
Computation: Practice and Experience,
17(7-8):1079–1107, 2005.

	1 Introduction
	2 Parallel Abstraction Layer
	3 The PAL prototype
	4 Related work
	5 Experimental results
	6 Conclusion and future work
	7 References

