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Abstract 

An integrated simulation tool for multilayer stepped pyramidal structures is presented. The tool, based 

on a semi-analytical mathematical strategy, is able to calculate the temperature distributions and 

thermal stresses at the interfaces between the layers of such structures. The core of the thermal solver 

is the analytical simulator for power electronic devices, DJOSER, which has been supplemented with a 

mechanical solver based on the finite-element method. To this end, a new element is proposed whose 

geometry is defined by its mean surface and thickness, just as in a plate. The resulting mechanical 

model is fully three-dimensional, in the sense that the deformability in the direction orthogonal to the 

mean surface is taken into account. The dedicated finite element code developed for solving the 

equilibrium problem of structures made up of two or more superimposed plates subjected to thermal 

loads is applied to some two-layer samples made of silicon and copper. Comparisons performed with 

the results of standard finite element analyses using a large number of brick elements reveal the 

soundness of the strategy employed and the accuracy of the tool developed. 
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1. Introduction 

Power electronic devices are composed of structures made up of layers with different geometrical and 

thermo-mechanical properties. These structures are subjected to high thermal loads, which give rise to 

stress distributions that can damage the adhesive films between the layers and lead to debonding. The 

problem of the thermal analysis of such structures has been addressed in [1, 2, 3], where DJOSER, a 

tool for computing the steady-state temperature mapping of multilayer assembly structures for power 

electronics, is described. The simplicity and high degree of standardization of power assemblies, which 

in most cases can be modeled as multilayer, stepped pyramidal structures with homogeneous layers and 

rectangular geometries, enable fruitful application of DJOSER, which is a time saving, user-friendly 

code based on an analytical approach. 

From a thermo-mechanical point of view, software tools that enable calculating both the tangential and 

normal stresses, and thereby assessing the quality of adhesion and locating eventual critical zones, are 

of fundamental importance. The crucial role of numerical modeling is testified to by a large number of 

recent publications focusing on obtaining approximations and estimates of the interlaminar thermal 

stresses in multilayer structures [4, 5, 6, 7], as well as on numerical procedures for thermo-mechanical 

analysis of composite and sandwich plates [8-16]. A method for reducing the bending stresses in the 

low strength materials of the multilayer composite structures used in electronic packaging subjected to 

temperature changes is proposed in [17]. The method is based on the application of a ‘surrogate’ layer 

of a high expansion (contraction) and/or high modulus material aimed at flattening the structure. A 

stress analysis model for the evaluation of stresses, strains and displacements induced by thermal 

variations in the ‘piecewise continuous’ adhesive layer between two identical non-deformable 

adherends is presented in [18]. Similarly, [19] develops simple, easy-to-use, physically meaningful 

predictive analytical models for evaluating the interfacial shearing and normal stresses in the bonding 

material of a die-carrier assembly.  



 

An analytical approach has been also followed in [20, 21, 22], where the authors consider a one-

dimensional problem for both geometry and thermal loads, with only one interface, in which the 

presence of contact thermal resistance causes an abrupt change in the temperature field. The 

expressions for the stresses deduced analytically within the framework of the Love-Kirchhoff theory 

[23] have been introduced into three-dimensional constitutive equations, expressed as functions of the 

derivatives of displacements. This enables the strain-displacement equations to be integrated, thus 

yielding the expressions for the displacements along the thickness. A finite difference algorithm is 

implemented to solve the system of integro-differential equations governing the equilibrium of the 

layers with the proper boundary conditions and the contact conditions guaranteeing adherence between 

the different layers. 

When generalized to three-dimensional structures, this approach would lead to a very complex system 

of equations, and using finite difference methods to solve this system might not be advantageous in 

terms of implementation and computational costs.  

The goal of the current paper is to present and test a numerical code, which like the tool proposed in 

[22] for one-dimensional problems, is called THESIS. It is based on the finite element method [24] for 

multilayer pyramidal structures and enables predicting thermally induced stresses at their  interfaces. 

The code is aimed at managing structures largely employed in power electronics, with simple 

geometries and subjected to thermal loads; no mechanical loads are taken into account.  

Although herein we limit ourselves to applying the numerical method to the analysis of two-layer 

three-dimensional structures (Figures 1a and 1b), it can be easily extended to multilayer structures. We 

present a new element whose geometry is defined by its mean surface and thickness, as in plates, and 

whose mechanical behavior is modeled as fully three-dimensional, in the sense that the deformability in 

the direction orthogonal to the mean surface is taken into account.  



 

The element has been implemented in the finite element code THESIS, which when coupled with 

DJOSER, can be applied to solving the equilibrium problem of structures made up of two or more 

superimposed linear elastic layers subjected to thermal loads.  

As in previous works [20, 21, 22], the temperatures calculated by DJOSER are used as input data for 

the mechanical solver. The output variables are the normal stresses  ,  and the shear stresses , 

 respectively on the lower and upper surfaces of the i-th layer (Figure 1c). 

The code is applied to some two-layer samples made of silicon and copper, with thicknesses h2 and h1, 

respectively, as the number of elements is varied. With the aim of assessing the accuracy of the 

numerical, a comparison with standard finite element analyses using a large number of brick elements 

is then performed. 

 

2. The numerical tool 

2.1 The thermal solver 

As pointed out in Section 1, the temperature fields for the steady-state case are calculated by applying 

the DJOSER analytical thermal solver, whose mathematical background is thoroughly described in [1, 

2, 3]. 

From the practical point of view, the calculation procedure consists of two steps. First, regular grids 

composed of rectangular cells are defined on the top and bottom surfaces of each layer, and the system 

of integral equations delivering the temperature T and heat flux q is transformed into an algebraic 

system. Numerical solution of the system yields the values (  , ) , where j indicates the cell 

number and i the layer number. 

In the second step, more accurate temperature maps can be calculated with any spatial resolution using 

the same numerical equation valid for the top surface of each layer and the set of previously calculated 

temperature and flux values. 



 

The performance of the mechanical solver described in Subsection 2.2 improves if the temperatures are 

assigned not only on the top and bottom surface of each layer, but also on three planes within the bulk 

of the layer, as shown in Figure 1d. Therefore, a more complete equation for temperature calculation is 

needed here to include the dependence on the depth within the layer.  

For x, y and z the Cartesian coordinates, and Lx, Ly and Lz the dimensions of a layer constituting the 

step pyramidal structure, the analytical expression for temperature T is [2] 
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where the eigenfunctions X and Y, which depend on the eigenvalues  and  and on the Biot 

numbers Bi(j) if lateral convection is present, have the following expressions 

( x) cos( x)  (1)sin( x)x iX L Bn n n n     ,      (2.2) 

( y) cos( y)  (3)sin( y)
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m m m m
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N( ) and N( ) are the norms of the eigenfunctions X and Y, while S(n,m) is independent of the 

coordinates. The functions f and g are the top incoming heat flux and the bottom temperature 

distributions. The coordinates x, y, z within the single layer indicate the point at which the temperature 

is calculated, while the integration variables x', y' over the top surface, after discretization of the 

equation, represent the centers of the cells of the top and bottom rectangular grids, respectively. 

Expression (2.1) allows for calculating the temperature T within the plate thickness for different values 

of z. By way of example, Figure 2 shows the behavior of temperatures in the silicon and copper layers 



 

calculated at the five values of z shown in Figure 1d for sample “S” described in the next Section. The 

plots correspond to the cross-section where the maximum values of temperatures are reached.  

 

Figure 1. The multilayer pyramidal structure. 

 

 

Figure 2. Cross-section plots of the temperature maps produced by DJOSER and used as thermal input data for the 

mechanical analysis of sample “S”. 

 



 

 

2.2 The mechanical solver 

Herein we describe the numerical method introduced in [25] for solving the equilibrium problem of 

structures, often employed in power electronics, made up of superimposed rectangular linear elastic 

layers with different geometric and thermo-mechanical properties subjected to high thermal loads 

(Figure 1). The thermo-mechanical solver presented here is based on the finite element method [24] 

and is aimed at calculating the normal and shear stresses at the interface between the different layers of 

multilayer structures. We assume that the only loads acting on the structure are due to the thermal 

dilatations induced by the temperature field T, which is not continuous at the interfaces due to the 

presence of contact thermal resistance. The interface between two adjacent layers, whose mechanical 

properties are not taken into account, is modeled by imposing conditions that guarantee the adherence 

between the layers.  

In the following we describe a new finite element that can be used to model a step pyramidal structure. 

We assume that the linear elastic material constituting the element is isotropic, with Young modulus E, 

Poisson ratio  and linear coefficient of thermal expansion . The geometry of the element is defined 

by its mean surface and thickness, as in the case of plates, and its thermo-mechanical behavior is 

modeled as fully three-dimensional, in the sense that the deformability along the thickness is taken into 

account. The element is a four-node rectangle with sides parallel to the x and y coordinate axes, and the 

normal unit vector parallel to the z axis. The displacement field is interpolated by mean of shape 

functions which are linear in x and y and quadratic in z. Each node has nine degrees of freedom, i.e. 

three displacements each of the bottom, middle surface and top of the element. In particular, each 

element is characterized by the coordinates of the centroid (xG, yG, zG) and the dimensions 2a, 2b and h, 

along the x, y and z directions, respectively. The local coordinates (, , ) corresponding to the global 

coordinates (x, y, z) of any given point within the element are defined as 



 

G(x x )/ a   ,      (2.4) 

G(y y )/b  ,      (2.5) 

G2(z z ) / h   .      (2.6) 

The displacement vector u at (, , ) is interpolated in the following way, 
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where 
iju  is the displacement vector of the j-th node of the bottom (i = 1), the top (i = 2) and the 

middle surface (i = 3) of the element.  

The bilinear in-plane shape functions 
i are given as 

1( , ) (1 )(1 ) / 4      ,      (2.8) 

2( , ) (1 )(1 ) / 4      ,      (2.9) 

3( , ) (1 )(1 ) / 4      ,      (2.10) 

4( , ) (1 )(1 ) / 4      ,      (2.11) 

and the quadratic out of plane shape functions 
j  are 

1( ) (1 ) / 2     ,      (2.12) 

2( ) (1 ) / 2     ,      (2.13) 

3( ) (1 )(1 )     .      (2.14) 

For u , the gradient of the displacement, and Tu , its transpose, the vector ε of the engineering 

components of the infinitesimal strain tensor ( ) / 2T u u  at any point in the element can be easily 

calculated by taking into account expression (2.7). For xu , yu  and zu , the Cartesian components of 

vector u, we have 
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Expressions (2.15)-(2.20) can be rewritten as follows: 

ε Bδ ,      (2.21) 

where B is the strain matrix containing the derivatives of the shape functions, and δ  is the vector of the 

nodal displacements 
iju  of the element. Denoting by σ  the vector of the engineering component of the 

stress tensor, σ =( xx ,
yy , zz ,

xy , xz ,
yz )

T
, within the element we have 

 0 σ D ε ε ,      (2.22) 

where D is the matrix depending on the elastic constants E and , and 
0ε  is the vector of the 

engineering components of the thermal dilatation  0T T  I , with I the identity tensor and T0 the 

reference temperature. As for calculation of the stiffness matrix, a four point Gauss-Legendre scheme is 

used for numerical integration in the plane, while integration along the thickness is carried out 

analytically.  

To define the geometry of the structure it is sufficient to input, for each layer, the coordinates of two 

non-adjacent vertices and the thickness, h. Each layer of the pyramidal structure is modeled by one or 

more strata of elements (the number of strata must be specified by the user). The mesh of finite 



 

elements used for the thermo-mechanical analysis matches the grid of cells used by DJOSER. 

Regarding the boundary conditions applied to the whole structure, we assume that the base of the 

structure is clamped, thus precluding any displacements of the bottom surface of the lowest elements. 

Two superimposed elements are connected by assuming the top displacements of the lower element 

equal the bottom displacements of the upper element. This approach does not take into account the 

deformability of the adhesive layer, and any eventual debonding phenomena can be detected by means 

of an analysis of the shear and normal stresses. 

 

3. Applications and results 

The numerical tool described in Section 2 has been applied to the set of samples shown in Figure 3, 

each composed of two square slabs with different dimensions: a semiconductor device substrate (12 

mm wide and 0.6 mm thick) made of silicon (layer 2, Figure 2 b) and a lower heat dissipating frame 

(24 mm wide and 1 mm thick) made of copper (layer 1, Figure 2 b). 

 

 

Figure 3. Example applications. 



 

With the aim of illustrating the accuracy of the proposed numerical procedure, a comparison is 

presented with the results of standard finite element analyses using brick elements. The dependence of 

the numerical results on the number of elements in the grids is then investigated.  

The two-dimensional heat sources, dissipating a total of 200 W, are localized on the top silicon surface. 

They are arranged in four square islands in the symmetric (“S”) and asymmetric (“A”) samples and in 

one central island in the “K” series (see Figure 3). The samples belonging to the “K” group differ from 

each other in the 2-D cell densities used by both the thermal and mechanical solvers. The main 

properties of all samples are reported in Table I. The number of cells per side in the copper layer is 

twice that of the silicon one. 

 

                                             Table I. 

Sample Thickness h2 

(Si) 

Cells per side 

(Si) 

Structure 

S-UN 600 m 32 symmetric 

S 600 m 32 symmetric 

A 600 m 32 asymmetric 

K8 600 m 8 symmetric 

K16 600 m 16 symmetric 

K24 600 m 24 symmetric 

K32 600 m 32 symmetric 

 

The two layers of all the samples are separated by a thermally resistive interface, representing a gluing 

or fixing film, whose specific contact thermal resistance Rc is 10 mm
2
 °C/W. As for the thermo-



 

mechanical properties, we have E = 1.5 10
5
 N/mm

2
,  = 0.17, and  = 8.0 10

-6
 °C

-1
 for the silicon, and 

E = 1.130
5
 N/mm

2
,  = 0.34, and  = 1.7 10

-5
 °C

-1
 for the copper. 

Table I also includes a further sample, with the same characteristics as sample “S”, on which an 

analysis has been conducted by removing the heat sources and considering the structure subjected to a 

uniform thermal variation T - T0=100 °C (sample “S-UN”). 

 The results of the thermo-mechanical analyses of the samples are shown and discussed below. The 

stress state at the interface between the substrate and copper layer and between the copper and silicon 

layer is described by the following quantities (Figure 2) 

1 (x, y) (x, y, 0)x xzP   ,        1 (x, y) (x, y, 0)y yzP   ,         1 (x, y) (x, y, 0)zzQ  , 

1 1(x, y) (x, y, )x xzP h   ,        1 1(x, y) (x, y, )y yzP h   ,         11 (x, y) (x, y, )zzQ h  , 

2 2 2 2
1 1 1 1 1 1     ,      .( ) ( ) ( ) ( )x y x yP P P P P P          

the numbers refer to the layer, and the sign indicates the top (+) and bottom (-) surfaces. We point out 

that, by virtue of the continuity of displacements at the interface between layers 1 and 2, stresses , 

   coincide respectively with   and  moreover, ,    are zero because no loads 

are applied to the top of layer 2. 

Figures 4, 5, 6 and 7 shows the plots of the stresses ,  ,  and for sample “S” calculated in 

correspondence to the vertical cross-section intersecting the structure where the maximum temperature 

values occur.  

The plots show that the most critical points for both normal and shear stresses are the edges of the 

upper layer, where the maximum values occur. In particular, the normal stress here has a strong 

compressive (negative) value, while the maximum tensile stress (positive), potentially dangerous for 

the integrity of the interface attachment, lies just beneath the center of the heat dissipating islands. 

 



 

 

Figure 4. Cross-section plot of shear stress  (N/mm
2
) vs. x (mm) for sample “S”. 

 

 

Figure 5. Cross-section plot of normal stress  (N/mm
2
) vs. x (mm) for sample “S”. 

 



 

 

Figure 6.  Cross-section plot of shear stress  (N/mm
2
) vs. x (mm) for sample “S”. 

 

 

Figure 7. Cross-section plot of normal stress  (N/mm
2
) vs. x (mm) for sample “S”. 

The global pattern of  and  at the interface between the substrate and copper and of  and  at 

the interface between copper and silicon is shown in figures 8 and 9. 



 

 

Figure 8. Pattern of   (left) and  (right). 

 

Figure 9.  Pattern of   (left) and  (right). 

Figures 10, 11, 12 and 13 show the plots of the stresses ,  ,  and  for sample “A” calculated 

in correspondence to the vertical cross-section intersecting the structure where the maximum 

temperature values occur. 



 

 

Figure 10. Cross-section plot of shear stress  (N/mm
2
) vs. x (mm) for sample “A”. 

 

 

Figure 11. Cross-section plot of normal stress  (N/mm
2
) vs. x (mm) for sample “A”. 

 



 

 

Figure 12.  Cross-section plot of shear stress  (N/mm
2
) vs. x (mm) for sample “A”. 

 

 

Figure 13. Cross-section plot of normal stress  (N/mm
2
) vs. x (mm) for sample “A”. 

 

Finally, by comparing the results for samples “S” and “A”, the effect of the structural asymmetry is 

quite evident. In fact, in sample “A”, the values of the normal and shear stresses reached at the copper-

heat sink interface are greater than those in sample “S” (see   and  in Figures 4 and 5). On the 



 

other hand, the values of the normal and shear stresses at the copper-silicon interface are similar in both 

“A” and “S”, even if the maximum values are reached at different points.  

The validation procedure is performed via thermo-mechanical analysis of the “K” series, and 

comparing the results with those obtained through standard finite element analysis by discretizing the 

structure with a very large number (30720) of 20-node brick elements. The standard analysis has been 

conducted using the commercial code Marc [26]. 

The aim of the numerical tests is to investigate the dependence of the results on the cell density, and 

evaluate computation times. The results of these tests are presented in Figures 14, 15, 16 and 17, which 

show the plots of stresses ,  ,  and  corresponding to 8, 16, 24 and 32 cells per side (red, 

green, light blue and purple lines, respectively) and to the Marc finite element analysis (black line).  

The figures show that the most critical points are the edges of the silicon layer, where the accuracy of 

the results depends heavily on the mesh refinement. On the other hand, the computation time required 

for the analysis increases with cell density, as reported in Table II, though it still remains well below 

the time needed for a Marc run with 30720 brick elements.  

Finally, the results of the analysis performed on the “S-UN” sample is reported below. In this last 

sample the structure has been subjected to a uniform thermal variation of 100 °C. Figures 18, 19, 20 

and 21 show the plots of the stresses ,  ,  and  for sample “S-UN”, calculated in the middle 

cross-section, vs. x. As can be seen, once again in this case, the stresses reach high values, especially at 

the boundaries of both the layers and the results of the Marc analysis substantially match those obtained 

with THESIS. 



 

 

Figure 14. Cross-section plot of shear stress  (N/mm
2
) vs. x (mm) for samples K8-K32 (colored lines) as compared with 

the results from the Marc analysis (black lines). 

 

 

Figure 15. Cross-section plot of normal stress  (N/mm
2
) vs. x (mm) for samples K8-K32 (colored lines) as compared 

with the results from the Marc analysis (black lines). 

 



 

 

Figure 16.  Cross-section plot of shear stress  (N/mm
2
) vs. x (mm) for samples K8-K32 (colored lines) as compared with 

the results from the Marc analysis (black lines). 

 

 

Figure 17. Cross-section plot of normal stress  (N/mm
2
) vs. x (mm) for samples K8-K32 (colored lines) as compared 

with the results from the Marc analysis (black lines). 

 

 

 

 

 

 

 



 

Table II.  

SAMPLE Cells per side 

(silicon) 

Time (sec) 

K8 8 23.3 

K16 16 487.2 

K24 24 2541.1 

K32 32 8249.6 

Marc  74185.9 

 

 

 

Figure 18. Cross-section plot of shear stress  (N/mm
2
) vs. x (mm) for sample “S-UN” calculated via THESIS (black line) 

and Marc (red line). 



 

 

Figure 19. Cross-section plot of normal stress  (N/mm
2
) vs. x (mm) for sample “S-UN” calculated via THESIS (black 

line) and Marc (red line). 

 

 

Figure 20. Cross-section plot of shear stress  (N/mm
2
) vs. x (mm) for sample “S-UN” calculated via THESIS (black line) 

and Marc (red line). 

 



 

 

Figure 21. Cross-section plot of normal stress  (N/mm
2
) vs. x (mm) for sample “S-UN” calculated via THESIS (black 

line) and Marc (red line). 

 

4. Conclusions 

In this paper a numerical mathematical tool for the thermo-mechanical analysis of power electronic 

devices and their assemblies has been presented. The aim of the tool is simply to equip the recently 

proposed, user-friendly, analytical thermal simulator DJOSER with a suitable mechanical solver, called 

THESIS, so that the resulting temperature maps may also be used to calculate the thermally induced 

mechanical stresses and strains. The advantages of this simulation strategy concern both calculation 

times and the possibility of using uniform rectangular meshes within the body layers based on the 2-D 

meshes used by DJOSER for the temperature mapping. Due to the extreme complexity of a fully 

analytical solution to the mechanical problem, the mechanical solver was developed following a finite 

element-strategy, though making use of a new, expressly developed THESIS element, as described in 

detail in Subsection 2.2. 

The validation tests performed on the samples illustrated in Figure 3 were carried out by comparing the 

THESIS results with those obtained via standard finite element analysis performed with the 

commercial code Marc and twenty-nodes brick elements. As expected, this comparison clearly shows 

that the accuracy of results depends on the cell density, with the error being highest near the borders, 



 

where the Marc code also presents singularity points and consequently undergoes a fall in accuracy. 

Thus, in order to obtain accurate results on the whole structure, it is recommended that the number of 

cells utilized not be less than a certain limit, also in light of the fact that THESIS computational times 

nevertheless remain considerably lower than Marc ones.  

Therefore, thanks to its user-friendliness and the ease of model building, which provides a high degree 

of automatization, the coupled DJOSER-THESIS simulation system for thermo-mechanical analyses of 

packaged power electronic devices may be a suitable substitute for the more expensive numerical tools 

currently in use in small- and medium-sized enterprises involved in electronic device manufacturing. 
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