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Abstract— A feasibility study where small wireless devices
are used to classify some typical user’s positions in the bed is
presented. Wearable wireless low-cost commercial transceivers
operating at 2.4 GHz are supposed to be widely deployed in
indoor settings and on people’s bodies in tomorrow’s pervasive
computing environments. The key idea of this work is to leverage
their presence by collecting the received signal strength (RSS)
measured among fixed devices, deployed in the environment, and
the wearable one. The RSS measurements are used to classify
a set of user’s positions in the bed, monitoring the activities of
patients unable to make the desirable bodily movements. The
collected data are classified using both Support Vector Machine
and K-Nearest Neighbour methods, in order to recognize the
different user’s position, and thus supporting the bedsores issue.

Index Terms— Classification of user’s positions in the bed,
K-Nearest Neighbour (K-NN), Received Signal Strength (RSS),
Support Vector Machine (SVM), bedsores prevention.

I. INTRODUCTION

The last few years have seen research development in the
field of Pervasive Systems. These researches was focused
on network infrastructures (e.g. UMTS, WiFi networks), dis-
tributed software architectures (e.g. distributed middleware)
as well as context information models to support pervasive
computing applications in smart environments. The pervasive
smart environments leveraging smart devices have the ability
to support user’s daily life activities through efficient context
evaluation systems that support activities for different users
requirements. At the same time application adaptation for these
activities is also required in response to changes from the en-
vironment. Current research focused in pervasive systems has
shifted towards user activity recognition based on their daily
lifestyle activities that has tremendous potential to support
pervasive applications, especially in the health care domain.
Activity recognition is an important issue for healthcare since
sufficient information about patients is vital for an effective
care. Monitoring the activities of patients enables hospital
staffs to provide specialized care. For example, in a pervasive
hospital, a nurse can use a mobile activity monitor to provide
immediate care for patients in need of assistance or in risky
situations [1]. Also in home environment, due to decline
in both physical and mental abilities, some elderly are not
allowed to leave the bed without assistance. An elderly person
may suffer problems related to falls when they are trying to
get out or move from the bed without caregiver attendance.
On the other hand, they are often unable to make the desirable
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bodily movements and repositioning that are critical for blood
circulation and relieving of prolonged pressure over the body.
Thus two critical conditions, namely bedsores [2] and bed-side
falls [3] commonly occur among elderly persons due to lack
of desirable nursing care and immediate attention. For these
reasons, continuous observation of the patients is necessary
in order to prevent the above mentioned adverse effects.
Position recognition for elderly persons can support pressure
ulcer prevention in two ways. Firstly, self-movements can be
monitored in order to support risk assessment, thus it may be
useful to make prognostications for bedsores. Secondly, it can
help the caregiver to decide the care program of the elderly
patients, since grasp the frequency of the posture changes and
assess the need of the care accurately, decreases the burden of
the caregiver to prevent the bed sore. In [4] the authors propose
the use of pressure sensing to monitor context and behavior
of subjects on the bed. In fact, the pressure evidences can
assist in determining the elderly persons position. Instead, in
this work we verified that the use of a generic and not specific
wireless devices (such as sensors) can be exploited to infer the
elderly position. Usually, the elderly person are monitored with
wearable sensor devices that communicate through a Wireless
Sensor Network (WSN) the medical data (such as pressure,
heartbeat, etc...) to a server. We leverage the Receive Signal
Strength (RSS) exchanged between the wearable sensor and
the WSN to infer the patients position. Since the RSS does
not require a special or a sophisticated hardware and it has
become a standard feature in most of the wireless devices,
the proposed technique is simple and minimally invasive. A
wide variety of techniques and algorithms are found in the
literature to classify measurements for posture and movement
recognition. Most of them are based on traces collected using
accelerometers and gyroscopes. Techniques range from feed-
forward back propagation neural networks [5] to discrete
wavelet transforms [6], support vector machine (SVM) tech-
niques [7], [8] and hidden Markov models [9]. In this paper
Support Vector Machine (SVM) and K-Nearest Neighbour (K-
NN) classification techniques were implemented to recognize
different activities, due to their success in many classification
problems [7], [8]. Our purpose is not to present a finely
tuned and well-engineered algorithm, but to show that standard
classification methods have the potential to solve the problem
with acceptable accuracy.

II. MOTIVATIONS

Nursing home requires a caregiver that ideally observes the
elderly around the clock to prevent bedsores. The caregivers
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have to provide an high degree of surveillance and attendance
to the elderly all the time. Moreover, the knowledge and
personality of caregivers affect the quality of nursing care.
Lack of timely care and insufficient preventive measures taken
by human caregivers leads to unfortunate consequences to be
suffered by the elderly and also indirectly affects their family
members. This can lead to further escalation in the already
mounting healthcare costs for the government, and degradation
of Quality of Life (QoL) for the elderly. The bedsores can be
mainly caused due to unrelieved or constantly applied pressure
over bony and bedsore-prone areas of the body. Bedsores are
regarded as one of the serious diseases and take a long time to
completely heal [10]. Sometimes, the damage is so huge that
a surgery is needed to recovery the QoL, with the unavoidable
healthcare costs for the government as well as the sufferance
by the elderly and by their family members. The most widely
accepted ways of preventing bedsores is to keep patients clean
and dry. This means removing soiled clothing and bedding as
soon as feasible and bathing patients regularly. Additionally,
caregivers must actively turn the patients who have limited
mobility on a regular basis (every 2 h) to avoid unrelieved
pressure from forming on the body.

In this work we propose a system able to automatically
assess the bedsore risk, and able to help the caregiver to decide
the care program and thus increase the quality of nursing care.

III. THE PROPOSED SOLUTION

The goal of our work is to infer the elderly position in
the bed, without using an ad-hoc or sophisticated hardware.
In fact, we suppose that the elderly/patient will have on him
wireless devices able to monitoring (i.e. pressure, heartbeat,
etc...) and to communicate with a server medical data. We
propose to leverage the Receive Signal Strength (RSS) trans-
mitted from the wireless device to the server, in order to infer
the patient bed position. By doing so, we would be able to
support the bedsores prevention, alerting the caregivers if the
position of the patient keeps fixed for a long time, and tailoring
the interventions to the patient’s current needs. In the following
we will describe the equipment architecture, and the proposed
system.

A. Experiment setup

In order to investigate how the RSS exchanged between
wireless devices can be used to infer the elderly position in the
bed, we test our systems by using a Wireless Sensor Network
composed by Crossbow IRIS transceivers [11] operating at
2.4 GHz (ISM band) according to the IEEE 802.15.4 protocol
[12]. The sensors include an Atmel Atmega1281 microcon-
troller, 128 KiB flash memory to store the executable code,
512 KiB serial (slow) flash memory to store data, 8 KiB RAM.
The transceiver is powered by two AA batteries and draws 8
mA in active mode plus 17 mA in continuous Tx mode at
max power (3 dBm) and 16 mA in Rx mode. The antenna
is a 1/4 wave monopole. Measurements were performed in a
single bed by two different persons, a 1.68m height and 63 kg
weight female (hereafter user A), and a 1.78m height and 95
kg weight male (hereafter user B). Finally, the environment

Fig. 1: Setup environment, composed by the bed, wardrobe,
nightstands and a dresser.

chosen to test the proposed solution is a typically bedroom
with wardrobe, nightstands and a dresser (Figure 1). Three
fixed sensors are placed on the environment as highlighted in
Fig. 1, two sensors were placed at about 55 cm height (S1 and
S2), while the last one (namely S3) was placed on the dresser
at about 85 cm height. The users wear a mobile sensor that
was placed on the breast.

B. Bed positions

The proposed system is composed by a sensor node placed
on the breast of the patient and by a fixed off-body motes
connected to a server. The on-body mote emulates a more
general wireless monitoring device that periodically transmit
the sampled health data to a server with a fixed power. The
receiving motes sample the received beacon, estimate the RSS
and send it to the server, that processes the measures. The bed
position in the bed has been inferred through a classification
procedure, that assigns a given object to a given number of
classes. The bed positions we take into account in this work are
summarized in Table I. We conducted a series of experiments
(fifty) that consist on cyclical repeat all the bed positions in
Table I. The single bed position are held at least 10 seconds,
and the fifty repetitions, for both volunteers, were performed
in different days to verify the experiment repeatability. The
sampling frequency should be chosen considering on one hand
the computing constraints and networking overhead, which
are both directly responsible for power consumption in the
sensors, and on the other hand RSS waveform reconstruction
accuracy. Given the relatively slow motion, it was possible to
set the sampling rate to a no compromise value of 8 Hz.

C. Classification methods

Classification is a procedure that assigns a given object
to a given number of classes. A classifier is trained using
a training dataset where the class of each object is known.
After training, the classifier should be able to assign a new
object to its right class: in the testing phase the classifier is
applied to a testing dataset. By comparing the classifications
made on the testing dataset, the performance of the classifier is
evaluated. In our case, each bedside position (a class) produced
three traces (one for each receiver, S1, S2, and S3), each
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TABLE I: Schematic representation of the considered positions

Prone - Position 1 Left Lateral - Position 2 Supine - Position 3 Right Lateral - Position 4 30◦Lateral - Position 5

lie on their bellies with
head turned to the side

sleep on left side with
both arms down

lie on their backs with
arms up or down

sleep on right side with
both arms down

the body is placed in a 30-
degree laterally inclined
position

composed of 80 RSS samples. Each triple-traces is an object
to be classified. Most classifiers work in a feature space, which
is a multidimensional space where each object is represented
by a point. In the feature space, the coordinates of the point
are the values of the object’s features. A feature can be any
quantity that is significant for the object. Usually, features are
normalized, so that all points lie in the unity hypercube of
the feature space. The most important step in classification
problems is the choice of relevant features. The number of
features should be as low as possible to avoid overfitting
and reduce computational complexity. Their number should
be sufficient to distinguish the objects, namely to assign each
position to the right class. In our case, each object (a triple of
RSS traces) was identified by up to four features, as described
in the next section. The specific features extracted from the
RSS traces were chosen using Weka, a collection of tools
for data pre-processing, classification, clustering and more
[13]. Weka was also used to compare the performance of
two different classifiers working in the same feature space;
K-Nearest Neighbour (K-NN) and Support Vector Machine
(SVM). The first is a supervised learning algorithm where new
objects are classified based on a voting criteria: the K nearest
objects from the training set are considered, and the new object
is assigned the class of the majority of those. The training
phase of the K-NN algorithm consists in storing the features
and the class label of the training objects. In the classification
phase, an unlabelled object is classified by assigning the most
frequent label among those of the K training samples nearest
to it. Various distance metrics can be used, the Euclidean
distance being the most common. In this work we used the
most basic settings for the algorithm: Euclidean distance and
K set to 1. This means that the class label chosen was the
same as the one of the closest training object. The latter
is a sophisticated learning technique that can deliver good
detection and classification performance. In its basic form
SVM is a binary linear classifier, meaning that it assumes
linear separability of two classes of data and attempts to find
a hyperplane in the feature space separating the data points
of the two classes. The optimum separation is achieved by
the hyperplane that maximizes its distance from the marginal
data points on each side (the support vectors), that is the
maximum-margin hyperplane. Computation of the hyperplane
can be made using quadratic programming, a computationally
efficient optimization technique. The first improvement on the
basic form of the SVM is to account for data sets that can not
be clearly separated by a hyperplane, by using soft margins.

This means that the algorithm chooses a trade-off between a
large margin and the possibility of some points being mis-
classified. The second improvement, which makes the method
so powerful, is to map the non linearly separable classes into
a high dimensional feature space where the classes become
linearly separable using a non-linear kernel function [14],
[15]. What makes this technique computationally efficient is
that, by choosing an appropriate kernel function, quadratic
programming can still be applied [14], [15]. In this work, the
classical Pearson kernel function was chosen as one of the
best performers. Binary classifiers can be combined to solve
multiclass problems. An one-against-one approach was used to
tackle the multiclass classification problem. The classification
is made by a max-wins voting strategy. A specific classifier
is trained for every pair of classes (in our case a class was
associated to a specific position). For a test sequence, each
classifier assigns one vote, and the object is assigned to the
class with the highest number of votes. For both classification
methods, classification performance was computed by using
a 10-fold cross-validation technique. An object set (a triplet
of traces, for each position) was randomly subdivided into 10
equal-sized partitions: 9 of them were used as the training
dataset and the last one was used as the testing dataset. The
same procedure was repeated 10 times, until each partition was
used for testing. In this way, each object was used exactly
once for testing. The performance results will be evaluated
measuring the error rate i.e., the number of misclassifications
divided by the total number of trials, and the true positive
(TP), and the false positive (FP) rates. As highlighted in table
II, for a given Position P, true positive rate is the correct
classifications with respect to the total number of objects
(i.e., the sensitivity), while false positive rate is the erroneous
position classification with respect to the number of times the
algorithm chooses P (i.e., one minus the positive predictive
value).

TABLE II: Relationships among terms

Condition
Px Other Po-

sitions
Test
Outcome

Px True
Positive

False
Positive

FP rate = 1−∑
TP∑

TP+
∑

FP

Other Po-
sitions

False
Negative

True
Negative

TP rate =∑
TP∑

TP+
∑

FN



4

0 4 8 12 16 20 24 28 32 36 40 44 48 52
0

5

10

15

20

25

30

35

40

Time [minutes]

RS
S

(a)

0 4 8 12 16 20 24 28 32 36 40 44 48 52
10

15

20

25

30

35

40

Time [minutes]

RS
S

(b)

0 4 8 12 16 20 24 28 32 36 40 44 48 52
0

5

10

15

20

25

30

Time [minutes]

RS
S

(c)

Fig. 2: Samples of RSS traces of the five different bed position
estimated from sensors a) S1, b) S2, and c) S3.

IV. RESULTS AND DISCUSSIONS

A. Preliminary RSS traces analysis

Figure 2 presents an example of typical RSS 40 minutes-
registrations for the bed positions. The variations between RSS
traces relevant to different user position are clearly apparent.
In particular, the RSS values when S3 is used for the left and
right lateral positions are quite similar, as well as the prone and
supine position for S2. For this reason, exploiting more sensors
and/or more RSS features we can increase the classification
performance, distinguishing the different user positions. In the
following, we will describe the features extracted from the
RSS traces in order to classify the user position and we will
show the obtained performance.

B. Feature extraction

The first step of the classification procedure was to identify
a limited number of features that act as the ”fingerprint” of a
trace. An initial large set of possible features was defined, from
which the best performers were chosen using the feature se-
lection tools provided by Weka. In the set of possible features
we considered both time-independent and time-series based
statistics. As far as time-independent statistics are concerned,
the ones involving only one transceiver (either S1, S2 or S3)

were: mean value µ, standard deviation σ, skewness, kurtosis.
The one involving two transceivers (chosen among S1, S2

and S3) was the cross-correlation ρ. As far as time-series
based statistics are concerned, we considered the level crossing
rate (LCR) at four different thresholds, firstly computed on
each devices separately, and secondly on the difference of
the devices’ RSS measurements. The LCR is a statistical
parameter that quantifies how often the signal crosses a given
threshold in the positive-going direction. The four thresholds
considered in this work were LCR1 at µ − 0.5σ, LCR2 at
µ+0.5σ, LCR3 at µ−σ and LCR4 at µ+σ. A features short list
was selected from the initial large set data in order to optimize
classification performance. If two of the three transceivers are
used, the list of features includes two mean values among µ1,
µ2, or µ3, and two standard deviations σ1, σ2, or σ3. If only
one sensor is used, the feature list includes the mean value
µ, the standard deviation σ, LCR2 and LCR4. An example
of how some features are distributed, changing the number of
exploited sensors, is shown in Fig. 3. As shown in Fig. 3a,
exploiting only one sensor and hence LCR1, µ, and σ, the
Position 1, and 3 are well separated from Position 2 and 4,
which means that Positions 1 and 3 can be well recognized.
Whereas Position 2 and 4 are more difficult to identify and
may be confused each other. Instead, when we chose to exploit
all the three sensors and µ1, µ2, and µ3, Fig. 3b shows that
all the Positions can be easily recognized since the features
are well distributed.

C. Experimental results

Performance of the proposed system is measured in terms
of error rate or, equivalently, of matching rate (i.e., its com-
plementary) and in terms of TP and FP rates.

Classification. Figure 4a shows the error rate using only
sensor S3 as a function of the number of features, for both
persons (users A and B) and both SVM and K-NN algorithms.
We chose the sensor S3 since it did not get neither the best
nor worst performances. Firstly, one feature was considered
(µ3) achieving about 80% of matching rate for both users and
both algorithms. The matching rate increases with the number
of features, as expected. In fact, when using four features (µ3,
σ3, LCR2, and LCR4) 90% matching rates were achieved.
In this case the use of LCR4 does not significantly improve
the performance. Performance in terms of error rate shown
in Fig. 4a is better when used K-NN algorithms instead of
SVN one. Fig. 4b shows the TP and the FP rates, considering
sensor S3, user A, both algorithms, and only one features (µ3).
Position 1 exhibited 100% TP and 0% FP, Position 2 was
classified with 61% TP and 11% FP, Position 3 was classified
with 100% TP and 0% FP, Position 4 was classified with
52% TP and 10% FP, and finally Position 5 was classified
with 98% TP and 1% FP ,when the K-NN algorithm was
chosen. Position 2 (left lateral) together with Position 4 (right
lateral) presented the highest value of FP, which means that it
was the most often misclassified one. In fact, as we will see
later these two position are misclassified each other, i.e. the
Position 4 is classified as 2 and vice-versa. Moreover, Position
1 (prone) and Position 3 (supine) had the highest value of
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number of features of sensor S3, evaluated for both users A and B; the features considered were µ3, σ3, LCR2, and LCR4, b)
shows True Positive and False Positive Rates for each bed position, user A, one feature of the sensor S3 (µ3), c) shows the
error rate as a function of the number of features using the K-NN algorithm for each sensor, user A, d) shows True Positive
and False Positive Rates for each bed position using K-NN algorithm for each sensor, user A, four features (µ, σ, LCR1, and
LCR4).

TP, making them the most correctly recognized movements.
When the SVM algorithm was used, Positions 1, 3, and 5
were the most correctly recognized movement, while Position
2 was the most often misclassified one. In order to evaluate
which transceiver performs better, the performance of the K-
NN algorithm for the A user is shown (SVM performance
being similar for both users). Fig. 4c shows the classification
error rate for A user, for each sensor S1, S2, and S3 as a
function of the number of features. The features considered
were µ, σ, LCR1, and LCR4 for each sensor. Sensor S1

exhibits better performance, probably since it experienced
greater RSS variations with respect to the other sensors, and
hence the algorithm is able to better distinguishes the various
positions. Fig. 4d shows TP and FP rates for user A using
four features (µ, σ, LCR1 and LCR4) of sensor S1, S2, and
S3, using K-NN classification algorithm. Positions 1 and 3
were always recognized when using K-NN (100% TP) and was
rarely confused with other positions (about 2% FP regarding
the Position 3) by leveraging the RSS from S1 or S3. Position
2 shows 100% TP and 0% FP when using S2, while Position
4 was classified with 84% and 96% TP, 4% and 0.5% FP
by using S3 and S1, respectively. Concluding, using only one

sensor device, the better performance are achieved by using the
sensor S1, probably because is more in Line of Sight region
(LOS) with respect to the other cases and it is more close to
the mobile device. In this case 3 features (µ1, σ1, and LCR11)
is sufficient, and the choice of the classification algorithms is
not critical. If we want to reach a 100% of matching rate for
all the considered positions, the conducted experiments show
that at least two of three sensors should be selected.
Finally, confusion matrices for the analyzed classification
problem are presented in Fig. 5. Confusion matrices are a
compact graphical representation where each row of the matrix
corresponds to the position assigned by the classifier (predicted
class), while each column represents the position performed
(actual class). A classification method with ideal performance
will only have bars on the main diagonal of the matrix. The
more bars on the non-diagonal cells are high, the worst the
classification performance. As far as the SVM algorithm is
concerned, and only one feature case (µ3) there was moderate
confusion between Position 2 and Position 4. In fact, 49%
Position 2 (left lateral) was misclassified as Position 4 (right
lateral), and 31% as position 5, while 20% Position 4 was
misclassified as Position 2. On the other hand, Position 1, 3,
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and 5 were well recognized (100% of matching rate) even
with one features only. As expected, the greater the number
of features, the less the error rate, except for the Position 4
that also using four features was misclassified in the 50% of
cases with Position 2. The K-NN algorithm performs better, in
fact only 15% of cases was misclassified with the Position 2
(left lateral). This means that the sensor 3 didn’t recognize the
right position with respect to the left position. This behavior
is due to the location of sensor 3 that was near to the right
corner of the room at the end of the bed. Sensor 1 performs
better with respect the other sensors, in fact by leveraging 2
features it achieved the 100% matching rate (Fig. 4c).

Movement detection. As shown by the previous analysis,
passing from a LOS to a non-LOS condition (between fixed
and mobile sensor) is beneficial, as it has the potential of
amplifying the RSS variations during the movement. More-
over, complete lack of LOS, due to the user position, may be
detrimental, because it has potential for lowering the overall
strength of received signal and its information content. These
considerations, however, help us on recognizing not only the
users position, but also to correctly identify if the user change
its position (as required to support risk assessment and to plan
the caregivers interventions). Figure 6a shows the error rate on
recognizing if the user moves from one position to an other,
as a function of the number of features (µ, σ, LCR1, and
LCR4). As expected from the previous analysis, S1 performs
better (100% of matching rate with one or two features
exploited) with respect to the other sensors due to its vicinity
and LOS condition with the mobile sensor. Moreover, the K-
NN algorithm performs about 10% better than the SVM one.
In order to support risk assessment, the FP analysis is essential.
In fact, if the system recognize the immobility of the user
while the user has moved, the number of the needed caregiver

interventions will be overestimated. On the contrary, i.e., the
system recognize a motion of the patient while he/she was
motionless, the number of the needed caregiver interventions
will be underestimated. Figure 6a shows this analysis reporting
the false positive rates as a function of the number of exploited
features when the K-NN algorithm, the A user, and the sensor
S3 is used. Leveraging three features the proposed method
reaches only 2% FP when the motion is considered, while 8%
FP for the motionless case.

V. PRACTICAL USAGE

Objective of this work is to identify the elderly position
in order to support pressure ulcer prevention. The proposed
system reaches this goal in two ways; i) analyzing the self-
movements in order to make prognostications for bedsores and
plan the caregivers interventions, and ii) decreasing the burden
of the caregiver to prevent the bedsore. We reach this goal
by only leveraging the RSS measurements already available
on small wireless communication devices. We envision that
these devices are going to be extensively deployed in indoor
environments in the near future, for communication and con-
trol purposes. The idea is to exploit the ubiquity of wireless
sensors to obtain measurements ”for free”. The outcome of
this feasibility study is twofold. Firstly, it is possible to
recognize movements without the need of ad hoc sensors,
provided that wireless transceivers are already installed on
the human body for medical purposes. Secondly, if dedicated
sensors are already installed for this purpose, their results can
be complemented with RSS measurements, thus potentially
improving accuracy and reliability.
Although this study has been conducted on only two healthy
persons, the results can be generalized to sick elderly patients.
In fact, we proposed a system that needs a training phase, this
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Fig. 6: Movement detection (motion or motionless) using SVM
and K-NN: a) shows the error rate as a function of the number
of features using the both algorithms for each sensor, user A,
b) shows the false positive rates for each position as a function
of the number of the exploited features, using K-NN algorithm,
S3, and user A.

means that the system dynamically adapts to the environments
and to the characteristics of the patients. Moreover, this work
shows a clear difference among RSS behaviors for each bed
position (Fig. 2 and 3), hence classification techniques are
suitable in this context.
Like all the systems that use classification methods, the
performance depend on the number of classes (i.e. the number
of positions to recognize). Generally speaking, increasing the
number of classes, the matching rate decreases. This effect can
be overcome increasing the number of the deployed sensors.
In fact, in this work we showed that using together features
coming from two different devices, the 100% of matching rate
is reached.

VI. CONCLUSIONS

The automatic recognition of the patient’s position, is
essential to support the bedsores prevention: measurements
showed that it is possible to use low-cost transceivers to clas-
sify the patient’s positions. Good classification performance
can be achieved by using only the received signal strength
measurements relevant to two wireless sensors (a wearable
and a fixed one). Moreover, the performance increases if, as
required by the proposed system, we concentrate only on the
movement’s detection instead of on its classification. A simple
K-NN classifier performs better than a more sophisticated
SVM classifier. The features considered for classification are
computationally inexpensive and only a few (three to four)
were sufficient to obtain a good identification accuracy, even

for relatively similar positions. Our analysis suggests to place a
fixed sensor close to the patient (as on the nightstand) in order
to guarantee the LOS condition and obtain 100% of matching
rate.
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