

D4.3 Infrastructure Enhancement and

Optimisation Final Report

Contract number: FP7-288754 / CNPq 590052/2011-0

Start Date of Project: 1 June 2011

Duration of Project: 28 months

Work Package: WP4 – Infrastructure Set-up, Integration and Testing

Due Date: M20 – 31/01/2013

Submission Date: 06/02/2013

Partner Responsible for the Deliverable: BSC (EU) / UFF (BR)

Dissemination Level: PU

Nature: Report

Author(s): Daniele Lezzi (BSC), Erik Torres (UPVLC), Francisco Quevedo (Species2000), Ignacio
Blanquer (UPVLC), Renato De Giovanni (CRIA), Jose Fernando (CESAR), Vinicius Garcia
(CESAR), Rodrigo Assad (CESAR), Cristina Boeres (UFF), Fernanda Oliveira Passos (UFF), Rafael
Amaral (UFF), Vinod Rebello (UFF), Leonardo Candela (CNR).

Reviewer(s): Renato De Giovanni (CRIA)

EUBrazilOpenBio
FP7-288754

CNPq 590052/2011-0

EU-Brazil Open Data and Cloud Computing e-Infrastructure for Biodiversity

D4.3 – Infrastructure Enhancement and Optimisation Final Report
Page 2 of 41

Change Log

Version Date Description Author(s)

V0.1 08/01/2013 Initial ToC Daniele Lezzi (BSC)

V0.2 14/01/2013 Revised ToC and content Daniele Lezzi (BSC)

V0.3 17/01/2013 Section on COMPSs optimization Daniele Lezzi (BSC)

V0.4 22/01/2013 Section 2.1 (VRE) Leonardo Candela (CNR)

V0.5 22/01/2013 Initial revision (VRE & UCII implementation) Renato De Giovanni
(CRIA)

V0.6 23/01/2013 UC1 content Francisco Quevedo
(Cardiff)

V0.7 23/01/2013 Section 2 update Leonardo Candela (CNR)

V0.8 23/01/2013 Section 2.2 (Ustore Cloud Storage & gCube)
Jose Fernando/Rodrigo
Assad/Vinicius Garcia
(CESAR)

V0.9 23/01/2013 Initial version of sections 3.3.3 and 3.3.4 Fernanda, Rafael,
Cristina and Vinod (UFF)

V1.0 24/01/2013 First draft for review Daniele Lezzi (BSC)

V1.1 28/01/2013 General editing, revision of section 2.1 Daniele Lezzi (BSC)

V1.2 29/01/2013 Conclusions Daniele Lezzi (BSC)

V1.3 29/01/2013

Revised sections 3.3.3 and 3.3.4. Added
section 4.3. Proof read sections 1,2 and 3.
Section 4, also but I wasn’t too thorough in
Section 4.1

Fernanda, Rafael,
Cristina and Vinod (UFF)

V1.4 31/01/2013 Refactoring of section 2 Daniele Lezzi (BSC)

V1.5 1/2/2013 Editing following the review and section 2
contents added Daniele Lezzi (BSC)

V1.7 1/2/2013 Added missing subsections to section 2 and
few minor corrections in other sections Vinod Rebello (UFF)

V1.8 4/2/2013 Small edits, new Figure 1 Daniele Lezzi (BSC)

V1.9 5/2/2013 Section on gHNs Leonardo Candela (CNR)

V2.0 5/2/2013 Final revision Daniele Lezzi (BSC)

EUBrazilOpenBio
FP7-288754

CNPq 590052/2011-0

EU-Brazil Open Data and Cloud Computing e-Infrastructure for Biodiversity

D4.3 – Infrastructure Enhancement and Optimisation Final Report
Page 3 of 41

Document Review

Review Version Date Reviewers Comments

Draft v1.5 31/01/2013 Renato De Giovanni (CRIA)

The document is well-
structured and the overall
content looks good, although a
few subsections still need to be
completed. A number of minor
suggestions and comments
were made.

Final v2.0 05/02/2013 Renato De Giovanni (CRIA)

QA

GB Final 05/06/2013

EUBrazilOpenBio
FP7-288754

CNPq 590052/2011-0

EU-Brazil Open Data and Cloud Computing e-Infrastructure for Biodiversity

D4.3 – Infrastructure Enhancement and Optimisation Final Report
Page 4 of 41

Disclaimer
EUBrazilOpenBio - Open Data and Cloud Computing e-Infrastructure for Biodiversity (2011-2013)
is a Small or medium-scale focused research project (STREP) funded by the European Commission
under the Cooperation Programme, Framework Programme Seven (FP7) Objective FP7-ICT-2011-
EU-Brazil Research and Development cooperation, and the National Council for Scientific and
Technological Development of Brazil (CNPq) of the Brazilian Ministry of Science and Technology
(MCT) under the corresponding matching Brazilian Call for proposals MCT/CNPq 066/2010.

This document contains information on core activities, findings, and outcomes of EUBrazilOpenBio
project, and in some instances, distinguished experts forming part of the project’s Strategic Advisory
Board. Any references to content in both website content and documents should clearly indicate the
authors, source, organization and date of publication.

The document has been produced with the co-funding of the European Commission and the National
Council for Scientific and Technological Development of Brazil. The content of this publication is
the sole responsibility of the EUBrazilOpenBio Consortium and its experts and cannot be considered
to reflect the views of the European Commission nor the National Council for Scientific and
Technological Development of Brazil.

EUBrazilOpenBio
FP7-288754

CNPq 590052/2011-0

EU-Brazil Open Data and Cloud Computing e-Infrastructure for Biodiversity

D4.3 – Infrastructure Enhancement and Optimisation Final Report
Page 5 of 41

Table of Contents

Disclaimer .. 4

1 Introduction ... 7
2 EUBrazilOpenBio e-Infrastructure .. 8

2.1 The SpeciesLab Virtual Research Environment... 9
2.2 The EUBrazilOpenBio File-oriented Data Storage Infrastructure ... 13
2.3 Computing Services ... 14

2.3.1 COMPSs Framework ... 14
2.3.2 EasyGrid AMS ... 15
2.3.3 VENUS-C Middleware ... 15
2.3.4 HTCondor .. 16
2.3.5 gCube Hosting Node ... 16

3 Enhancements and Optimisations .. 17

3.1 Use Case I implementation .. 18
3.1.1 Initial architecture: i4Life project ... 18
3.1.2 Current architecture ... 19

3.2 Use Case II implementation ... 20
3.2.1 OMWS+ ... 21
3.2.2 openModeller Enhancements with COMPSs in the cloud ... 24
3.2.3 openModeller Enhancements with HTCondor ... 28
3.2.4 openModeller Enhancements with EasyGrid AMS .. 32

4 Future work ... 35

4.1 Future work in UC-I .. 35
4.2 Future developments for UC-II ... 36
4.3 Identity Federations .. 36

5 Conclusions .. 38
6 Acronyms and Abbreviations .. 39

References ... 41

EUBrazilOpenBio
FP7-288754

CNPq 590052/2011-0

EU-Brazil Open Data and Cloud Computing e-Infrastructure for Biodiversity

D4.3 – Infrastructure Enhancement and Optimisation Final Report
Page 6 of 41

Executive Summary

The EUBrazilOpenBio project aims to design a novel Data and Cloud Computing e-Infrastructure by
integrating existing EU and Brazilian technologies and resources to support the processing demands
of two biodiversity-related problems that are both data intensive and computationally intensive. This
document is the second report on ‘Infrastructure Enhancement and Optimization’ and aims to
describe the analysis and planning behind the integration of these technologies and resources to
achieve the required performance objectives for the infrastructure. In particular, the report focuses on
the activities and results obtained from applying and evaluating different cloud programming
models, management strategies, and infrastructure technologies, in the context of the two Use Cases.

The first report discussed the initial technological planning (described in in [1]) behind the definition
of an appropriate configuration of both the technology and the infrastructure to serve the needs of the
two Use Cases. The results of a detailed performance analysis of the original proposal have been
used to help identify the set of enhancements and optimisations to improve the first prototype of the
infrastructure that included data and computational technologies (described in [2][3]5]) as gCube,
openModeller, EasyGrid AMS, COMPSs, Usto.re, VENUS-C and HTCondor.

In this follow up report the advancement in the developments of the EUBrazilOpenBio infrastructure
is described, detailing how the previously identified building components have been put together in
order to implement the Use Cases. The results of the optimizations are discussed and a development
plan for the production infrastructure is presented.

EUBrazilOpenBio
FP7-288754

CNPq 590052/2011-0

EU-Brazil Open Data and Cloud Computing e-Infrastructure for Biodiversity

D4.3 – Infrastructure Enhancement and Optimisation Final Report
Page 7 of 41

1 Introduction
The EUBrazilOpenBio project aims to building an e-Infrastructure by leveraging primarily on
resources (textual publications and datasets, maps, taxonomies, tools, services, computing and
storage capabilities) provided by European and Brazilian e-Infrastructures sustained by existing
projects and initiatives. Interoperation extends through all of the infrastructures namely: hardware &
computing facilities (Cloud and Grid computing, Internet), portals and platforms as well as the
scientific data knowledge infrastructures. Initially this e-Infrastructure will support two biodiversity
Use Cases: Use Case I – Integration between Regional & Global Taxonomies, and Use Case II –
Data usability and the use of ecological niche modeling (ENM).

This deliverable reports on the analysis, activities, and current results of the application of the cloud
programming models and management paradigms identified in the context of the Use Cases on the
EUBrazilOpenBio production e-infrastructure. The objective in the implementation of this
production version was to enhance the previous e-infrastructure in order to integrate the Use Case
tools in a unified environment and to further enhance the implementations to take advantage of the
integrated data resources and the variety of distributed computing and storage resources available.

The report discusses the basic components integrated in the EUBrazilOpenBio infrastructure and the
enhancements and optimizations to enable the execution of the use cases on the available resources.
The access to the infrastructure has been facilitated through clear and easily understood user
interfaces in the form of Virtual Research Environments, based on gCube, that interact with the data
and computational resources (Usto.re, VENUS-C Cloud, HTCondor and legacy openModeller
servers) through use case specific interfaces. A specific section is dedicated to the application of
programming models and execution paradigms for the optimized execution of the use cases on the
available resources.

EUBrazilOpenBio
FP7-288754

CNPq 590052/2011-0

EU-Brazil Open Data and Cloud Computing e-Infrastructure for Biodiversity

D4.3 – Infrastructure Enhancement and Optimisation Final Report
Page 8 of 41

2 EUBrazilOpenBio e-Infrastructure
This section describes the first production version of the EUBrazilOpenBio e-Infrastructure that
offers the scientists’ applications as services to the biodiversity scientific community. In particular,
the functionalities and capabilities provided by the infrastructure have been designed according to
the requirements of the two project Use Cases.

As depicted in Figure 1, the EUBrazilOpenBio hybrid infrastructure includes (i) data storage
facilities based on gCube and Usto.re, (ii) computing services that allow the execution of the use
cases optimized through the adoption of programming models and application managers such as
COMPSs and EasyGrid AMS, (iii) a variety of computational infrastructure accessed through the
integration of management middleware, currently VENUS-C and HTCondor, and (iv) external data
sources, for example, GBIF and CoL.

The core services of the architecture mainly rely on gCube facilities and D4Science.org support. The
gCube core services (namely Information System, Workspace and Storage Service, Species
Discovery Service and Result and Visualization Service), deployed on a number of gCube nodes,
allow the enactment of the use cases by the provision of Virtual Research Environments (VREs).

Figure 1 - Architecture of EUBrazilOpenBio e-Infrastructure

An up to date picture of the status of the infrastructure can be acquired by the EUBrazilOpenBio
Gateway available at https://portal.eubrazilopenbio.d4science.org. In particular, the monitoring tool
makes it possible to browse the list of “resources” contributing to the EUBrazilOpenBio
infrastructure.

https://portal.eubrazilopenbio.d4science.org/

EUBrazilOpenBio
FP7-288754

CNPq 590052/2011-0

EU-Brazil Open Data and Cloud Computing e-Infrastructure for Biodiversity

D4.3 – Infrastructure Enhancement and Optimisation Final Report
Page 9 of 41

Figure 2. EUBrazilOpenBio Gateway: Infrastructure Monitoring Facility Screenshot

2.1 The SpeciesLab Virtual Research Environment
Virtual Research Environments are “systems” aiming to provide their users with web-based working
environments that offer the entire spectrum of facilities (including services, data and computational
facilities) needed to accomplish a given task by dynamically relying on the underlying infrastructure.

In the context of EUBrazilOpenBio, the SpeciesLab Virtual Research Environment has been created
in order to provide its users with an integrated environment supporting the two target use cases, i.e.
the cross-mapping of taxonomies and the production of species distributions models.

EUBrazilOpenBio
FP7-288754

CNPq 590052/2011-0

EU-Brazil Open Data and Cloud Computing e-Infrastructure for Biodiversity

D4.3 – Infrastructure Enhancement and Optimisation Final Report
Page 10 of 41

Figure 3. The SpeciesLab VRE Homepage

The main facilities this VRE offers are:

• Species Products Discovery: to enable users to discover and manage species products (occurrence
data and taxa names) from a number of heterogeneous providers in a seamless way.

For discovery, the portlet supports the specification of search criteria based on species scientific
name or common name as well as on the type of product the user is interested in, i.e. occurrence
points or taxa names. In addition to that, the user can specify (i) specific data sources to be
searched, (ii) a specific geographical area (via a bounding box) and (iii) a specific time interval.
Results can be organized by classification, data provider, data source, and rank.

For management, the portlet supports diverse facilities depending on the type of product to be
managed. Regarding taxa names, the portlet makes it possible to have a detailed description of
each selected name including the classification, to save the discovered objects into the workspace
to use them in other contexts (e.g. taxa names comparison), to produce entire checklists of part of
a classification by starting from a given taxa name. Regarding occurrence points, the portlet
makes it possible to have a detailed description of the selected occurrence point datasets, to
dynamically visualize the selected occurrence points on a map, to store the selected data in the
workspace as to use them in future activities (e.g. niche modelling).

Once discovered, objects can be stored into the workspace for future use;

Figure 4. Species Products Discovery Facility Screenshot

EUBrazilOpenBio
FP7-288754

CNPq 590052/2011-0

EU-Brazil Open Data and Cloud Computing e-Infrastructure for Biodiversity

D4.3 – Infrastructure Enhancement and Optimisation Final Report
Page 11 of 41

• Ecological Niche Modelling: to enable users to define and manage ecological niche modelling
tasks. These tasks consist of complex and computationally intensive model creation, testing, and
projection activities. Users are provided with a feature-rich environment allowing them to
characterise such tasks by specifying the data to be exploited (occurrence records and
environmental parameters), the algorithms to use and the parameters to be considered during the
testing phase. Tasks can be monitored after being submitted. Moreover, the results of each task
can be easily accessed, visualised and saved into the user workspace for future use;

Figure 5. Ecological Niche Modeling Facility Screenshot

• Cross-mapping: to enable users to compare different checklists. Checklists can be either
produced by relying on the Species Products Discovery or owned by the user. Moreover, they are
expected to be in the Darwin Core Archive format. Users are provided with a feature rich
environment enabling them to import checklists to be compared, to inspect the content of every
checklist, to compare (a.k.a. cross-map) two checklists by using diverse comparisons
mechanisms, to visualise the results of a comparison and to save it for future use;

Figure 6. Cross-mapping Facilities Screenshot

EUBrazilOpenBio
FP7-288754

CNPq 590052/2011-0

EU-Brazil Open Data and Cloud Computing e-Infrastructure for Biodiversity

D4.3 – Infrastructure Enhancement and Optimisation Final Report
Page 12 of 41

• Workspace: to enable every user to store and organise information objects for future use. In
addition to that, the user is allowed to collaborate with other users by sharing objects and
messages;

Figure 7. Workspace Facilities Screenshot

• Maps Visualisation: to enable users to search, browse and visualise GIS layers available in the
infrastructure independently of the repository that physically stores them. Among the available
layers, there are maps produced via the Ecological Niche Modelling facilities, when the creators
are willing to share them with the other VRE members;

Figure 8. Maps Visualisation Facilities Screenshot

• VRE Management: to enable authorised users (i.e. VRE Managers) to manage other users using
or willing to access the VRE. VRE Managers can (i) authorise users in accessing the VRE, (ii)
assign or withdraw roles to users, (iii) remove users, and (iv) send a communication to the current
users.

EUBrazilOpenBio
FP7-288754

CNPq 590052/2011-0

EU-Brazil Open Data and Cloud Computing e-Infrastructure for Biodiversity

D4.3 – Infrastructure Enhancement and Optimisation Final Report
Page 13 of 41

Figure 9. VRE Management Facilities Screenshot

2.2 The EUBrazilOpenBio File-oriented Data Storage Infrastructure
EUBrazilOpenBio caters for a file-oriented data storage facility by relying on both gCube storage
facilities and Usto.re.

gCube storage facility is conceived to offer - via a POSIX-like interface - access to distributed
storage systems supporting the access and storage of unstructured byte streams. In particular, it is
conceived to support the organisation and operations normally associated with local file systems
whilst offering scalable and fault-tolerant remote storage. In order to do that, it federates diverse
storage back-end including MongoDB. This facility manifests in a thin software library that acts as a
mediator with the storage backend instances currently existing in the infrastructure and offers a
unifying view over them. Such a software library is expected to be used by clients to download,
upload, remove, add, and list files. Files have owners and owners may define access rights to files,
allowing private, public, or group-based access. Through the use of metadata, the library allows
hierarchical organizations of the data against the potentially flat storage provided by the service’s
back-ends.

The Usto.re Cloud Storage Platform aims to provide an alternative storage solution for the
EUBrazilOpenBio e-Infrastructure. It comprises features that focus on both user interactions through
a seamless agent and web interface, as well as on resource integration with the e-Infrastructure
components through an Application Programming Interface (API).

The main goal of the Usto.re is to provide important benefits of a Cloud Data Storage System to
EUBrazilOpenBio e-infrastructure, as follows:

• Scalability: Using idle hardware resources of machines (hosts) connected to a network in a
rational way.

• Availability: promoting a reliable system to deal with common incoming and outcome of
hosts.

• Security: security policy, techniques and strategies adoption to provide privacy and
authenticity for user.

• Sustainability: Operation even with small low cost resources or devices.

EUBrazilOpenBio
FP7-288754

CNPq 590052/2011-0

EU-Brazil Open Data and Cloud Computing e-Infrastructure for Biodiversity

D4.3 – Infrastructure Enhancement and Optimisation Final Report
Page 14 of 41

• Ubiquity: data access from web browsers, tablets, smartphones, through Application
Program Interface, and software clients.

To promote the integration between gCube and Usto.re platform, a Representation State Transfer
(REST) strategy was initially adopted based on principles used by industry leaders such as Amazon
AWS, Google and Twitter. The REST API includes: user access, backup and restoration of files, file
directory synchronization, user file management among other functionalities.

Figure 10 – Usto.re REST Web Service

Additionally, the API enables the transfer of Extensible Markup Language (XML) and JavaScript
Object Notation (JSON). This way, web services can perform transactions with heterogeneous
components of EUBrazilOpenBio e-infrastructure.

The gCube storage facility is currently being extended to support Usto.re Cloud Storage.

2.3 Computing Services
The EUBrazilOpenBio infrastructure offers a number of computing services including COMPSs (cf.
Sec. 2.3.1), EasyGrid AMS (cf. Sec. 2.3.2), VENUS-C (cf. Sec. 2.3.3), HTCondor (cf. Sec. 2.3.4),
and gCube Hosting Node (cf. Sec. 2.3.5).

2.3.1 COMPSs Framework

COMPSs is a programming framework, composed of a programming model and an execution
runtime which supports it, whose main objective is to ease the development of applications for
distributed environments. On the one hand, the COMPSs programming model aims to keep the
programmers unaware of the execution environment and parallelization details. They are only
required to create a sequential application and specify which methods of the application code will be
executed remotely. This selection is done by providing an annotated interface where these methods
are declared with some metadata about them and their parameters. On the other hand, the COMPSs
runtime is in charge of optimizing the performance of the application by exploiting its inherent
concurrency. The runtime intercepts any call to a selected method creating a representative task and
finding the data dependencies with all the previous ones that must be considered along the
application run. The task is added to a task dependency graph as a new node and such dependencies
are represented by edges of the graph. Tasks with no dependencies enter the scheduling step and are
assigned to available resources. This decision is made according to a scheduling algorithm that takes
into account data locality, task constraints and the workload of each node. According to this decision
the input data for the scheduled task are transferred to the selected host and the task is remotely

EUBrazilOpenBio
FP7-288754

CNPq 590052/2011-0

EU-Brazil Open Data and Cloud Computing e-Infrastructure for Biodiversity

D4.3 – Infrastructure Enhancement and Optimisation Final Report
Page 15 of 41

submitted. Once a task finishes, the task dependency graph is updated, possibly resulting in new
dependency-free tasks that can be scheduled.

Through the monitoring of the workload of the application, the runtime determines the excess/lack of
resources and turns to cloud providers enforcing a dynamic management of the resource pool. In
order to make COMPSs interoperable with different providers, a common interface is used, which
implements the specific cloud provider API. Currently, there exist connectors for Amazon EC2,
Azure and for providers that implement the Open Cloud Computing Interface (OCCI) and the Open
Virtualization Format (OVF) specifications for resource management.

2.3.2 EasyGrid AMS

The EasyGrid middleware is an Application Management System (AMS) that provides several
mechanisms to manage the execution of applications in distributed systems. As these computing
systems become larger in scale they become ever more heterogeneous, exhibit more variable and
constant changes in behaviour, and are more likely to be shared by competing applications.
Designing applications to extract good performance from these kinds of platforms can be extremely
complex. The goal of the EasyGrid AMS is to free programmers from this arduous effort and the
need to modify or tune the parallel application to each type of system on which the application
should execute. Specifically, the EasyGrid AMS is able to oversee the efficient execution of tasks of
a MPI application (with or without precedence constraints) by configuring and statically scheduling
tasks, prior to the execution, based on the characteristics of the application and the predicted
availability/performance of the target resources. During the execution itself, the EasyGrid AMS
astutely employs dynamic scheduling and fault tolerance mechanisms to constantly adjust the
execution and reduce the chance of failure. Furthermore, the application granularity may be
reconfigured at runtime to further improve performance, often without stopping the execution. By
incorporating the AMS into the application, it becomes self-managing or autonomic1, exhibiting
features such as self-optimisation, self-healing and self-configuration. This can be especially
beneficial in dynamic, shared, heterogeneous computing environments, like clouds, for example.

The execution of the MPI application is controlled by additional management processes. The design
of each management process is based on a subsumption architecture which consists of layers of tasks
achieving behaviours. Each layer adds a new level of competence with higher levels subsuming the
roles of lower levels when they wish to take control. The process management behavioural layer is
responsible for the dynamic creation of MPI processes and the routing of messages between
processes. The dynamic scheduling and fault tolerance layers utilize status information provided
periodically by the monitoring layer, to decide if, and when, it is necessary to activate a re-
scheduling mechanism and to detect and treat process and resource failures.

2.3.3 VENUS-C Middleware

The Programming Model Enactment Service (PMES) is a bridge to the VENUS-C platform,
allowing the execution of applications programmed through the COMPSs programming model. A
client is used to contact an OGF BES compliant Web Service in order to submit the execution of a
COMPSs application. This request is expressed through a JSDL document containing the application
name, the input parameters and data references.

The implementation of the COMPSs BES includes a Job Manager and a Job Dispatcher that actually
execute the application and manage its life cycle. The submission request is received by that Job
Manager that creates an enactment service job object assigning it a Universally Unique Identifier

1 Markus C. Huebscher and Julie A. McCann. A survey of autonomic computing-degrees, models, and
applications. ACM Computing Surveys, 40(3):7:1–7:28, August 2008.

EUBrazilOpenBio
FP7-288754

CNPq 590052/2011-0

EU-Brazil Open Data and Cloud Computing e-Infrastructure for Biodiversity

D4.3 – Infrastructure Enhancement and Optimisation Final Report
Page 16 of 41

(UUID); the job is created and queued in the Job Dispatcher which is responsible for dealing with
execution. The Job Dispatcher maintains a user resizable pool of threads that is responsible for
picking jobs from a Job Dispatcher queue filled by the Job Manager. First a virtual machine is
requested to the Cloud Provider in order to deploy the COMPSs runtime that schedule the tasks on
the remote nodes and the application, downloading its package from the Cloud storage. Once the
runtime machine is deployed the COMPSs application is remotely started. In its turn the COMPSs
runtime will schedule the tasks on a set of machines created on demand. This phase includes the
staging of input files from remote locations as specified in the execution request.

2.3.4 HTCondor

Condor, recently renamed HTCondor, is a workload management system for compute-intensive jobs
on clusters and wide-area distributed systems of either dedicated or shared resources. These
resources form an HTCondor pool, comprised of a central manager and an arbitrary number of
machines. The role of HTCondor is to match waiting job requests with available resources
(machines). All HTCondor services send periodic updates to the central manager, who acts as a
centralised repository of information about the state of the pool. Using this state information, the
central manager assesses the current state of the pool and tries to match pending requests with the
appropriate resources. The ClassAd mechanism provides a flexible framework for matching resource
requests (jobs) with resource offers (machines). Jobs can easily state both job requirements and job
preferences. Likewise, machines can specify requirements and preferences about the jobs they are
willing to run. Each resource has an owner, the one who sets the policy for the use of the machine,
including when HTCondor requests will be accepted. Job submission to HTCondor requires a job
submission specification to define which program to run and HTCondor should to run it.

2.3.5 gCube Hosting Node

By relying on gCube technology, in particular on the gCube Hosting Node component, the
EUBrazilOpenBio infrastructure delivers a distributed computing platform catering for the
deployment of applications including Web Services. In essence, a gCube Hosting Node is a unit of
any gCube-based infrastructure that can be used to host a service and offers a number of facilities for
interfacing the hosted service with the rest of the infrastructure.

By relying on gHNs, gCube offer facilities for dynamically (un-)deploying application instances.
These application instances are automatically added to the infrastructure and their status can be
monitored by using the gCube Information System, either in a programmatic way or via a graphical
user interface (cf. Figure 2). At the time of writing this report, the EUBrazilOpenBio infrastructure
offers more than 45 gHNs. An up to date picture can be acquired via the monitoring tool2.

This facility makes it possible to create a scenario that promotes service-oriented horizontal
scalability, i.e. new service instances are dynamically created and the load can be distributed among
a larger number of instances.

2 https://portal.eubrazilopenbio.d4science.org/web/guest/monitor

EUBrazilOpenBio
FP7-288754

CNPq 590052/2011-0

EU-Brazil Open Data and Cloud Computing e-Infrastructure for Biodiversity

D4.3 – Infrastructure Enhancement and Optimisation Final Report
Page 17 of 41

3 Enhancements and Optimisations
This section details the enhancement and optimisation activities performed in order to deploy the
project Use Cases on the production e-Infrastructure through the adoption of distributed computing
technologies, programming models and management paradigms.

As depicted in Figure 11, the EUBrazilOpenBio e-Infrastructure provides the resources to allow
scientists to access the Use Case tools through a Web interface. Through a specific GUI in the
biodiversity VRE, Use Case I demonstrates, given two taxonomic checklists in the Darwin Core
Archive (dwca) format, how a scientist can import those checklists and run a cross-map experiment
between them, obtaining the relationships that exist between the taxa in one checklist with the taxa in
the other. Through its GUI, Use Case II permits scientists to choose a set of species, develop
distribution models based on occurrence data (using the different algorithms available), test them and
project the probability occurrence maps given different environmental conditions. In addition,
services exist to allow scientists to use their own data, and save or share the results through their own
workspace within the VRE. A couple of data discovery services can also be used to obtain data from
respected biodiversity repositories and databases.

Figure 11 – Implementation of the Use Cases on the EUBrazil OpenBio Infrastruvture

For each Use Case, a specific Use Case Web Service is responsible for implementing an API that
allow both the EUBrazilOpenBio VRE and existing Use Case Clients (GUIs or other software tools)

EUBrazilOpenBio
FP7-288754

CNPq 590052/2011-0

EU-Brazil Open Data and Cloud Computing e-Infrastructure for Biodiversity

D4.3 – Infrastructure Enhancement and Optimisation Final Report
Page 18 of 41

to interact with the infrastructure’s back-end computing resources transparently. This interface is
integrated in an Experiment Orchestrator Service (EOS) that acts as the coordinator of the
infrastructure providing meta-scheduler functionalities to select the best resource to execute an
application request. Such a decision depends on multiple factors such as the load of each
infrastructure, the mean execution time of the application on each infrastructure, the infrastructure
availability, some infrastructure constraints (i.e., if an infrastructure cannot run a certain application)
and execution time forecasting. A Job Resources Optimizer (JRO) tries to optimize the resources
usage on the chosen resource provider by analysing the application topology and trying to guess
which are the computational needs to obtain the best performance. The EOS service relies on the
JRO for setting up the number of needed computing units, and its specifications in case of being
virtual resources.

Access to the computing resources is managed by specific plugins in the EOS. Three plugins have
been provided so far: a plugin for the VENUS-C middleware allows the connection to the
Programming Model Enactment Service used to schedule COMPSs applications to virtual instances
provided by private and public clouds; a Condor plugin allows the execution of jobs across a pool of
working nodes managed by HTCondor; and a specific plugin to allow backward compatibility with
existing OMWS servers.

3.1 Use Case I implementation

3.1.1 Initial architecture: i4Life project

At the beginning of the project, the cross-mapper tool developed inside the i4Life project consisted
of 2 main modules:

• A perl module in charge of importing checklists in dwc-a format into a relational database.
• A set of php pages, which apart from being the GUI of the application, they also contained

the business logic of the application.

Both modules interacted with a MySQL database that was used as a persistent storage. That database
was used for storing the data (checklist and cross-map) as well as the state of the “service” (eg
indicating which checklists have been imported and which cross-maps have been executed, etc.)

The 4 main limitations of that approach were:

a) It didn’t offer a service in a way that other applications could call programmatically, so it
couldn’t be run inside of an external workflow or called by a different GUI. Instead, the
cross-mapper tool must be executed through its web site by clicking buttons in different
pages.

b) Even if a web service interface has been created for programmatic access to the cross-
mapping tool, the languages in which it was developed (perl and php) didn’t facilitate the
deployment of the service in the gCube infrastructure and/or future improvements like the
use of COMPSs.

c) The main computational workload resided in the SQL queries that were executed in the DB
engine.

d) Finally, the state of the service was kept in the database. This peculiarity implied that
although the system could have multiples instances of the program in different machines,
unless they were connected to the same database (with the potential concurrency problems),
the user had to call always to the same instance to see, for example, the previously imported
checklists.

EUBrazilOpenBio
FP7-288754

CNPq 590052/2011-0

EU-Brazil Open Data and Cloud Computing e-Infrastructure for Biodiversity

D4.3 – Infrastructure Enhancement and Optimisation Final Report
Page 19 of 41

To address the first 2 issues, it was decided to migrate the code to java. During that process, a deep
study of the legacy code was carried out, detecting potential bugs and bottlenecks. The result of it
has helped to improve the old code as well as making the new code faster and more robust. Also
during the migration, new features were added to provide extra functionalities that didn’t exist in the
legacy application.

3.1.2 Current architecture

The current architecture of the UC-I consists basically of 2 independent components. On one hand,
we have a SOAP web service which exposes a set of methods that allows a client to run cross-map
experiments. And on the other hand, we have a GUI interface that interacts with the cross-map
service alongside other services and tools provided by infrastructure.

Internally, the cross-map service was developed using a top-down approach and it is formed by a set
of java projects, each one covering one aspect of the application. For example, there is a service
interface project where the public interface of the service is defined (using a WSDL file). There is
also another java project that contains the business logic and which could be called from the
command line without the need of the web-service façade. The façade is created by another java
project, using the Tuscany SCA framework, to easily expose the business logic as a web service or
any other protocol. Finally, there are other several java projects for covering internal aspects like
accessing the database using DAOs, etc.

The other part of the system, the GUI, was developed jointly by CNR and Cardiff, and it is basically
a GWT project that uses the GXT widget library. It has been adapted to be deployed as a liferay
portlet inside the gCube portal and internally it interacts with the cross-map service and with other
systems from gCube, such as the gCube information system and the gCube workspace.

Deployment configuration:

The deployment artefacts of the 2 components previously described are war files. Each war file is
deployed in the infrastructure as follows:

• The GUI is deployed as a portlet inside EUBrazilOpenBio portal. The administrator of the
portal will assign it into a Virtual Organization (VO) and inside the VO into a Virtual
Research Environment (VRE). It is through this VRE where the user can interact with the
portlet. The portlet internally queries the Information System to get the URI of the external
cross-map web service it has to access and also interacts with the workspace in order to read
and write files from it.

• The cross-map web service, which at the moment is deployed in only one external machine,
is registered into the Information System as an external resource. The instance of the cross-
map web service is running on a server in Cardiff called lithci1. The cross-map service, as
its predecessor did in the i4life project, connects with a MySQL database in which the data
and the state of the service are persistent.

This basic deployment configuration is depicted in Figure 12

EUBrazilOpenBio
FP7-288754

CNPq 590052/2011-0

EU-Brazil Open Data and Cloud Computing e-Infrastructure for Biodiversity

D4.3 – Infrastructure Enhancement and Optimisation Final Report
Page 20 of 41

Figure 12: Current architecture deployment for UCI

The main benefit of this simple architecture is that it can be used as a Proof of Concept to show that
it is possible the re-use external services already implemented by third-parties to give them an added
value:

• The web service itself probably will not require any modification or perhaps minor ones and
the main effort will be in the creation of a GUI. Task that is relatively simple following the
specifications about how to create a gCube portlet.

• Once the portlet has been created, it will not only serve as a simple client of the web service,
but it can also interact with other gCube services, like the workspace. This allows users to
utilise files that have been created by other applications. For example, for the cross-mapping,
users can use as input the dwc-a files that have been obtained through the Species Product
Discovery.

• Finally because the portlet is deployed inside a portal. The user can run from the same web
browser a more complex experiment in which the external web service is only a part of it.

As a drawback, the current architecture for the cross-mapper doesn’t take advantage of the
computational and storage resources offered by the EUBrazilOpenBio infrastructure. For that reason,
we have envisaged a new software architecture for UC-I, similar to the one implemented in the UC-
II, in which the cross-map application can make better use of the resources provided by the
infrastructure. This new architecture is described in the section 4.1 of this document.

3.2 Use Case II implementation
This Use Case addresses computational issues when Ecological Niche Modelling needs to be used
with a large number of species by means of complex modelling strategies involving several
algorithms and high-resolution environmental data. The use case is based on the requirements of the

Litchi1.cs.cf.ac.uk gCube Portal

Cross-mapping
portlet

Information
System

Storage
Service

Cross-map
WS API

Cross-map
Instance

MySQL DB

Legacy
Application

EUBrazilOpenBio
FP7-288754

CNPq 590052/2011-0

EU-Brazil Open Data and Cloud Computing e-Infrastructure for Biodiversity

D4.3 – Infrastructure Enhancement and Optimisation Final Report
Page 21 of 41

Brazilian Virtual Herbarium (BVH) of Flora and Fungi, which has its own system capable of
interacting with an openModeller Web Service (OMWS) to carry out a standard niche modelling
procedure for plant species that are native to Brazil. Species that can be modelled by BVH come
from the List of Species of the Brazilian Flora, which currently contains ~40.000 entries. The
corresponding occurrence points are retrieved from speciesLink - a network that integrates data from
distributed biological collections, currently serving almost 4 million records considering only plants.
For species with at least 20 occurrence points available, the standard modelling procedure involves
generating individual models with five different techniques: Ecological- Niche Factor Analysis,
GARP Best Subsets, Mahalanobis distance, Maxent and One-class Support Vector Machines.
Besides generating the models, a 10- fold cross-validation is performed to assess model quality and a
final step is needed to merge the individual models into a single consensus model, which is then
projected into the present environmental conditions for Brazil in high-resolution.

As described in the performance profiling section of the previous report (D4.2), the entire process is
computing-intensive, especially when dealing with a high number of species. This section reports the
developments for the implementation of the use case in the EUBrazilOpenBio infrastructure.

The implementation of the Use Case includes the development of an API to support the execution of
complex experiments through the extension of the existing interface and several optimizations
through the implementation of OM workflows in COMPSs executed in cloud resources managed by
the VENUS-C middleware, as well as enhancements with HTCondor and a further optimization of
openModeller core through EasyGrid AMS.

3.2.1 OMWS+

The original openModeller XML Schemes are comprised of an XML schema3 defining all elements,
attributes, structure and data types that are used to serialize openModeller objects, and a WSDL file
defining the operations of the OMWS API4. Each operation defined by this scheme supports the
execution of one simple action with openModeller, for example, create, test or project a model.
When a user wants to perform several actions with the same dataset, it is necessary to submit each
operation to the service separately. For example, to create five models with the same species
occurrence dataset using five different modelling algorithms, five different requests are needed (one
per algorithm). The same occurs for experiments that create models for different species using the
same modelling algorithm. When there are dependencies between the operations, for example,
creating a model and then projecting it into an environmental scenario, the client is responsible for
sending the initial request, monitoring and retrieving the results of the operation that creates the
model and also for including the serialized model as an input parameter in the projection operation
that follows.

Another characteristic of OMWS is that it doesn’t provide support for user sessions. Instead, every
operation returns a ticket that the user has to store and to use with any other subsequent operation
that depends on the results of the previous operation, such as monitoring and retrieving the results of
that operation.

In order to better handle a high number of niche modelling tasks, which is beyond the common use
of niche modelling applications, an extension of the openModeller XML Scheme was created to
allow the execution of multi-staging, multi-parametric experiments (Tables 1 and 2).

3 The openModeller XML Scheme: http://openmodeller.cria.org.br/xml/1.0/openModeller.xsd
4 The openModeller WSDL: http://openmodeller.cria.org.br/ws/1.0/openModeller.wsdl

EUBrazilOpenBio
FP7-288754

CNPq 590052/2011-0

EU-Brazil Open Data and Cloud Computing e-Infrastructure for Biodiversity

D4.3 – Infrastructure Enhancement and Optimisation Final Report
Page 22 of 41

Element Scope

AvailableAlgorithms openModeller

Algorithms openModeller

ModelParameters openModeller

ModelEnvelope openModeller

TestParameters openModeller

TestResultEnvelope openModeller

SerializedModel openModeller

ProjectionParameters openModeller

ProjectionEnvelope openModeller

ExtendedExperimentRequest Extended openModeller

ExtendedExperimentStatus Extended openModeller

ExtendedExperimentResults Extended openModeller

ExtendedExperimentLogs Extended openModeller
Table 1 - Extended openModeller (OM+) Formats

Table 1 shows the general types defined in the extended openModeller format (OM+). The objective
of the new types is to support the following experiment pipelines, in addition to the legacy unique-
staging experiments:

1. Create, test and project model
2. Create and test model
3. Create and project model
4. Test and project model

Any of these experiments will produce only one request, one job id in the system, reducing the
duplication of information. The second advantage over traditional OMWS is that these types support
the following multi-parametric requests per experiment:

1. Several species occurrences datasets
2. Several algorithm definitions
3. Any combination of several species and several algorithms

OMWS uses the openModeller XML Scheme to define a Web service interface to openModeller5.
The existing openModeller Server6 provides an implementation of OMWS that can be configured to
use HTCondor, distributing the jobs across a pool of working nodes.

5 The openModeller Web Service: http://openmodeller.sourceforge.net/web_service.html
6 The openModeller Server: http://openmodeller.sourceforge.net/om_server.html

EUBrazilOpenBio
FP7-288754

CNPq 590052/2011-0

EU-Brazil Open Data and Cloud Computing e-Infrastructure for Biodiversity

D4.3 – Infrastructure Enhancement and Optimisation Final Report
Page 23 of 41

Operation Scope

ping OMWS

getAlgorithms OMWS

getLayers OMWS

createModel OMWS

getModel OMWS

testModel OMWS

getTestResult OMWS

projectModel OMWS

getProgress OMWS

getLog OMWS

getLayerAsAttachement OMWS

getLayerAsUrl OMWS

getLayerAsWcs OMWS (optional)

getProjectionMetadata OMWS

submitExtendedExperiment Extended OMWS

getExtendedExperimentStatus Extended OMWS

getExtendedExperimentResults Extended OMWS

getExtendedExperimentLogs Extended OMWS

cancelExtendedExperiment Extended OMWS
Table 2 - Extended OMWS (OMWS+) interface.

Table 2 shows the operations defined in the extended openModeller Web Service interface
(OMWS+). This new extension provides an interface to OM+ in the same way that OMWS provides
an interface to openModeller XML Scheme (OM). An instance of OMWS+ must fulfil the following
requirements:

1. To provide the legacy ecological niche modelling operations (the same defined by OMWS).
2. To provide the new operations that support multi-staging, multi-parametric experiments.

Operation Parameters Result

submitExtendedExperiment ExtendedExperimentRequest Ticket (String)

getExtendedExperimentStatus Ticket (String) ExtendedExperimentStatus

getExtendedExperimentResults Ticket (String) ExtendedExperimentResults

getExtendedExperimentLogs Ticket (String) ExtendedExperimentLogs

cancelExtendedExperiment Ticket (String) (void)
Table 3 - OMWS+ operations

EUBrazilOpenBio
FP7-288754

CNPq 590052/2011-0

EU-Brazil Open Data and Cloud Computing e-Infrastructure for Biodiversity

D4.3 – Infrastructure Enhancement and Optimisation Final Report
Page 24 of 41

Table 3 shows the extended methods with the corresponding inputs and outputs.

The type “ExtendedExperimentRequest” builds on the openModeller types "ModelParametersType",
"TestParametersType" and "ProjectionParametersType" to include several occurrences datasets and
several algorithm definitions per experiment. Similarly, the extended results contain a list of URLs
where the results of the experiments can be downloaded in the original OM types
"ModelEnvelopeType", "TestResultEnvelopeType" and "ProjectionEnvelopeType". The extended
status and logs are similar to the OMWS operations "getProgress" and "getLog".

OMWS+ is backwards compatible with the original OMWS interface. Legacy methods, such as
“createModel”, “testModel” or “projectModel” can be used in the same way that they are used
through OMWS. This way, legacy clients are fully supported without modifications.

Compatibility with openModeller is achieved through format converters. In particular, the OM+
format is backwards compatible with the openModeller XML Schema. Therefore, the XML
documents produced by these two schemas are inter-convertible: one OM+ document can be
converted into several OM XML documents. This way, extended and legacy components can
interoperate by means of converters.

In particular, the following converters are provided with the implemented prototype of the
architecture:
1. XML/Java Object Mapper
2. Java Object/GWT-RPC serializable Mapper: A GWT module is available for the OM+

format, since this is the technology of choice for implementing the graphical user interfaces
(GUIs) in EUBrazilOpenBio

3. OM+/OM Mapper (only provided in the direction extended OM to OM)
4. OM/OM CLI Mapper: this optional module provides developers with methods for

converting between OM XML documents and openModeller command-line interface (CLI)
parameters

3.2.2 openModeller Enhancements with COMPSs in the cloud

The proposed extension of the openModeller Web Service API provides a way to automatically
convert multi-stage & multi-parameter experiments into a set of single legacy operations supported
by the openModeller command-line suite. This is implemented through COMPSs, which orchestrates
the execution after automatically generating the execution graph (Figure 8).

As depicted in Figure 11, the COMPSs Job Manager (implemented in the VENUS-C PMES),
receives the execution requests from the Orchestrator, that dispatches user’s requests received from
the OMWS+ interface to support multi-staging and multi-parametric experiments through COMPSs
and openModeller. These extensions are backwards compatible with the original OMWS
specification, allowing legacy clients to be fully supported in the new implementation and, therefore,
still able of submitting experiments to the execution resources without using the graphical user
interface developed by the project.

The ENM workflow is composed by the following operations:

• Convert: converts a multi-stage and multi-parameter request into a set of single operation
calls.

• Model: models the species distribution based on a chosen algorithm, a set of occurrence
points and a set of environmental layers.

• Test: tests the model against a set of reference occurrence points.
• Project: projects the species model into an environmental scenario, generating a potential

distribution map.

EUBrazilOpenBio
FP7-288754

CNPq 590052/2011-0

EU-Brazil Open Data and Cloud Computing e-Infrastructure for Biodiversity

D4.3 – Infrastructure Enhancement and Optimisation Final Report
Page 25 of 41

• Translate: formats and colours the projected map into a viewable image.

When an ExtendedExperimentRequest document is received, the Convert method splits the
experiment request into a set of single-operation requests. Each request handles a single species-
algorithm pair.

The Model operations start computing each request, thus blocking the following executions of the
Test and Project operations, which depend on it.

The Translate operation is also queued, and starts when the projected map is available, colouring it
with a provided palette and eventually converting it to a desired image format as depicted in Figure
15. An example resulting execution graph managed by COMPSs is depicted in Figure 13.

Figure 13 - ENM COMPSs workflow with 1 species and 2 algorithms

The simplified snippet shown in Figure 14 describes the ENM COMPSs workflow code which
consists of a regular sequential code, Figure 14(a), where each previously described method is
invoked depending on the operation request types, and on a Java annotated interface which provides
to the COMPSs runtime library the method signatures that must be orchestrated and executed
remotely, Figure 14(b).

//For each pair species-algorithm request

for (String rqstPath : speciesRqst){
SerializedModelType serModel = null;
...
if(modelRqst.exists())
serModel = MImpl.om model(modelRqst, modelOut, ...);

if(testRqst.exists()){
MImpl.om test(modelRqst, serModel, testRes, ...);
if(modelRqst.exists())
MImpl.om test(testRqst, serModel, testRes, ...);
else
...

}
if(projRqst.exists()){

if(modelRqst.exists()){
MImpl.om proj(projRqst, serModel, stats, map, ...);
MImpl.proj clrTrl(map, palette, output, format, ...);
}
else{
...
}

 }
}

(a)

public interface ModellerItf {

EUBrazilOpenBio
FP7-288754

CNPq 590052/2011-0

EU-Brazil Open Data and Cloud Computing e-Infrastructure for Biodiversity

D4.3 – Infrastructure Enhancement and Optimisation Final Report
Page 26 of 41

@Method(declaringClass = ”modeller.MImpl”)
SerializedModelType om_model(

@Parameter(type = Type.FILE, direction = Direction.IN)
String modelRqst,
@Parameter(type = Type.FILE, direction = Direction.OUT)
String serModel,
@Parameter(type = Type.STRING direction = Direction.IN)
String binaryArgs,
@Parameter(type = Type.BOOLEAN direction = Direction.IN)
boolean debugFlag

);

@Method(declaringClass = ”modeller.MImpl”)
void om_test(

@Parameter(type = Type.FILE, direction = Direction.IN)
String testRqst,
@Parameter(type = Type.OBJECT, direction = Direction.IN)
SerializedModelType serModel,
@Parameter(type = Type.FILE, direction = Direction.OUT)
String result,
@Parameter(type = Type.STRING, direction = Direction.IN)
String binaryArgs,
@Parameter(type = Type.BOOLEAN, direction = Direction.IN)
boolean debugFlag

);
…
}

(b)

Figure 14 - ENM workflow main code (a) and its associated COMPSs interface (b)

Figure 15 - Potential distribution of Passiflora amethystina obtained with the ENFA algorithm

3.2.2.1 Evaluation
The BSC testbed previously described has been used with a total of 10 quad-core virtual instances
with 2GB of memory and 1GB of disk space running a Debian Squeeze Linux distribution. The aim
of these tests is to validate the ENM-COMPSs workflow implementation, evaluate the advantage of
the elasticity features of the COMPSs runtime, and compare the execution on a dynamically
provided pool of virtual resources with a run on a pre-deployed and static virtual environment (Grid-
like scenario).

EUBrazilOpenBio
FP7-288754

CNPq 590052/2011-0

EU-Brazil Open Data and Cloud Computing e-Infrastructure for Biodiversity

D4.3 – Infrastructure Enhancement and Optimisation Final Report
Page 27 of 41

Eight species of the genus Passiflora, each one with more than 20 occurrence points, were used to
test the application. Models were generated using the following high resolution environmental layers
from WorldClim: mean diurnal temperature range, maximum temperature of warmest month,
minimum temperature of coldest month, precipitation of wettest quarter, precipitation of driest
quarter, precipitation of warmest quarter, precipitation of coldest quarter and altitude. A simplified
standard procedure consisting of model creation followed by an internal model test (confusion matrix
and ROC curve calculation with the same input points) and a native model projection (with the same
environmental layers) followed by a final image transformation was used for each species with a set
of three algorithms used by BVH (SVM, ENVDIST and ENFA) called with a different set of
parameters. The Brazilian territory served as a mask in all operations. This scenario composes a total
of 46 simultaneous single operation requests.

¡Error! No se encuentra el origen de la referencia. depicts the evolution on the number of virtual
machines used along the execution, highlighting how the COMPSs runtime is sensitive to the tasks
load, adapting the number of current resources to the demand. After the initial scale-up phase, the
load remains constant until the end of the process is reached, thus starting to free resources
progressively. This is not the case of the static execution scenario (overlapped on the figure) which
despite being 18.4% faster than the dynamic approach, is more expensive from a cost point of view
because of the continuous usage of idle resources.

Figure 16 - Elasticity graph

Table 4 compiles the execution time and speedup of running the presented experiment on both
configurations limiting the maximum number of virtual machines that the system could use. As it
can be observed, the speedup is moderate because the application does not offer a high degree of
parallelism (Figure 16). Despite this, COMPSs reaches good performance running on an on-demand
provided environment (with an average performance loss around 9.6%), with a mean serving time of
the Cloud middleware of about 120 seconds per VM. However, the speedup is not dramatically
penalized, and the resources management is generally improved by reducing the overall execution
costs.

#VMs #Cores Cloud

 Time Speedup

Grid

Time Speedup

1 4 02:00:21 1.00 01:46:9 1.00

2 8 01:00:47 1.98 00:53:23 1.97

EUBrazilOpenBio
FP7-288754

CNPq 590052/2011-0

EU-Brazil Open Data and Cloud Computing e-Infrastructure for Biodiversity

D4.3 – Infrastructure Enhancement and Optimisation Final Report
Page 28 of 41

4 16 00:33:52 3.55 00:31:06 3.38

8 32 00:25:16 4.76 00:18:03 5.82

10 40 00:23:57 5.02 00:19:32 5.38
Table 4 - Execution times of grid and cloud executions

3.2.3 openModeller Enhancements with HTCondor

Virtualization is a popular approach to increase resource utilisation, achieving computational
resource (memory, processing and storage) scalability while at the same time attempt to reduce
power consumption. On the other hand, the use of virtualization can incur performance overhead. As
well as highlighting the ability of the EUBrazilOpenBio architecture to incorporate condor managed
systems into the infrastructure, a number of objectives and configuration issues are being
investigated and evaluated: This OM service can be deployed dynamically; it will support elasticity
for on demand computing by being implemented in the cloud; cope with resource heterogeneity and
both physical and virtual machines. With this variety, a number of design options and configurations
have been studied.

The proposed architecture to realise the said objectives and support the operations of UCII is shown
in Figure 17. Two configurations of physical machines were used, on which HTCondor was
installed, to evaluate the infrastructure composed of virtual and real machines capable of executing
openModeller, in accordance with the submitted requests.

1. Host Type 1 (HT1)
• Dual processors: Intel Xeon CPU 3.06GHz with Cache size (L2): 512 KB
• Memory 2,5 GB DDR1 (266 MHz)
• Disks: 10K RPM SCSI

2. Host Type 2 (HT2)
• Dual hexacore processors: Intel Xeon CPU X5650 2.67GHz with Cache size (L3 per

processor): 12288 KB and Cache L2: 256 KB per core
• Memory 24 GB DDR3 (1333 MHz)
• Disks: SATA II 7200 RPM

Figure 17 - Current HTCondor Pool Configuration

EUBrazilOpenBio
FP7-288754

CNPq 590052/2011-0

EU-Brazil Open Data and Cloud Computing e-Infrastructure for Biodiversity

D4.3 – Infrastructure Enhancement and Optimisation Final Report
Page 29 of 41

Machines of Host Type 2, with virtualization support in hardware, were installed with CentOS 6.2
and KVM (Kernel-based Virtual Machine) to provide full virtualization for VMs running unmodified
CentOS Linux images. The data stores are used to hold the environmental layers.

Our HTCondor pool is comprised of a central manager and an arbitrary number of workers. This
pool can be composed by a set of virtual machines, which are initialized on demand, and also a set of
physical machines. Conceptually, the pool is a collection of resources (machines) and resource
requests (jobs). The role of HTCondor is to perform the match-making between the waiting requests
with available resources. Workers may join and leave the pool at any time but, while a member, send
periodic updates to the central manager, which is the centralised repository for information about the
state of the pool.

The central manager is implemented in a VM and hosts the openModeller Web Service (OMWS)
server. Currently, OM clients interact with the server using the standard OMWS API. The OMWS
responds to client requests by creating unique tickets (that maintains information regarding the
request) to solicit the execution of OM jobs or provides status information about the state of the
service, job or available OM algorithms.

An HTCondor Adaptor has been developed, as a UNIX service, to check the existence of new tickets
and translate them into Condor job description files that can be submitted to the central manager.
The HTCondor scheduler then submits the requested job to an idle worker or workers.

The HTCondor requires a submission file in which the execution environment of the pool is defined.
Currently, the HTCondor Adapter only defines job in the “Vanilla Universe”, which does not support
"checkpointing" capabilities and other interesting features. Therefore, the feasibility of using other
HTCondor universes will be evaluated, for example, the “Standard Universe” that allows
checkpointing but requires applications to linked with HTCondor specific libraries. In order to
deploy the new parallelised version of the OM projection stage, the HTCondor “Parallel Universe” is
required for the execution of MPI applications.

3.2.3.1 An Initial Evaluation
Three experiments are described here with the purpose to identify the advantages and pitfalls of the
underlying infrastructure. First, studies the effect on the execution time OM jobs when instantiating
multiple virtual machines on the same server while they execute distinct instances of openModeller.
The scenario was set on a HT2 machine with environmental layers being stored on the local disk and
each VM executing the om_console command with the ANN algorithm, i.e. all the three phases were
carried out (create model, test model and project model). This algorithm was chosen since it is one of
the most compute intensive7.

7 “Performance Profiling Report for the Ecological Niche Modelling Tool openModeller”, Version 1.0,
31/1/2013. Available at http://wiki.eubrazilopenbio.eu/index.php/Performance_Profiling_of_openModeller

EUBrazilOpenBio
FP7-288754

CNPq 590052/2011-0

EU-Brazil Open Data and Cloud Computing e-Infrastructure for Biodiversity

D4.3 – Infrastructure Enhancement and Optimisation Final Report
Page 30 of 41

Figure 18 - Average execution times for an increasing number of concurrent VMs

From Figure 18, one can see the performance loss (from 0.4% to 3.6%) with the increasing number
of VMs. The results are consistent with concurrent execution of openModeller directly on a HT2
machine, where 12 instances on the 12 cores incurred an 11% overhead. This degradation is more
due to the multiple accesses to data stored locally by the various VMs than to the overhead related to
the virtualized environment or the configuration of the physical machine.

In order to understand the particularities of a hybrid environment of virtual machines working
together with physical ones to execute openModeller, the following experiment considers the impact
of the location of data (environmental layers). Note that only one scenario was managed by
HTCondor. The goal here is to compare the impact of executing openModeller with data either on
the local disk or a remote server accessed by NFS, on real and virtualised machines. In this set of
experiments, only one instance of openModeller was executed using ANN as the modelling
algorithm via om_console.

Figure 19 – Average execution time of one instance of OpenModeller with the modelling algorithm ANN

Figure 19 reveals a small overhead (1.3%) for the execution of the experiment in a virtual machine
rather than directly on the physical hardware (based on comparing the running time of 1918.37
seconds of a single instance on a physical machine with that of 1943.37 seconds of the same instance
in a virtual machine). The overhead to submit the experiment through HTCondor is 39.73 seconds,
which is 2%, for this specific case. The overhead for a VM to access environmental data via NFS
rather than from the local disk is almost unnoticeable in this experiment.

EUBrazilOpenBio
FP7-288754

CNPq 590052/2011-0

EU-Brazil Open Data and Cloud Computing e-Infrastructure for Biodiversity

D4.3 – Infrastructure Enhancement and Optimisation Final Report
Page 31 of 41

Finally, we evaluated the possibility of keeping the openModeller executables in a single location, in
order to facilitate future updates. Unfortunately, this incurs a 19.7% overhead when using NFS with
the SYNC parameter (NFS servers normally run in SYNC mode, which means a block is actually
written to disk before informing the client that it has been written and allowing it to proceed). Using
the ASYNC option can bring performance benefits as a client does need to wait for the write to take
place. In this experiment, the improvement is slight; the overhead falls to 18.1% and thus remains
significant.

These results indicate that reads from data storage have an impact on performance and data locality
is important. However, given that both the openModeller tool and the environmental layers are
currently stored locally at each resource provider within the EUBrazilOpenBio infrastructure and are
subject to updates, there appears to be a need to identify a solution that would allow the distributed
copies to be synchronised to a master copy. One approach is to investigate the adoption of Usto.re to
facilitate the maintenance without prejudicing performance.

A test suite has been created as part of the EUBrazilOpenBio project to test the performance of an
openModeller Web Service (OMWS) instance, based on the expected use by the BVH. This
application is based on OMWS API v1.0 and uses occurrence points for a single species (Passiflora
luetzelburgii) to generate models with 5 different algorithms (Maxent, ENFA, one-class SVM,
Mahalanobis Distance and GARP BS). Models are generated for each algorithm to perform a 10-fold
cross validation with different combinations of occurrence points, then a final model is generated
with all points and projected. In this test suite, all model creations are independent, including the
final one. As seen before, both the model tests and projections depend on the creation of the
corresponding distribution.

The results of the execution of three scenarios under the management of HTCondor, are shown in
Figure 20, where the test suite was executed on:

1. only physical machines (PMs) of Host Type 1, all of them with two slots apart from one
experiment where one processor was used “1 PM (one slot)”;

2. only virtual machines (VMs) running on HT2 machines;
3. a combination of VMs and PMs.

The aim of this evaluation is to begin to identify bottlenecks when scaling up the heterogeneous
execution environment and identify where improvements will be required.

Figure 20 - Average execution time of one instance of openModeller with ANN as the modelling algorithm

EUBrazilOpenBio
FP7-288754

CNPq 590052/2011-0

EU-Brazil Open Data and Cloud Computing e-Infrastructure for Biodiversity

D4.3 – Infrastructure Enhancement and Optimisation Final Report
Page 32 of 41

One can observe that executing with 2 slots instead of one on a physical machine does not take
exactly half the time on one machine and a similar situation occurs when using VMs. This indicates
that there is some inefficiency in the system and this is confirmed by comparing times of 1PM (2
slots) with 1PM (no HTCondor). The latter is an OMWS running on a HT1 machine without
HTCondor. The 36% overhead is a reflection of the costs of HTCondor´s management and allocation
strategy. Although reasonable gains can be observed when incorporating more resources, the
identified inefficiencies need to be addressed for scalability. Given the existence of task
dependencies and tasks with large differences in execution, a task scheduler will be beneficial.

Initial work on a new HTCondor Adaptor has led to a 20% improvement on the results in Figure 20.
Current work is focusing on implementing workflow management with HTCondor´s meta-scheduler,
DAGMan, in order to support the proposed extension of the openModeller Web Service API. This
will allow the service to receive multi-stage/multi-parameter experiments (such as the test suite) as a
single request and have DAGMan orchestrate the execution in HTCondor, in a fashion similar to
COMPSs workflow. The HTCondor Adaptor will be modified to support OMWS+ and be
responsible for generating the job submission file, containing the description of tasks and their
dependencies, for DAGMan. DAGMan will then submit ready tasks with their respective job
submission requests to HTCondor.

3.2.4 openModeller Enhancements with EasyGrid AMS

There are two ways to improve the runtime of an ENM experiment with openModeller. One is to
execute the stages of an experiment (create model, test the model and project the model) in parallel
respecting the dependencies among them, as being investigated through the enhancements with
COMPSs and HTCondor. In addition, further improvements might be achievable by improving the
runtime of individual stages through parallelization. In either of these complementary approaches,
EasyGrid AMS can be employed to manage the parallel execution, i.e. both to execute a single
parallelised stage, or a complete ENM experiment. This latter possibility might be beneficial for
resources that cannot adopt COMPSs or HTCondor.

The results of openModeller profiling analysis8 identified the model projection stage, in general, to
be the most time consuming (except for two algorithms: GARP_BS and ANN) and for this reason,
om_project was selected to be parallelised. The projection stage uses a model (generated by
om_model with a chosen algorithm) to project the suitability of a given environmental scenario for a
given species. The result is an image representing the potential distribution of the selected species
within a chosen region. In principle, the parallelization of om_project is simple; the points within the
chosen region of interest can be partitioned into smaller subsets and distributed among the available
resources for evaluation by the model.

3.2.4.1 Implementation of a New Parallel version of om_project
The existing parallel implementation partitions the map into blocks of a fixed size, with sizeblock
points and each block distributed to worker processes, on demand. There are two extra processes:
one to divide and distribute the blocks and the other to hold the blocks of the map that have already
been projected. An analysis revealed an implementation detail that is important to the performance of
om_project, the obligation to output (write) the points of the projection map in sequence within the
image file, even though the calculation of the projection does not need to be done sequentially.
Given that the capacity of this second process is limited, this can lead to a number of periods of
synchronisation, which causes delays during execution since tasks dependencies are introduced
between blocks.

8 “Performance Profiling Report for the Ecological Niche Modelling Tool openModeller”, Version 1.0,
31/1/2013. Available at http://wiki.eubrazilopenbio.eu/index.php/Performance_Profiling_of_openModeller

EUBrazilOpenBio
FP7-288754

CNPq 590052/2011-0

EU-Brazil Open Data and Cloud Computing e-Infrastructure for Biodiversity

D4.3 – Infrastructure Enhancement and Optimisation Final Report
Page 33 of 41

A new parallel implementation solves this problem by modifying writing procedure for the image
file. Now only one extra process is used to divide and distribute tasks among worker processes and
hold the subsets of the map already projected. Actually, this new implementation is planned to be
extended with EasyGrid AMS which copes well with malleable bag-of-tasks applications.

Based on preliminary evaluations of the two parallel implementations, Figures 21 and 22 highlight
the reduction in the execution times for the projection stage for a few of the algorithms available in
openModeller, as the number of processors is increased from 1 to 24 (for this comparison, the degree
of parallelism is kept the same between implementations, thus the new algorithm requires one
processor less).

Figure 21 – Execution times (in seconds) obtained by the existing parallel version of om_project

Figure 22 – Execution times (in seconds) obtained by the new parallel version of om_project

0

2000

4000

6000

8000

BIOCLIM ENVSCORE GARP DG_GARP DG_GARP_BS

Projection Time - Original Implementation

p1

p4

p8

p12

p16

p24

0

2000

4000

6000

8000

BIOCLIM ENVSCORE GARP DG_GARP DG_GARP_BS

Projection time - New Implementation

p1

p3

p7

p11

p15

p23

EUBrazilOpenBio
FP7-288754

CNPq 590052/2011-0

EU-Brazil Open Data and Cloud Computing e-Infrastructure for Biodiversity

D4.3 – Infrastructure Enhancement and Optimisation Final Report
Page 34 of 41

Figure 23 – A comparison of speedups achieved by the parallel versions of om_project

In Figure 23, there are two sets of bars, for a given number of worker processes, that show the speed-
ups obtained by the original and new parallel implementations, respectively. Results show that the
new implementation is better than the original, although the speed-ups are still smaller than
expected, i.e., were not close to linear. For these algorithms, the new parallel implementation
achieves a speedup of between 8.2 and 15.1 while the original ranged from 6.5 to 10.5. Speed-ups
tend to improve as the execution time of the algorithms increase. However, these results are still
preliminary and further evaluations will be carried with all of the available OM modelling
algorithms.

3.2.4.2 EasyGrid AMS with Parallel om_project
The EasyGrid execution model suggests implementing parallel tasks with fine granularity. Fine
granularity provides a simpler procedure for migrating tasks when they need to be rescheduled and a
method of restarting processes in case of failure, unlike coarse granularity tasks which require the
implementation of complex and costly methods of process migration and checkpoint.

The new parallel implementation of om_project is a bag-of-tasks application whose task granularity
can be modified accordingly, during execution. The idea is to investigate how to automatically
define the ideal block size in order to balance data processing and I/O given a heterogeneous
execution environment. Thus, with the scheduling, fault tolerance and malleability features of the
EasyGrid AMS, the new om_project should be able to adapt better to system, dynamically taking
advantage of available or surplus processing capacity. Currently an initial implementation is being
tested with and without EasyGrid AMS. The auto-configuration features will be added after this
initial AMS version has been evaluated. In addition to exploiting parallelism through MPI, the
complementary use of threads and GPGPU accelerators by MPI tasks is also being investigated.

0

5

10

15

20

Original New Original New Original New Original New Original New

P4/P3 P8/P7 P12/P11 P16/P15 P24/P23

Speedups - Original versus New

BIOCLIM

ENVSCORE

GARP

DG_GARP

DG_GARP_BS

EUBrazilOpenBio
FP7-288754

CNPq 590052/2011-0

EU-Brazil Open Data and Cloud Computing e-Infrastructure for Biodiversity

D4.3 – Infrastructure Enhancement and Optimisation Final Report
Page 35 of 41

4 Future work
This section reports the plans for the deployment of the final production version of the infrastructure
with the enhancements and optimizations scheduled for each use case.

4.1 Future work in UC-I
As described in the section 3.1.2, the current architecture of the UC-I has only one cross-map web
service deployed in the system as an external service. The reason why there is only one service and
not multiples is because the cross-map web service is a kind of “stateful service”, in which for
example if a user imports a checklist into the system, the same instance needs to be used the next
time in order to access the imported checklist.

The problem of having only one instance could be overcome if the cross-map service is transformed
from stateful to stateless service. In other words, change it into a system that receives all the input
data it needs, executes it and saves the results without the need to be aware of previous executions.
To do that, we are planning to move the “state” of the service from the cross-map web service to the
cross-map enactment service, a service that runs inside the VRE. Another change required will be to
extend the cross-map web service in order to add extra methods. Methods that will allow a client
(e.g., Enactment service) to put all the required data into the execution resource in order to perform
the task/operation/job the user requests (import a checklist, run a cross-map or export results of
cross-map) and once the operation finishes, save its result into a storage (e.g. gCube Storage).

With this new approach the GUI will interact with the enactment service. The enactment service will
know the state of all the operations previously performed by the user and also it will know where the
files with the results of those operations are stored. The enactment service will ask the Experiment
Orchestration Service to allocate an execution resource, if none already exist, in which to run the
operation that the user requests. Once the execution resource is ready, the enactment service will
query the cross-map web service running on it to see if it has all the data needed for execute the
user’s operation, if not the enactment service will upload all the data required. Once all the data for
this operation is in the allocated execution resource, it can proceed to execute the operation. Because
the operations are asynchronous, the enactment service will query the cross-map web service to
check the progress of the operation. Once the operation finishes, the enactment service will copy the
results from the execution resource to storage (e.g., gCube Storage). After the execution is completed
the resource can if necessary be destroyed.

The first idea to implement this new architecture is to have an array of instances of the cross-map-ext
web services already deployed in the infrastructure as external services (lithci1,litchi2, …,litchiN).
Then the enactment service will simply query the information system to get the array with the URLs
of the different cross-map services and pick up one “randomly” or may be applying some
intelligence (e.g., use as favourite the previous execution resource assigned to the user).

Figure 24 shows how the deployment of these software components will look like:

EUBrazilOpenBio
FP7-288754

CNPq 590052/2011-0

EU-Brazil Open Data and Cloud Computing e-Infrastructure for Biodiversity

D4.3 – Infrastructure Enhancement and Optimisation Final Report
Page 36 of 41

Figure 24 – Improved architecture for UCI

One further improvement could be to prepare the execution resources dynamically, so we don’t need
to have a pre-configured array of machines with the cross-map service on them.

4.2 Future developments for UC-II
Further possible improvements of the openModeller application are currently being evaluated and
will continue to be part of the effort for the rest of the project. It has been determined that the
projection phase of the modelling process is a potential candidate for optimization. Some parallel
MPI program code is present in current versions of openModeller, but not yet useable on a
productive scale. To improve the software and also to enhance the performance of the projection
phase, several activities are on-going. An updated MPI version is being developed, alongside an
implementation that makes use of the EasyGrid AMS MPI library from UFF. Further, two
multiprocessor versions of the program, multithreading via openMP and computations on CUDA
enabled graphics cards, are being considered. The possible integration of novel programming models
like OmpSs into these solutions to help harness more performance, is being evaluated. The results of
these investigations will be added to the existing profiling documents.

Additionally, although OMWS+ is fully functional, it is still being discussed and may be subject to
changes until the end of the project. In that case changes won't affect the existing functionality or the
user interfaces.

4.3 Identity Federations
As described in the previous version of this report [4], the project continues to investigate how the
EUBrazilOpenBio e-Infrastructure might support and facilitate access by a large number of
biodiversity scientists from around the world. The proposal is to harness federated national

EUBrazilOpenBio
FP7-288754

CNPq 590052/2011-0

EU-Brazil Open Data and Cloud Computing e-Infrastructure for Biodiversity

D4.3 – Infrastructure Enhancement and Optimisation Final Report
Page 37 of 41

Authentication and Authorisation Infrastructures (AAI) to provide single sign-on through recognised
Identity Providers (IdPs). The eduGAIN service aims to interconnect identity federations around the
world, simplifying access to content, services and resources for the global research and education
community. In our case, the EUBrazilOpenBio e-Infrastructure would become a Service Provider
(SP) to this community.

To date, the project chose to first focus on addressing the other technical aspects required to develop
and deploy a quality service to the biodiversity scientists. As the infrastructure is now becoming
more mature and stable, the focus of the project is turning to dissemination and with this comes the
need to address the issue of facilitated access in order maintain a group of active users that will help
sustain the EUBrazilOpenBio services. RNP manages the Brazilian Academic Federation, of which
UFF is now a member, and has established a relationship with eduGAIN. In the remaining period of
the project, an option will be made available to allow users from institutions that belong to AAIs that
are members of eduGAIN to access EUBrazilOpenBio e-Infrastructure with their federated
credentials.

BSC is now part of the EGI Federated Cloud Task Force, whose aim is to provide an interoperable
cloud testbed with resources contributed by several providers. AAI issues are being addressed and
solutions implemented in the components. BSC provides its programming framework and
middleware (COMPSs and the PMES) to allow on the one hand, other communities to access the
EUBrazilOpenBio e-Infrastructure and, on the other, EUBrazilOpenBio users access to a wider set of
computational resources.

EUBrazilOpenBio
FP7-288754

CNPq 590052/2011-0

EU-Brazil Open Data and Cloud Computing e-Infrastructure for Biodiversity

D4.3 – Infrastructure Enhancement and Optimisation Final Report
Page 38 of 41

5 Conclusions
This report provides a high-level picture of the EUBrazilOpenBio infrastructure, describing how the
components fit together and how they have been used in order to optimize the porting of the project
use cases.

The developments described here are based (i) on an analysis described in the previous report [4], (ii)
on the scenario requirements [6], and (iii) on a profiling study aimed at identifying the possible
enhancements of the use cases and the selection of technologies that implements the
EUBrazilOpenBio production e-infrastructure. These components include data management,
programming models, execution managers and a set of tools offered by gCube.

Cloud platforms and cluster resources have been used as computational back-ends in order to
evaluate the best option for the scenarios.

An update of this document is foreseen at the end of the project in order to provide a final picture of
the infrastructure deployment and of the use cases implementations and present the refinements and
modifications that have been made to reflect evolved requirements based on feedback received by
the users during the evaluation phase.

EUBrazilOpenBio
FP7-288754

CNPq 590052/2011-0

EU-Brazil Open Data and Cloud Computing e-Infrastructure for Biodiversity

D4.3 – Infrastructure Enhancement and Optimisation Final Report
Page 39 of 41

6 Acronyms and Abbreviations

Acronym Definition

AMS Application Management System

ANN Artificial Neural Networks

API Application Programming Interface

AWS Amazon Web Services

BES Basic Execution Service

BVH Brazilian Virtual Herbarium of Flora and Fungi

CNPq National Council for Scientific and Technological Development of Brazil

CoL Catalogue of Life

COMPSs COMP Superscalar

DAGMan Directed Acyclic Graph Manager

DAO Data Access Object

EC European Commission

ENFA Ecological Niche Factor Analysis

ENM Ecological Niche Modelling

EOS Experiment Orchestrator Service

GB Governance Board

GBIF Global Biodiversity Information Facility

gHNs gCube Hosting Nodes

GUI Graphical User Interface

JRO Job Resources Optimizer

JSDL Job Submission Description Language

MPI Message Passing Interface

NFS Network File System

OCCI Open Cloud Computing Interface

OGF Open Grid Forum

OMWS openModeller Web Service

PMES Programming Model Enactment Service

REST Representational state transfer

ROC Receiver Operating Characteristic

SOAP Simple Object Access Protocol

SQL Structured Query Language

SVM Support Vector Machines

ToC Table of Contents

UUID Universally Unique IDentifier

EUBrazilOpenBio
FP7-288754

CNPq 590052/2011-0

EU-Brazil Open Data and Cloud Computing e-Infrastructure for Biodiversity

D4.3 – Infrastructure Enhancement and Optimisation Final Report
Page 40 of 41

VENUS-C Virtual multidisciplinary Environments Using Cloud infrastructure project

VM Virtual Machine

VRE Virtual Research Environment

WP Work Package

XML Extensible Markup Language

EUBrazilOpenBio
FP7-288754

CNPq 590052/2011-0

EU-Brazil Open Data and Cloud Computing e-Infrastructure for Biodiversity

D4.3 – Infrastructure Enhancement and Optimisation Final Report
Page 41 of 41

References
[1]. C. Boeres, V. Rebello, L. Candela. Infrastructure Set-up, Planning, and Coordination. D4.1

EUBrazilOpenBio Project Deliverable. January 2012.
[2]. L. Candela, V. Rebello. Development Planning and Coordination. D3.1 EUBrazilOpenBio

Project Deliverable. January 2012.
[3]. L. Candela, V. Rebello. EUBrazilOpenBio Software Platform Core. D3.2 EUBrazilOpenBio

Project Deliverable. April 2012.
[4]. A. Nascimento, A. Fonseca, D. Lezzi, E. Torres, I. Blanquer, R. Amaral, R. De Giovanni, V.

Garcia, V. Rebello. Infrastructure Enhancement and Optimisation Report. D4.2
EUBrazilOpenBio Project Deliverable. June 2012.

[5]. V. Rebello, R. De Giovanni, L. Candela. Niche Modelling Services. D3.3 EUBrazilOpenBio
Project Deliverable. April 2012.

[6]. E. Torres, I. Blanquer, L. Candela, R. De Giovanni. Use Case Requirements Specifications.
D2.1 EUBrazilOpenBio Project Deliverable. January 2012.

