
RUBICON
RUBICON Robotic UBiquitous COgnitive Network
Project No.: 269914

D1.3.2 – Final Version of the
Communication Layer

Editor: Mauro Dragone UCD

Contributor(s): Claudio Gennaro CNR
Claudio Vairo CNR
Alessandro Saffiotti ORU

Dissemination level

X PU = Public

PP = Restricted to other programme participants (including the Commission Services)

RE = Restricted to a group specified by the consortium (including the Commission Services)

CO = Confidential, only for members of the consortium (including the Commission Services)

c© Copyright RUBICON - All rights reserved

RUBICON D1.3.2 Final Version of the Communication Layer RUBICON: Project No.: 269914

Issue Date 19/05/2013
Deliverable Number D1.3.2
WP WP 1 - Communication Layer
Status Draft Working×Released Delivered to EC Approved by EC

Document history
V Date Author Description

0.1 13/02/2012 Mathias Broxvall Creation of LaTeX template
0.2 11/03/2013 Claudio Gennaro First draft
0.3 17/04/2013 Claudio Gennaro Second draft, data logger and rssi
0.4 18/04/2013 Mauro Dragone Web-based Testbed Utilities
0.5 19/04/2013 Mauro Dragone Conclusions
0.6 30/05/2013 Stefano Chessa Internal Review
1.0 7/05/2013 Kylie O’Brien QA
1.0 15/05/2013 Mauro Dragone Final Version

Disclamer The information in this document is provided as is and no guarantee or warranty is given that the
information is fit for any particular purpose. The user thereof uses the information at its sole risk and liability.

The document reflects only the author’s views and the Community is not liable for any use that may be made of
the information contained therein.

30/04/2013 Page 1

RUBICON D1.3.2 Final Version of the Communication Layer RUBICON: Project No.: 269914

Executive Summary

This deliverable (D1.3.2) takes place at the end of Task 1.3 Final version of Communication Layer at M24 of
RUBICON WP1. The goal of the RUBICON Communication Layer (CML) is to provide communication and
integration mechanisms built upon middleware for WSN/WSANs and robotic ecologies.

Together with D1.2 and D1.4, this deliverable presents a set of requirements and specifications supported by the
final version of the software, as delivered at M24.

In addition to this report with an appendix documenting the CML API, the main part of the deliverable consists of
the published software, available on the RUBICON code repository and later to be released on the project webpage.

This report furthermore summarizes, in brief, the state and the achievement of all tasks scheduled for M13-M24 of
RUBICON WP1.

30/04/2013 Page 2

RUBICON D1.3.2 Final Version of the Communication Layer RUBICON: Project No.: 269914

Contents

1 Introduction 6
1.1 Target audience . 6
1.2 Overview . 6
1.3 Overview of this document . 7

2 Requirements for the Final Version of the Communication Layer 8
2.1 Flexibility and Reusability [R1v2.FLEXIBILITY] . 8
2.2 Messages Concurrency Safety [R1v2.MSGSAFETY] . 8
2.3 Message Reliability [R1v2.RELIABILITY] . 9
2.4 Multi Island Support [R1v2.MULTIISLAND] . 9
2.5 Nonfunctional Requirements . 10

3 Development of the Second Version of the Communication Layer 12
3.1 Introduction . 12
3.2 Flexibility and Reusability [R1v2.FLEXIBILITY] . 12
3.3 Messages Concurrency Safety [R1v2.MSGSAFETY] . 14
3.4 Message Reliability [R1v2.RELIABILITY] . 15
3.5 Multi Island Support [R1v2.MULTIISLAND] . 15

4 The Data Logger [R1v2.DATALOG] 17
4.1 INTRODUCTION . 17
4.2 Features . 17
4.3 Architecture . 19
4.4 Implementation and Usage . 22
4.5 Accessing the Software . 23

5 RSSI Support [R1v2.RSSI] 24

6 Web-based Testbed Utilities [R1v2.TESTBED] 26
6.1 Introduction . 26
6.2 Design . 27
6.3 Accessing the Software . 28

7 Installing and Using the Communication Layer (NesC and Java version) 30
7.1 Accessing the software . 30
7.2 Installation of the Communication Layer . 31

30/04/2013 Page 3

RUBICON D1.3.2 Final Version of the Communication Layer RUBICON: Project No.: 269914

7.3 Overview of the New API of Connectionless Component . 32

8 Conclusions 36
8.1 Impact . 37

9 Appendix A 39
9.1 Private APIs and main components of the Communication Layer 39
9.2 Public APIs of the Communication Layer . 45

Figures

3.1 The send and receive operations of the Connectionless component of the first version of the Com-
munication Layer. 14

3.2 The send and receive operations of the Connectionless component of the final version of the Com-
munication Layer. 14

3.3 The transmission of acknowledgement messages by the Ack component introduced in the final
version of the Communication Layer. 15

4.1 The topology of the data logger. 18
4.2 Screenshot of the data logger GUI and data sampling . 20
4.3 The Entity-Relationship diagram of the database. 21

6.1 Architecture of the Web-based testbed. 27
6.2 Snapshot from the Web-based interface used to access the testbed programing utilities described

in Chapter 6. 28

30/04/2013 Page 4

RUBICON D1.3.2 Final Version of the Communication Layer RUBICON: Project No.: 269914

Abbreviations
API Application Programming Interface
CML Communication Layer
MAC Media Access Control
PEIS Physically Embedded Intelligent System
ROS Robotic Operating System
RUBICON Robotic UBIquitous COgnitive Network
SPP Serial Port Profile
SW Software
UML Unified Modeling Language
USB Universal Serial Bus
WSN Wireless Sensor Network
WSAN Wireless Sensor and Actuator Network

30/04/2013 Page 5

RUBICON D1.3.2 Final Version of the Communication Layer RUBICON: Project No.: 269914

Chapter 1

Introduction

1.1 Target audience

This report is intended for the project consortium as well as members of the public interested in using the provided
software to deploy a RUBICON ecology and/or develop application specific software for such an ecology.

1.2 Overview

The CML provides communication and integration mechanisms built upon middleware for WSN/WSANs and
robotic ecologies. Specifically, the CML can be used to: (i) support inter-component and inter-layer interaction, (ii)
read data gathered from sensors installed in the environment, such as switch sensors signaling when drawers/doors
are open or closed, occupancy sensors signaling when users or robots move in certain areas, as well as the output of
off-the-shelf components (e.g. used to recognize sounds or generate other events extracted from raw sensor data),
(iii) send instructions to effectors, such as lights, blinds, door locks and appliances, (iv) sense the status of these
effectors and know when the user interacts with them (i.e.. when she manually switches on/off lights, TV, etc), (v)
publish the radio signal strength index (RSSI) measured between communicating WSN nodes, and (vi) recognize
when new sensors are added or existing ones are removed (and notify these events to all the other layers of the
RUBICON).

The CML consists of TinyOS1-based components suitable for programmers of application specific motes for the
RUBICON ecology as well as a unix library implementing the RUBICON communications for PC and Robot based
application programmers called the PEIS-kernel. In addition to the interfaces for programmers, the communication
layer also contains a set of component softwares that are used for the deployment of a RUBICON ecology in order
to ensure that all participating devices can collaborate successfully through the communication layer.

1see www.tinyos.net

30/04/2013 Page 6

RUBICON D1.3.2 Final Version of the Communication Layer RUBICON: Project No.: 269914

1.3 Overview of this document

The remaining chapters of this deliverable describe the main components in the final version of the CML. Specif-
ically, Chapter 2 discusses the set of new requirements addressed by this new version of the CML. Chapter 3
provides an overview of the new design of the CML, while the remaining chapters describe specific tools that
have been fitted in the final version of the CML, namely, (i) data logging (in Chapter 4), (ii) radio signal strength
index (RSSI) collection (in Chapter 5), (ii) and Web-based access and programming for WSAN testbed (in Chapter
6). Chapter 7 describes how to access, install and configure the software described in this deliverable. Chapter 8
summarize the achievements of RUBICON WP1 and, in particular, of the activities carried out in its second year.
Finally, an appendix serves as a detailed reference to the final CML API.

30/04/2013 Page 7

RUBICON D1.3.2 Final Version of the Communication Layer RUBICON: Project No.: 269914

Chapter 2

Requirements for the Final Version of the

Communication Layer

In this chapter, we summarize the main requirements for the final version of the Communication Layer. For
each requirement we briefly outline the activities undertaken to define the requirements and the problems that the
requirements address.

2.1 Flexibility and Reusability [R1v2.FLEXIBILITY]

One of the main requirements of the final version of the Communication Layer is to increase its flexibility, reusabil-
ity and portability. While the current prototype successfully integrates WSANs inside the RUBICON system, its
implementation is strictly dependent on TinyOS and requires a number of interventions by the Communication
Layer for every modification necessary to the higher layers of the RUBICON system. Such a model has the disad-
vantage of not allowing us to decouple the Communication Layer from the application layers (e.g. the Learning,
Control and Cognitive layers in RUBICON). The lack of decoupling forces developers to request changes to Com-
munication Layer whenever they need to add a new command or message to the application layer.

2.2 Messages Concurrency Safety [R1v2.MSGSAFETY]

Another limitation of TinyOS is that if the radio is busy transmitting or receiving when a packet transmission is
requested, a failure will be raised back to the application component that had issued the communication request.
In the first prototype version of the Communication Layer, this problem was left to the applications to handle.
Specifically, components in the application layer (including, for instance, the Java-based implementation of the
Learning Layer as well as C-based Peis components used as part of the Control Layer) had to store a copy of
the message and manage timers to re-try failed transmissions. In order to simplify application development, and
provide a unique solution to this problem, the final version of the Communication Layer should include an explicit
mechanism to handle packet-retransmission(s).

30/04/2013 Page 8

RUBICON D1.3.2 Final Version of the Communication Layer RUBICON: Project No.: 269914

2.3 Message Reliability [R1v2.RELIABILITY]

The first prototype Communication Layer only supported unreliable data transmission, that is, it was not possible
to ask the Communication Layer to confirm the receipt of messages. However, both connectionless communica-
tion between components, e.g. as required by control instructions sent by the Control Layer to activate WSAN’s
actuators, and synaptic channels used by the Learning Layer, need the ability to reliably transmit data via the
Communication Layer.

2.4 Multi Island Support [R1v2.MULTIISLAND]

The first prototype Communication Layer only supported single-hop WSAN based on multiple mote-class devices
that had to be in communication range with the same sink node. The prototype version only supports a single
sink node, which had to be connected to a gateway component to provide a link between the WSAN and the
RUBICON Peis tuplespace, as detailed in Deliverable D1.3.1. However, a single sink acted as a bottleneck in the
system, since all the motes share the same communication media. In addition, such a solution could not support
large deployments, as requested, for instance, by large houses and hospitals, where WSAN must cover areas that
could not be covered by a single-hop network. Rather than implementing a multi-hop communication architecture,
which is a topic already largely confronted in WSN/WSAN research, we have decided to complement these type
of solutions by supporting the creation of multi-island systems, in order to fit the peer-to-peer characteristics of a
robotic ecology. Specifically, we achieve a multi-island topology by using multiple sinks connected in a peer-to-
peer network, and by letting each sink supervise its own (single-hop / multi-hop) WSAN (the island).

Such an multi-island topology allows the RUBICON ecology to easily scale to large WSAN deployments. How-
ever, there are issues that need to be considered. Here is a list of requirements that must be met by the multi-island
topology implementation.

2.4.1 Dynamic and Independent Island Address [R1v2.MI ADDRESS]

In order to simplify the configuration and the maintenance of multi-island systems, the address of each mote in the
system needs to be dynamic, i.e. it must be set at run time and not at compilation time. Furthermore, RUBICON
needs a solution to address collisions so that adding islands to an existing system can be achieved by ignoring the
addresses that are already in use in the existing islands.

2.4.2 No Island Interferences [R1v2.MI NOINTERFERENCE]

Another problem that must addressed in the implementation of the multi island topology, is the possible overlap
between distinct islands. A mote may be in communication range with two sinks of two (or more) islands thus
potentially creating interferences to normal communication in each one of them. One possible solution is to take
advantage of the multiple radio channels of the underlying MAC protocol so that each island uses a different radio
channel. However, the maximum number of channels supported by those networks would pose a limit to the actual
scalability of the resulting systems. For this reason it is necessary to implement some mechanism to distinguish
radio messages from other islands.

30/04/2013 Page 9

RUBICON D1.3.2 Final Version of the Communication Layer RUBICON: Project No.: 269914

2.4.3 Safe Island Join [R1v2.MI SAFEJOIN]

Finally, whenever a mote is added to an island it must join only one island even if there are more sink nodes in its
transmission range.

2.5 Nonfunctional Requirements

2.5.1 Java Support for PCs [R1v2.JAVAAPI]

In order to support the portability of the higher layers of the RUBICON, e.g. to provide PC-based implementations
of the modules of the Learning Layer, the Communication Layer should export a Java API to enable those PC-
based implementation to seamlessly interact among each other and with TinyOS-based parts of the RUBICON.
This API would open the way for the development of RUBICON applications running on devices that are more
computationally capable than the current mote class devices considered by the prototype system.

2.5.2 Sensor Data Logging [R1v2.DATALOG]

The WP5 activities, as discussed in D5.1, require a specific data logging tool to support WSAN data collection in
the application testbeds. In particular, in D5.1 we have outlined how it is important to i) have a central monitoring
station to monitor each experiment while it is being performed, and ii) rely on flash memory installed on each
mote to collect the data rather than rely on the network to transmit the data to a central server, in order to avoid
communication problems, such as congestion, packet loss, etc.

Furthermore, the logging tool should provide functionalities for retrieving the data stored on each mote, store the
data into a database, and visualize it by means of a Graphical User Interface (GUI).

2.5.3 Received Signal Strength Indicator Support [R1v2.RSSI]

During the forwarding phase of the Learning Layer (see D2.1 and D2.2), Received Signal Strength Indicator (RSSI)
data must be fed into a synaptic channel exactly as with other sensed data from standard transducers. A tool for
instructing a set of mote to send radio beacons (using a different radio channel different from the one used for
communicating) and a tool for collecting and preparing the RSSI data is thus required.

2.5.4 Memory Usage Optimization [R1v2.MEMORYOPT]

According to the OSI communication layered model, the data that must passed down from a layer to a lower layer
must follow an encapsulation process. Headers and Trailers of data at each layer are the two basic forms used to
carry information. Headers are prepared to data that has been passed down from upper layer. Trailers are appended
to data that has been passed down from upper layers. Each layer may add a Header and a Trailer to its Data, which
consists of the upper layer’s Header.

30/04/2013 Page 10

RUBICON D1.3.2 Final Version of the Communication Layer RUBICON: Project No.: 269914

Unfortunately, such a model implies a memory copy to exchange data between one level and another. This pro-
duces a severe waste of memory, which is not acceptable on mote-class computationally constrained devices. The
Communication Layer addresses this problem in its internal design.

2.5.5 Re-programming and Testbed facilities [R1v2.TESTBED]

In order to facilitate experimentation with the Communication Layer within the research laboratories in the RUBI-
CON consortium, and to support the testing and the tuning of its features in the final applicative scenarios during the
3rd year of the project, we will need mechanisms to easily re-program a remote WSN, possibly over the Internet.
Specific utilities should be implemented to enable the sharing of sensing and acting infrastructures among different
research institutes, and speed up normally costly maintenance operations, such as the update or the debugging of
the WSN embedded software.

30/04/2013 Page 11

RUBICON D1.3.2 Final Version of the Communication Layer RUBICON: Project No.: 269914

Chapter 3

Development of the Second Version of the

Communication Layer

3.1 Introduction

This chapter is devoted to explaining how the functional and nonfunctional requirements have been addressed in
the final version of the Communication Layer.

3.2 Flexibility and Reusability [R1v2.FLEXIBILITY]

With the first prototype version of the Communication Layer, each time we wanted to create a new type of message
to be sent by means of the connectionless interface (for example a new command to an actuator), according to
the TinyOS AM model, we had to create a new AM type. This required modification and recompilation of the
Communication Layer. In this section, we describe how this issue has been addressed by separating the packet
formatting from the communication logic layer.

The component-oriented design of TinyOS gives developers the ability to easily compose different applications.
However, this also entails a disadvantage associated with its use of the Active Messages (AM) system - the TinyOS
2.x message buffer abstraction that allows datagrams to be passed between different link layers1. An AM contains
the name of an application-level handler to be invoked on a target node, and the payload. The receiving node
dispatches the message using events to one or more handlers that are registered for this message. The AM model
works like a distributed event model, by allowing nodes to send events to other nodes and to specific components
wherein. Such a model has the disadvantage of not allowing us to decouple the Communication Layer from the
application layers (e.g. the Learning, Control and Cognitive layers in RUBICON). Each time we want to create
a new type of message or modify an existing one (for example a control command to an actuator or a learning
instruction), according to the AM model we have to create or modify an AM type, and therefore to some extent
change the Communication Layer. Separating packet formatting layers from communication logic layers would

1see http://www.tinyos.net/tinyos-2.x/doc/html/tep111.html

30/04/2013 Page 12

RUBICON D1.3.2 Final Version of the Communication Layer RUBICON: Project No.: 269914

increase the modularity of the Communication Layer. In particular, applications would not have to know the details
of the TinyOS APIs, thus more easily supporting further extension of the software and also facilitating its porting
to other languages or operating systems.

In Figures 3.1 and 3.2, we depict a schematic comparison of the send and receive operations of the first and final
version of the Communication Layer using the Connectionless component. Suppose the Control Layer wants to
issue a command to a remote mote equipped with actuator capable of opening a door. As mentioned above, with
the first release of the Communication Layer, we needed to create a new TinyOS AM type, with the disadvantage
of bringing out in the application level some details of the TinyOS operating system. This aspect makes difficult
the realization of a possible version of Communication Layer that uses different systems of communication and
languages (eg, Java over TCP/IP).

With the final version of the Communication Layer, instead, the application (in this example the Control Layer)
defines its own new message, i.e. any sequence of bits that the lower levels will ignore. This allows us to exploit
the well-established model of communication called data encapsulation, in which a level does not know the details
of the information that the upper level wants to send, but the information content becomes a simple payload
to be encapsulated and sent to the lower levels along with the necessary information that the level abstraction
implements. The opposite path, when the message is received, is characterized by the reverse procedure called
data decapsulation.

Figure 3.2 shows this process. The message in the example, which we have called OPEN DOOR is sent to the
Connectionless component that is responsible for sending messages to individual remote devices. This message
is encapsulated in a message of AM type application that is accompanied by a tag APPID = CL, which is to say
that the message was generated by an instance of a Control Layer. The message that is sent through the internal
interface of the transport layer, called Message Dispatcher that encapsulates it in a new transport message with the
tag TRANSID = CLESS, which is to say that the message was generated by the Connectionless component. The
Message Dispatcher sends the message to the Network layer, which is in charge of creating an active message of
type AMType = Network by inserting the transport message in the payload of the network message. Note that it
is only at this point that TinyOS active message is created, so that if in the future we want to replace the network
level with a new network to another type of media, we would need to change only this bottom part of the system,
without modifications to the core Communication Layer.

When the message has been delivered to its intended recipient, it goes upwards to the application level. At each
step, the message is subjected to a decapsulation process to get back the original message. All tags APPID,
TRANSID, and AMType are exploited to make the internal routing in the receiving node to bring the message to
the right application process that must receive it (similar to what happens with TCP/IP ports).

3.2.1 Memory Usage Optimization [R1v2.MEMORYOPT]

As explained above in the general communication layered model, the data that must passed down from a layer to
a lower layer must follow the encapsulation process. This implies a memory copy to exchange data between one
level and another and produces a severe waste of memory, which is not acceptable on mote-class computationally
constrained devices. This problem is solved by using the message structure presented in Section 7.3.6.

30/04/2013 Page 13

RUBICON D1.3.2 Final Version of the Communication Layer RUBICON: Project No.: 269914

synaptic
channelsconnectionless Component

Management

Network Management
Comm
Control

Media Access Control

Communication Layer

Learning
Layer

Control
Layer

send/receive

send/receive

Transport

Network

send/receive

Application
Entty Point

join messagessynaptic channelssend/receive send/receive

Active Message
AMType = OPEN_DOOR

synaptic
channelsconnectionless Component

Management

Network Management
Comm
Control

Media Access Control

Communication Layer

Learning
Layer

Control
Layer

send/receive

send/receive

Transport

Network

send/receive

Application
Entty Point

join messagessynaptic channelssend/receive send/receive

Active Message
AMType = OPEN_DOOR

Figure 3.1: The send and receive operations of the Connectionless component of the first version of the Commu-
nication Layer.

3.3 Messages Concurrency Safety [R1v2.MSGSAFETY]

To solve the problem of buffering multiple, concurrent messages in the Communication Layer, we implemented
separate message buffers structured as static circular queues for the Network messages. In the first prototype of the
Communication Layer, if the radio was busy when the application had to transmit a message, the application had
manage a timer and try later to send messages once the radio becomes available again. With the circular buffer,
this management is no longer required. A similar buffer is used in reception to temporarily queue all messages
received from the network and send them to the application layers if they are busy.

synaptic
channelsconnectionless Component

Management

Network Management
Comm
Control

Media Access Control

Communication Layer

Learning
Layer

Control
Layer

send/receive send/receive

Transport

Network

send/receive

Application
Entty Point

join messagessynaptic channelssend/receive send/receive

Message Dispatcher
send/receive AMType = Newtwork

TRANSID=CLESS

APPID=CL

OPEN_DOOR

synaptic
channelsconnectionless Component

Management

Network Management
Comm
Control

Media Access Control

Communication Layer

Learning
Layer

Control
Layer

send/receive send/receive

Transport

Network

send/receive

Application
Entty Point

join messagessynaptic channelssend/receive send/receive

Message Dispatcher
send/receive

OPEN_DOOR

Figure 3.2: The send and receive operations of the Connectionless component of the final version of the Commu-
nication Layer.

30/04/2013 Page 14

RUBICON D1.3.2 Final Version of the Communication Layer RUBICON: Project No.: 269914

synaptic
channels

connectionless Component
Management

Network Management
Comm
Control

Media Access Control

Communication Layer

Learning
Layer

Control
Layer

send/receive send/receive

Transport

Network

send/receive

Application
Entty Point

join messagessynaptic channelssend/receive send/receive

Message Dispatcher
send/receive

Rubicon
ACK

Active Message
AMType = ACK

synaptic
channels

connectionless Component
Management

Network Management
Comm
Control

Media Access Control

Communication Layer

Learning
Layer

Control
Layer

send/receive send/receive

Transport

Network

send/receive

Application
Entty Point

join messagessynaptic channelssend/receive send/receive

Message Dispatcher
send/receive

Rubicon
ACK

Active Message
AMType = ACK

Active Message
AMType = ACK

Figure 3.3: The transmission of acknowledgement messages by the Ack component introduced in the final version
of the Communication Layer.

3.4 Message Reliability [R1v2.RELIABILITY]

The message reliability had been implemented by building on top of the connectionless communication mecha-
nisms already available in the first version of the Communication Layer. Specifically, the Communication Layer
API has been extended, by allowing client components to specify if they need to receive a confirmation of receipt
from the intended recipient of the messages they send. In addition, confirmation messages are different in nature
from the normal communication messages as they must be processed by the transport layer that generates them au-
tomatically and notify them to the application. If they were generated as normal messages, they should be created
and managed by the application as the lower levels do not have permission to read the contents of the messages. For
this reason we have created a specific component, called Ack, which deals with the generation and the management
of the exchange of acknowledgement messages in a dedicated protocol.

Figure 3.3 shows how the Ack component works. When a sender component (in this case the connectionless)
requires an acknowledgement, the receiver component (shown in Figure 3.3, left panel) automatically generates a
message with AMtype = ACK and sends it through the network. When the sender receives the ack (shown in Figure
3.3, right panel) it notifies the application that requested it.

3.5 Multi Island Support [R1v2.MULTIISLAND]

Multi Island Support fits the requirements for the Communication Layer for supporting a growing number of
devices without degradation of performance in communications. The addressing scheme used in the multi island
RUBICON system ([R1v2.MI ADDRESS], [R1v2.MI NOINTERFENCE]) is described in detail in Deliverable
D1.2, while details concerning the use of the Peis middleware to create the peer-to-peer skeleton of the multi-
island topology are discussed in Deliverable D1.4.

30/04/2013 Page 15

RUBICON D1.3.2 Final Version of the Communication Layer RUBICON: Project No.: 269914

3.5.1 Java Support for PCs [R1v2.JAVAAPI]

The Java implementation of the Communication Layer is presented in Chapter 7.

30/04/2013 Page 16

RUBICON D1.3.2 Final Version of the Communication Layer RUBICON: Project No.: 269914

Chapter 4

The Data Logger [R1v2.DATALOG]

4.1 INTRODUCTION

In this chapter, we present the tool for the real-time acquisition of data from a set of mote sensors and for the
storage of the acquired data in the flash memory of the sensors that was required for Rubicon [R1v2.DATALOG].
The tool provides functionalities to retrieve the stored data from the sink node, to store the data into a PC-based
database and to visualize it by means of a graphical user interface that runs on a linux-based PC. The tool that
we propose consists of both the software that runs on the PC and the software to be installed on each mote in the
RUBICON WSAN.

The tool described in this chapter allows experimenters and developers to remotely control a set of notes for both
real-time and off-line data acquisition. The tool is compatible with the IRIS, MicaZ and TelosB platforms. With
this tool, the user can request a series of measurements from the sensors installed on each mote in the WSAN under
study (e.g. light, temperature, accelerometer, humidity, passive infrared (PIR), magnetic, and microphones). The
data collected by the motes can be subsequently forwarded to the sink, which can store them in a local database,
enabling the user for off-line analysis and processing.

4.2 Features

The system we have developed has the following features:

• Topology - Figure 4.1 shows the network architecture of our WSAN. Each mote in the WSAN acquires
the requested data and send data updates to the sink mote either in a real-time fashion, or on-demand when
requested. The sink interfaces the WSAN with the user: it routes the data received from the other motes to
the base-station (the PC) where the data is stored in a local database and visualized to the user by means of
a Graphical User Interface (GUI) component, which is also included in the logger tool.

• Mote Management and Setting - The number of motes involved in the query can change over time, and
each of them can be managed independently from the others. The tool allows operators to activate, de-
activate and configure the logging operations to be performed by specific motes, without affecting the oper-

30/04/2013 Page 17

RUBICON D1.3.2 Final Version of the Communication Layer RUBICON: Project No.: 269914

)))))

))))))))))

))))))))))))))))))))))))))))))

)))))

base-station

Sink Mote

DB

LoggerCLoggerCLoggerCLoggerCLoggerC

SincC

GUI

Figure 4.1: The topology of the data logger.

ation of the other motes in the network. At the same time, the tool allows the operator to activate, deactivate
or reset all motes on the network simultaneously. The main parameters that can be set for each mote are the
following:

– Sampling period. It indicates the period of time (expressed in milliseconds) between two consecutive
readings of the transducers.

– Type of transducer. It allows the user to choose which transducers of the sensor board the mote has to
sample.

• On-line and Off-Line Data Collection - The monitor application on the motes can be executed in two
modalities: on-line and off-line. The on-line mode provides the data collected in real-time for being imme-
diately stored in the central database when they are received by the base-station. In the off-line mode, on
the other hand, the data is temporarily stored within the mote’s flash memory and it can be downloaded at a
later time, upon a specific request from the operator.

• Data Storage - The data sampled by transducers mounted on motes is stored in a central database located
on the base-station, allowing the operator to access the data and analyze it in off-line mode. Notably, in
most WSAN application scenarios, including those tackled by RUBICON, the amount of acquired data can
be very large, so this feature is particularly useful.

30/04/2013 Page 18

RUBICON D1.3.2 Final Version of the Communication Layer RUBICON: Project No.: 269914

• Graphical User Interface - The GUI allows the user to remotely configure all the needed parameters on the
motes and to activate/deactivate all the functionalities provided by the logger. Moreover, the GUI visualizes
the data received while it is being stored in the database, so a first quick analysis of the data can be executed
without having to access the database. This is useful in particular for the real-time operation of the tool.

4.3 Architecture

The Data Logger consists of four separate software components (see Figure 4.1):

• SincC is the gateway between the WSN and the user that runs on the sink mote.

• LoggerC is the component designated to collect and store the data sampled by each mote.

• GUI is the user interface that runs on the base-station.

• DB is the database for the storage of the data collected that runs on the base-station.

4.3.1 SincC

The sink mote forwards the commands received from the base-station to the other motes of the network through the
wireless communication channel. It also routes all the data acquired by the motes in the network towards the base-
station to which it is connected through a serial channel. The nesC component, that implements such functionality
similar to a hub, is called SincC and it has to be installed on the sink mote.

4.3.2 LoggerC

The rest of the motes in the network have the same nesC application installed on board called LoggerC. Their
typical function is to read the values from the transducers integrated on their sensorboard, store the acquired data
in their internal flash memory and/or send them to the sink.

4.3.3 GUI

Through the GUI, the operator is able to remotely instruct the LoggerC components to start/stop the sampling, to
download the data stored in the flash memory of the corresponding mote and to erase the memory after the down-
load has been completed. The GUI also allows the operator to specify the parameters needed for the monitoring
task: sampling period at which the data have to be acquired, transducers to sample, acquisition modality (on-line
and/or off-line), the ID of the target mote or, in case of storing in the flash memory and erasing the flash memory
content, to send the command in broadcast to all the motes. The sink connected to the base-station redirects the
command specified in the GUI to the target mote. In case of on-line mode operation, the acquired data are imme-
diately sent back to the base-station and they are displayed on the GUI and stored in the DB. In case of off-line
mode operation, instead, the data is only stored in the flash memory of the mote. In order to access these data, a
specific download command is sent and, once the data is received, it is stored in the DB. In Figure 4.2, a screenshot

30/04/2013 Page 19

RUBICON D1.3.2 Final Version of the Communication Layer RUBICON: Project No.: 269914

Figure 4.2: Screenshot of the data logger GUI and data sampling

of the GUI of the data logger is provided. It shows the sampling of data from a mote and the downloading of the
information to the database.

4.3.4 DB

The DB component is an SQL relational database. In order to facilitate offline analysis of the data collected with the
aid of the Logger, its database stores both meta-information describing each experiments (e.g. reporting how the
WSAN and the logging operations were configured at the time the experiment was performed, in the Experiments
entity), and the data recorded by the sensors (in the DataSample entity). Figure 4.3 shows the entity-relationship
schema of the Data Logger database. Each experiment is associated with an ID, called ExpID. Therefore we have
a tuple for each experiment in the Experiments table and the association that links the two tables is provided by
ExpID, which is a foreign key in the DataSample table.

Here is the list of attributes of tables with related information. Experiments table:

• ExpID. Unique identifier of the experiment (primary key).

30/04/2013 Page 20

RUBICON D1.3.2 Final Version of the Communication Layer RUBICON: Project No.: 269914

ExpID
Date
Time
SamplePeriod
SensorMask
Flag
Notes

Experiments

PK

SampleID
ExpID
SensorID
AccX
AccY
Temperature
Light
Humidity
Pir
Magnetic
RSSI
Mic

DataSample

FK
PK

Figure 4.3: The Entity-Relationship diagram of the database.

• Date. Starting date of the experiment.

• Time. Starting time of the experiment.

• SamplePeriod. Sample Period of the experiment.

• SensorMask. A bit-mask used representing which transducers were active during the experiment.

• Flag. Indicates the choice of making an on-line/off-line communication.

• Notes. Contains any notes entered by the user when creating the experiment.

SampleDate table:

• SampleID. Unique identifier of the sample data (primary key).

• ExpID. Unique identifier of the experiment for which the sample belongs to (foreign key).

• SensorID. Unique identifier of the Mote in the network.

• AccX. Sampled value from the x-axis accelerometer.

• AccY. Sampled value from the y-axis accelerometer.

• Temperature. Sampled value from the thermometer transducer.

• Light. Sampled value from the light transducer.

• Humidity. Sampled value from the humidity transducer.

• Pir. Sampled value from the Pir transducer.

30/04/2013 Page 21

RUBICON D1.3.2 Final Version of the Communication Layer RUBICON: Project No.: 269914

• Magnetic. Sampled value from the Magnetic transducer.

• RSSI. RSSI value of the communication between the sink and the target Mote.

• Mic. Sampled value from the microphone.

4.4 Implementation and Usage

4.4.1 Setting Up an Experiment

Here we describe the use of the GUI of the data logger shown in Figure 4.2.

• New Experiment button. This button is used to create a new entry in the experiments table in the DB.

• Sampling Period text box. It allows the user to setup up the sampling period of the transducers readings
(expressed in msec).

• Transducers radio buttons. Eight radio buttons that allow the user to select which transducers must be
active on the motes during the experiment.

• Online Data check button. If selected, the data are sent to the sink in real-time when they are acquired by
the target mote.

• Store Info. If selected, the acquired data are stored in the flash memory of the target mote (these two last
options can be jointly checked).

• Target mote text box. It specifies the ID of the mote from which to acquire data. Note that, in order to
avoid collisions, only one mote is allowed if the Online Data modality is set, that is the real-time data can
be received from one mote at a time.

• Broadcast checkbox. This option is available only for the Store Info mode and to erase the flash memory
of the motes. By checking it, the storing of data in the flash memory, or its deletion, can be requested on all
the motes in the network at the same time.

• Note textbox. It allows the operator to associate the experiment entry with a textual comment.

• Command buttons Start, Stop, Download, and Reset Flash. Once a new experiment entry has been created,
the sampling task is activated by clicking on the Start button. As consequence, the mote specified in the
Target Mote text-field will start sending its acquired data and they will be visualized in the GUI. If the Store
Info modality is set, the blue LED toggling on the motes notifies the writing of the acquired data into the
flash memory. The Stop button terminates the sampling task. This command can also be sent in broadcast
mode by checking the Broadcast checkbox. In order to download the data stored in each mote into the
database, the button Download is used. In order to avoid collisions, this operation is allowed for only one
mote at a time. The green LED toggling on the target mote notifies the reading from the flash. The received
data is stored in the DataSample table of the database in the same order as they have been acquired by
each mote and the data is stored with the reference to the experiment in the table Experiments that contains

30/04/2013 Page 22

RUBICON D1.3.2 Final Version of the Communication Layer RUBICON: Project No.: 269914

the meta-data describing the experiment, including the exact time at which the sampling started and the
sampling frequency. The Reset button erases the flash memory of the mote. This operation may take a long
time and its progress is signaled by the red LED on the mote performing it. This command can also be sent
in broadcast.

4.5 Accessing the Software

Besides the RUBICON software repository, the software described in this section is freely downloadable at
www.nmis.isti.cnr.it/gennaro/logger.zip and runs on Linux where Postgres DBMS
(www.postgresql.org) is installed.

30/04/2013 Page 23

RUBICON D1.3.2 Final Version of the Communication Layer RUBICON: Project No.: 269914

Chapter 5

RSSI Support [R1v2.RSSI]

In many scenarios of RUBICON, the Learning, Cognitive and Control layers make use of user and robot local-
ization information that, in some cases, is produced by means of Received Signal Strength Indicators (RSSI). The
RSSI is produced by exchanging beacon packets among a set of fixed sensors (called anchors) and a mobile sensor
deployed on the user or on the robot. The mobile sensor measures the signal strength associated with the beacon
packets received by the anchors and gives this data in input to the Learning Layer (normally to an instance of the
Learning Layer installed on the mobile sensor itself) that is trained to output a location information in terms of a
pair of coordinates < x, y >.

In practice, since localization is mostly used to track a mobile target, the beacons should be emitted by the anchors
at a given, constant rate, so that for each complete set of received beacons the Learning Layer can produce the
localization information. From the point of view of the RUBICON Learning Layer, each value of RSSI is equivalent
to a data read by a sensor from any of its transducers (i.e., the sensor has a transducer for measuring RSSIs), hence
the Learning Layer can be fed with this information by making use of synaptic connections and synaptic channels.
On the other hand, from the point of view of the Communication Layer, each RSSI measurement is produced by
combining the action of two sensors: the anchors that emit the beacon and the mobile sensor that receives the
beacon and produces the RSSI. This fact is however hidden to the upper layers that are aware only of the RSSI
measurements as if they were transducers readings. A second aspect is that, in order to produce a meaningful
value of localization, several RSSI measurements referring to different anchors should be collected all together in
a single tuple and encapsulated in a synaptic channel to be given in input to the Learning Layer.

Based on these requirements, we extended the Communication Layer in order to enable such a behavior. In this
implementation, a set of sensors act together as a single sensor measuring RSSI tuples. We decided to implement
the beacons by means of sensors that run a very simple protocol, in which the anchor nodes send their beacon
following a turn; this is implemented by using a virtual token that tours among the anchors. Furthermore, the
anchors make use of timeouts to avoid that a node failure stops the entire protocol. Since the emission of beacons
may easily saturate the wireless channel thus preventing the other communications of RUBICON, the beacons
operate on a separate channel (channel A) than the one used for the normal operations of RUBICON (channel R).

The mobile node switches between the channels used to received the beacons and the channel used for RUBICON
communications. It remains for a period in receive mode on the channel A and in this period it accumulates the
measurements of RSSI in a tuple. At the end of this period it switches to channel R and sends the RSSI tuple

30/04/2013 Page 24

RUBICON D1.3.2 Final Version of the Communication Layer RUBICON: Project No.: 269914

through a synaptic connection to the Learning Layer, then it switches back to channel A to start collecting again
the RSSI values for the next period.

From the point of view of the interface with the above layers, there are no differences with respect to the use of
normal, built-in transducers of the sensor.

30/04/2013 Page 25

RUBICON D1.3.2 Final Version of the Communication Layer RUBICON: Project No.: 269914

Chapter 6

Web-based Testbed Utilities [R1v2.TESTBED]

6.1 Introduction

The Communication Layer jointly presented in this and in the other WP1 deliverables released at M24 (D1.2 and
D1.4) includes a number of features aimed at supporting important application requirements, such as scalability,
computational/bandwidth constraints, and extensibility. We have also implemented a set of Web-based testbed
utilities. These utilities allow any developer to easily re-program a remote WSN, over the Internet. Together with
the data logging feature described in the previous section, these utilities enable the sharing of sensing and acting
infrastructures among different research institutes, and speed up normally costly maintenance operations, such as
the update or the debugging of the WSN embedded software.

Unlike traditional computers, reprogramming the processors in a WSN is more challenging because of the limited
power, processing, storage and communication capabilities. Once the WSN motes are installed in a testbed, possi-
bly wired to external sensors and actuators (e.g. reed switches and relays), it becomes infeasible to remove them
every time there is a need to update their software, for instance, before testing or tuning new features, to upload a
new sensor processing component, or to install new versions of the RUBICON Communication and/or Learning
layers. Deluge [3], the standard reprogramming facility included in the TinyOS embedded operating system used
in RUBICON, allows developers to install new programs on each mote, by transmitting their full image over the
network. However, this requires the base-station to transmit the new program with Deluge, for every node in the
network. This consumes significant communication, processing and storage resources, since a big chunk of the
memory of each processor must be used to host a copy of the Deluge nesC program. Alternative solutions, based
on modularization of the code, such as SOS [2] and LiteOS [1], provide solutions for operational WSNs but do
not substantially change these overheads.

For these reasons, and in order to focus our efforts on the development and the testing of our embedded solu-
tions, our test-bed utilities leverages ”wired” WSNs. ”Wired” WSNs are WSNs where each mote is powered and
interfaced through a USB connection. While such an organization cannot be used in a final application, since it
obviously negates the basic advantages of having wireless motes, it suits experimental test-beds, where it is more
important to have a fast and easy way to re-program the WSN while limiting the down-time involved in those main-
tenance operations. The biggest advantages of a wired test-bed are that (i) each mote can be easily re-programmed
by simply and rapidly flashing a new program image through its USB connection, and (ii) each mote is powered

30/04/2013 Page 26

RUBICON D1.3.2 Final Version of the Communication Layer RUBICON: Project No.: 269914

LAN

ssh

ssh

ssh

USB

USB

USB

Figure 6.1: Architecture of the Web-based testbed.

through the same USB connection, so that experimenters do not need to worry about having to change the batteries
in what are normally battery-operated devices. This reduces the downtime and the cost of the maintenance of the
test-bed while developers can still use it to assess the energy efficiency of their solutions, for instance, by using
simulation-based models of power consumptions, or by availing of dedicated hardware for power monitoring.

6.2 Design

Figure 6.1 illustrate the organization of a test-bed availing of the facilities described in this chapter. We adopt a
cluster-based architecture whereas groups of motes that are physically close to each other (e.g. an island in the
multi-island organization of the RUBICON system) are wired (via USB and possibly availing of USB extensions
and powered USB hubs) to mini-pcs hosting both the gateway-side re-programming software of our test-bed and
application-specific software (e.g. the RUBICON Proxy component described in Deliverable D1.4). Each mini-pc
is connected to the same LAN, either via wired or wireless network. A server hosts a Web-server interface to the
test-bed. Specifically, the Web-server interface can be used over the Internet by remote operators to:

• list all the motes available in the test-bed connected with the Web-based interface. This is achieved by
querying each of the mini-pc in the test-bed (via ssh, using the motelist TinyOS command to retrieve the list

30/04/2013 Page 27

RUBICON D1.3.2 Final Version of the Communication Layer RUBICON: Project No.: 269914

Figure 6.2: Snapshot from the Web-based interface used to access the testbed programing utilities described in
Chapter 6.

of mote-class devices connected to the USB serial of each mini-pc). The developer can associate a symbolic
name to each mote, which is internally identified via its MAC address. This means that the motes can be
easily moved across different islands, without affecting the way they can be accessed within the test-bed.

• Install new version of the software on a list of motes. Remote operators can do this by simply selecting
(i) the list of target motes from the Web-based interface, and (ii) the embedded program image to install to
those motes from their local computer. After that, the Web-based interface will upload the selected image
and supervise its installation (always via ssh) to the mini-pcs used to access each mote in the list.

Figure 6.2 is a snapshot of the Web-based interface showing the list of motes connected to a remote test-bed (on
the left) and the result of a re-programming request (on the right).

6.3 Accessing the Software

Both the re-programming shell scripts used in the mini-pcs and the Web-based interface (built with the Vaadin Java-
based Web Application framework, see https://vaadin.com/home) are included in the RUBICON code repository

30/04/2013 Page 28

RUBICON D1.3.2 Final Version of the Communication Layer RUBICON: Project No.: 269914

and in all the pre-compiled images available from the project WiKi, together with detailed usage instructions.

The respective folders have the following structure in the file system:

.../1-Comm/Testbed-Utilities/server

.../1-Comm/Testbed-Utilities/mini-pc

30/04/2013 Page 29

RUBICON D1.3.2 Final Version of the Communication Layer RUBICON: Project No.: 269914

Chapter 7

Installing and Using the Communication Layer

(NesC and Java version)

This chapter explains how to compile and install the code for the Communication Layer in nesC and Java ([R1v2.JAVAAPI]).

7.1 Accessing the software

The software of this deliverable has been stored in the subversion repository of RUBICON. In addition, pre-
compiled and ready to be used images of TinyOS and each element of the RUBICON Communication Layer have
been uploaded on the project. WiKi. These include:

• A Ubuntu 11.10 Virtual Machine.

• SD-Card images of Ubuntu 9.04 for Sheeva-Plug mini-pcs (see http://www.plugcomputer.org/) and Ras-
bian, a version of Debian optimized for the Raspberry Pi hardware (see http://www.raspberrypi.org/ and
http://www.raspbian.org/)

7.1.1 Software requirements and hardware assumptions

Successful operation of this software requires the deployment of the following hardware and software configura-
tion.

• Zero or more islands (groups) of WSN nodes (also called motes) where each mote is within direct commu-
nication range of each other mote.

• Zero or more motes in each such island. Each motes must deploy the TinyOS based Communication Layer
API. One sink-node WSN mote per island deploying the TinyOS based Communication Layer API.

• The sink-mote must be connected through a USB serial to a PC running

30/04/2013 Page 30

RUBICON D1.3.2 Final Version of the Communication Layer RUBICON: Project No.: 269914

– The RUBICON Proxy component (D1.4);

– A working peis and peisjava distribution;

7.1.2 Platform dependencies, PC side

The primary target for the PC side of the RUBICON Communication Layer is an Ubuntu 11.10 based systems
running on Intel x86 compatible hardware in 32/64-bit modes and with the Oracle Java implementation. The
software has been tested and guaranteed to work on these systems, but have also to a lesser extent been verified
to work with a range of other Posix conformant operating systems such as other linux based systems as well as
Macintosh based systems. The Communication Layer has also been tested with ARM-compatible mini-pcs in both
the Sheeva-Plug and the Raspberry Pi family. More details on these embedded options are given in Chapter 6.

7.1.3 Platform dependencies, WSN/WSAN side

The primary target for the deployment of Communication Layer over WSN/WSAN are mote-class devices based
on a micro-controller and Bluetooth radio stack capable of running TinyOS 2.x and the Communication Layer API.
Furthermore, we assume that the motes have a programming flash memory in addition to a minimum of 10KB of
on-board RAM memory. The software has been tested and guaranteed to work on the TelosB clone CM3000 by
Advanticsys: the mote is equipped with and MSP430 processor, 48KB program flash, 10KB data RAM and 1MB
external flash.

7.2 Installation of the Communication Layer

7.2.1 Get the source code

An installation of TinyOS is required to build and install the Communication Layer (this can be checked by issuing
the command tos-check-env and compile an example such as Blink). Developers also need to have SVN
correctly installed with a RUBICON account. The project WiKi contains further details. After checkout/Update
from the SVN, the software will have the following structure on the file system:

.../1-Comm/Mockup-Sink

.../1-Comm/Mockup-WSN

.../1-Comm/CommunicationLayer

.../1-Comm/ucd.rubicon.gateway

.../1-Comm/ucd.rubicon.network

.../1-Comm/ucd.rubicon.proxy

7.2.2 Compiling the NesC Source Code

In order to compile and flash the Sink code, go to RUBICON/1-Comm/Mockup-Sink folder and type make
telosb install.0 bsl,YOUR SERIAL PORT. The parameter YOUR SERIAL PORT is typically devttyUSB0.

30/04/2013 Page 31

RUBICON D1.3.2 Final Version of the Communication Layer RUBICON: Project No.: 269914

Where X is the ID to be given to the mote, which must be greater than 0.

7.2.3 Compiling the Java Source Code

In order to compile the Java Network go to RUBICON/1-Comm/CommunicationLayer/java and type
./build.sh. In order to compile the Proxy and the Gateway go to RUBICON/1-Comm/ucd.rubicon.proxy,
edit the gateway.properties file by adding your serial port in the network.source line: network.source=serial@
/dev/ttySERIAL PORT:telosb, then type ant build.

7.2.4 Launch the Proxy

In order to launch the Proxy component shut down all the motes first. Therefore, switch on or reset the Sink and
start the Proxy by typing ./testProxy.sh. Switch on the motes and you should see that they automatically
join the island. You can see this either in the shell or in Peis tupleview console. In this latter case, run tupleview
before starting the Proxy by typing in another console tupleview. The motes will flash their green LED to
signal when they have successfully completed the join protocol and joined a RUBICON island.

7.3 Overview of the New API of Connectionless Component

7.3.1 The Send Command

The Send command can be used to send single messages to a remote devices. In the following, we specify its
interface:

uint16_t send(r_addr_t dest, int8_t* payload, uint8_t nbytes,

bool reliable, uint8_t comp_id),

where:

• dest is the RUBICON address of the destination node (in the form <peis-id, mote addr>);

• payload is message content to be sent as a vector of bytes. Note that payload is App msg structure that
is described later;

• nbytes is the size of the application payload;

• reliable is a flag that specifies if an acknowledgment is need or not;

• comp id is an ID that specifies the sender application (e.g., Control layer, Learning Layer, etc.).

• The function returns the sequence number generated by the network for that message.

30/04/2013 Page 32

RUBICON D1.3.2 Final Version of the Communication Layer RUBICON: Project No.: 269914

7.3.2 The Receive Event

When the receiving node receive a message the following event is called

event void receive(r_addr_t sender, int8_t* payload, uint8_t nbytes),

where:

• sender is the RUBICON address of the sender;

• payload is message content (payload) to be sent as a vector of bytes;

• nbytes is the size of the application payload.

7.3.3 Using the Connectionless Interface

The application that want to use the connectionless interface must use the Connectionless component. In
order to use the Connectionless in NesC in module file use interface Connectionless. In the configuration file use
the component ConnectionlessC and call Application.Connectionless-> ConnectionlessC.
Connectionless[APP ID]. In Java create an instance of Connectionless class and register to listener
for receiving the receive() event.

7.3.4 Rubicon Ack Interface

When a send with reliable=TRUE is invoked, the sender subsequently receives a notification of receipt of the
message by the remote node. The event is specified in the following:

event void receive_ack(r_addr_t sender, uint16_t seq_num),

where

• sender is the RUBICON address of the node that generated the acknowledgment message;

• seq num is sequence number of the acknowledged message. This number must be equal to the one that the
send command that required the acknowledgment returned.

7.3.5 Using Rubicon Ack Interface

The applications using Connectionless interface and willing to send reliable messages, must use the Rubicon Ack

component and must implement the receive() event. In order to use the Rubicon Ack in NesC in mod-
ule file use interface Rubicon Ack. In the configuration file use the component Rubicon AckC and call
Application.Rubicon Ack->Rubicon AckC.Rubicon Ack[APP ID]. In Java create an instance of
Rubicon Ack class and register to listener for receiving the receive ack() event.

30/04/2013 Page 33

RUBICON D1.3.2 Final Version of the Communication Layer RUBICON: Project No.: 269914

7.3.6 The App msg structure

The App msg is the structure that application has to use to interact with the Communication Layer. This structure
must be allocated by the sender before calling the send command. This is unusual for a communicating interface
at the application level, but this is needed to fulfill the requirement [R1v2.MEMORYOPT] and avoids copies of
messages for each call of the lower level calls (transport, network, et.).

• TRANS ID: 1 byte field

• 1 byte field: APP ID

• payload of maximum size APP PAYLOAD = 100.

The first two fields do not have to be set, and are only needed to allocate the space for these fields as explained
above. In Java this optimization is not needed, since the code will be used in a more powerful hardware envi-
ronment. Therefore, we can just prepare the message that we send along with Java interface. However, in order
to make the two worlds TinyOS and Java interoperable, we must agree on the format of the messages. The user
application will define its own structure in nesC as a message to exchanged, and this will be converted to Java
through the MIG tool provided by the environment TinyOS. In order to prepare the application-level payload in
Java, we use the Java class nesC generated by the MIG tool that extends net.tinyos.message.Message.
For instance, suppose the application wants to send the of the following structure:

typedef nx_struct demo_msg {

nx_uint8_t msg_type;

nx_uint16_t sensorsBitmask;

nx_uint16_t period;

} demo_msg_t;

The MIG will generate the class with the following interface:

public class DemoMsg extends net.tinyos.message.Message

public void set_msg_type(short value)

public void set_sensorsBitmask(int value)

public void set_period(int value)

}

The application then have to do the following operations:

DemoMsg dmsg = new DemoMsg();

//set fields of the application message

dmsg.set_msg_type(demo_msg_type);

dmsg.set_sensorBitmask(sensorsBitmask);

dmsg.set_period(period);

30/04/2013 Page 34

RUBICON D1.3.2 Final Version of the Communication Layer RUBICON: Project No.: 269914

Namely, instantiate the class DemoMsg and fill various fields corresponding to the structure in nesC. Conversely,
if the massage is received from a mote by means of the Java interface, we need to do exactly the inverse steps for
extracting the information from the payload , i.e.:

event void receive(RubiconAddress sender, byte[] payload, short nbytes) {

switch (payload[0]) {

case DEMO_MSG:

//instantiate a DemoMsg using the payload received

DemoMsg dmsg = new DemoMsg(payload);

//accessing the fields of the application level message

int sensorBitmask = dmsg.get_sensorBitmask();

int period = dmsg.get_period();

break;

case ...

}

}

30/04/2013 Page 35

RUBICON D1.3.2 Final Version of the Communication Layer RUBICON: Project No.: 269914

Chapter 8

Conclusions

We conclude this report with the an overview of the planned tasks achieved in the second year of RUBICON within
WP1, Task 1.3: Implementation and test of the communication infrastructure, as documented in the Description of
Work, and the performed work as documented in this deliverable and in second interim progress report.

Task 1.3 has been performed as planned and finished in March 2013. Based on the feedback we have received from
the partners following the first release of the software (at M12, as documented in D1.3.1), the work in Task 1.3 on
the second year of the project have focused on i) collecting new requirements, ii) addressing them by refining of
the design of the Communication Layer and its components, and iii) supervising and coordinating the necessary
modifications to the Communication Layer and the creation of new features in the activities carried out in Task 1.2
and Task 1.4, which are documented respectively, in deliverables D1.2 and D1.4.

This deliverable is a prototype of the fully implemented and integrated communication layer, offering solutions for
integrating WSAN and robotic components and both data and synaptic channels.

Overall, this work has produced the final version of the Communication Layer that will be used in the final integra-
tion of the RUBICON framework and in the application scenarios. To this end, the software has been fitted with
support for heterogeneous networks. This has been done by providing it with integration mechanisms toward exist-
ing middleware (e.g. the Tecnalia SALAD middleware and the Robotic Operating System), which together allows
the RUBICON system to interact with all the devices used in the two application testbeds. Learning, control and
scalability requirements have been addressed by providing reliable communication mechanisms to be used to com-
municate learning and control instructions, and by integrating the Peis middleware with heterogeneous networks
in order to support the creation of re-configurable, cluster-based and peer-to-peer system systems. Furthermore,
the software has been redesigned and extended to support further extensions and to be as much as possible inde-
pendent from specific networks and applications, thus also increasing its potential for outliving the duration of the
RUBICON project. Finally, the experimentation and further testing of the Communication Layer, and its usability
by both RUBICON partners and third parties has been facilitated with a number of dedicated software utilities,
including a WSN logger for data collection, and a WEB-based WSN reprogramming tool.

30/04/2013 Page 36

RUBICON D1.3.2 Final Version of the Communication Layer RUBICON: Project No.: 269914

8.1 Impact

The software described in this deliverable is accessible in the software repository containing all the code and
examples needed for the execution of the Communication Layer.

The software is currently in active use by all the RUBICON partners, in both research and application testbed,
where it is being used to collect datasets to drive the final advancements planned within the project, and to test the
fully-integrated RUBICON architecture. Based on the feedback of the partners, further work is expected in order to
validate the performance and tune all the communication and integration mechanisms presented in this deliverable
during the final demonstration stage. Data-collection, re-configuration, re-programming and monitoring of the
communication infrastructure during this final stage will be supported by availing of the tools described in this
deliverable.

No unexpected developments occurred during the execution of the second year of WP1.

30/04/2013 Page 37

RUBICON D1.3.2 Final Version of the Communication Layer RUBICON: Project No.: 269914

Bibliography

[1] Qing Cao, Tarek Abdelzaher, John Stankovic, and Tian He. The liteos operating system: Towards unix-like
abstractions for wireless sensor networks. In Proceedings of the 7th international conference on Information
processing in sensor networks, IPSN ’08, pages 233–244, Washington, DC, USA, 2008. IEEE Computer
Society.

[2] W. Munawar, Muhammad Hamad Alizai, Olaf Landsiedel, and Klaus Wehrle. Dynamic tinyos: Modular and
transparent incremental code-updates for sensor networks. In ICC’10, pages 1–6, 2010.

[3] David C. Chu Prabal K. Dutta, Jonathan W. Hui and David E. Culler. Securing the deluge network program-
ming system. In 5th Internaltional Conference on Information Processing in Sensor Networks (IPSN’06),
April 25-27, 2006, 2006.

30/04/2013 Page 38

RUBICON D1.3.2 Final Version of the Communication Layer RUBICON: Project No.: 269914

Chapter 9

Appendix A

9.1 Private APIs and main components of the Communication Layer

9.1.1 The Network Component

The Network Component is responsible for sending messages over the communication interface to a given destina-
tion device. It can be a mote, a PC or a Robot, and it can be located either in the local island or in a remote island.
The destination device is addressed by a RUBICON address, defined as follows:

//RUBICON address

typedef r addr {

uint16 t pid;

uint16 t devid;

} r addr t;

where pid is the PEIS identifier and it addresses software components in a PC or a Robot, and devid is the device
identifier. The former identifies also the island where the PC is connected, while the latter is used only to address
a mote displaced in the island identified by the pid.

The value 0xFFFF is used to address the broadcast island or mote, respectively; the value 0xFFFE is used by the
Synaptic component to address the local island and local mote, while the value 0xFFFD as pid is used to address
the Proxy component in the join protocol and as devid to specify the NULL MOTE in case the message is not for
a mote device.

The Network component exposes an external interface (defined in the following section) that is used by the upper
levels to invoke the network functionalities.

It also have some internal functions for the proper routing and handling of the messaged to be sent.

30/04/2013 Page 39

RUBICON D1.3.2 Final Version of the Communication Layer RUBICON: Project No.: 269914

External Interface

command uint16 t send(r addr t dest, int8 t* payload TDM, uint8 t nbytes TDM, bool reliable);

Sends the given message to the specified destination. It generates and returns a sequence number.

Parameters:

dest - (input) The RUBICON address of the destination of the message. If the devid field is NULL MOTE, it
addresses a PC or a Robot.

payload TDM - (input) Pointer to a region where the data to be sent are stored.

nbytes TDM - (input) Number of bytes to be sent.

reliable - (input) TRUE if an ack is requested for the current message.

Returns:

The sequence number generated for that message.

Implementation: it checks if the dest.pid == LOCAL ISLAND and dest.devid != NULL MOTE (that means that
the destination is a mote in the same island) and in this case sets the device dest parameter of the TOSSend to the
devid field of the input dest parameter, otherwise it is set to the SINK address.

Then it prepares the new payload (payload net = network header + payload TDM) by adding the network header
at the beginning of the received payload. The network header is defined as follows:

1. r addr t dest

2. r addr t sender

3. bool reliable

4. uint16 t seq num

5. uint8 t nbytes

It also updates the size of the message to be sent. Then it invokes the TOSSend as follows:

call TOSSend(device dest, payload net, size net);

event void receive(r addr t sender, int8 t* payload TDM, uint8 t nbytes TDM);

It notifies the reception of the given message from the specified source. The implementation of this event MUST
be implemented in the upper levels, the Network component just notifies this event.

Parameters:

sender - (output) The RUBICON address of the source of the message.

payload TDM - (output) Pointer to the received message.

nbytes TDM - (output) Number of bytes received.

Implementation: it is signaled to the upper level at the end of the implementation of the TOSReceive() event.

command uint16 t join island(mote desc t* desc);

30/04/2013 Page 40

RUBICON D1.3.2 Final Version of the Communication Layer RUBICON: Project No.: 269914

It initiates the protocol to join the island. The application calls this command by passing the pointer to the mote
descriptor that contains the following information:

typedef nx struct mote desc {

nx uint8 t mote type;

nx uint16 t transducers; //bitmask

nx uint8 t actuators; //bitmask

} mote desc t;

where transducers and actuators are bitmask representing, respectively, the transducers and actuators embedded in
the mote.

Parameters:

desc - (input) Pointer to the descriptor of the mote joining the island. It is only stored in the Network layer at this
stage, it will be sent to the SINK when sending the Join Ack.

Returns:

The sequence number generated for that message. The value 0xFFFF means that the mote is already joined.

Implementation: the mote sends the request to the sink that replies with a message containing the r addr t given
to the mote. As consequence, the network layer automatically sends an acknowledgement message to the sink and
notifies the application of the joined event.

event void joined(r addr t addr, error t success);

It notifies the completion of the join protocol. The implementation of this event MUST be implemented in the
upper levels, the Network component just notifies this event.

Parameters:

addr - (output) The given RUBICON address received from the sink.

success - (output) Whether the joining was successfull.

Implementation: it is signaled to the upper level when the ack to the join ack message is received from the sink.

Internal Functions

//TinyOS send

command error t TOSSend(uint16 t device dest, int8 t* payload net, uint8 t size net)

It is called from the network at the end of the implementation of the Network.send().

//TinyOS receive

event void TOSReceive(int8 t* payload net, uint8 t size net)

It extracts the network header from the payload net and checks if the destination is the current device. If so, it
notifies the reception of the message to the upper level by signaling a Network.receive(sender, payload, nbytes)
event. In this case, it also checks the reliable flag, and if it is true, it sends back the acknowledgment for that
message (by using the sequence number received). Otherwise (this means that the mote receiving this message is

30/04/2013 Page 41

RUBICON D1.3.2 Final Version of the Communication Layer RUBICON: Project No.: 269914

the sink) it forwards the message over the serial interface to the Gateway by calling M sendUART(payload net,
uint8 t size net);

//TinyOS serial send

command error t M sendUART(int8 t* payload net, uint8 t size net)

It is called from the network at the end of the implementation of the TOSReceive().

// TinyOS serial receive

event void M receiveUART(int8 t* payload net, uint8 t size net)

It extracts the network header from the payload net and checks if the dest.devid == TOS NODE ID (that means
that the destination is the SINK). In this case it notifies the reception of the message to the upper level by signalling
a Network.receive(sender, payload TDM, nbytes TDM) event. In this case, it also checks the reliable flag, and if
it is true, it sends back the acknowledgment for that message (by using the sequence number received). Otherwise
it forwards the message to the destination mote by calling the TOSSend (dest.devid, payload net, size net).

PC Functions

//TinyOS moteIF send

PC sendUART(byte[] payload net)

It is called from the network at the end of the implementation of the GWReceive().

//TinyOS message listener for messages coming from serial interface

PC receiveUART(byte[] payload net)

It extracts the network header from the payload net and checks if the dest.pid == LOCAL ISLAND (that means
that the message has reached its destination). In this case it notifies the reception of the message to the upper level
by signalling a Network.receive(sender, payload TDM, nbytes TDM) event. In this case, it also checks the reliable
flag, and if it is true, it sends back the acknowledgment for that message (by using the sequence number received).
Otherwise it sends the message to the destination island by means of PEIS (either Tuplespace or PEIS kernel) by
calling the GWSend(dest, payload net, size net).

GWReceive(byte[] payload net, uint8 t size net)

It extracts the network header from the payload net and checks if the dest.devid == NULL (that means that the des-
tination is the current device and not a mote). In this case it notifies the reception of the message to the upper level
by signalling a Network.receive(sender, payload TDM, nbytes TDM) event. In this case, it also checks the reliable
flag, and if it is true, it sends back the acknowledgment for that message (by using the sequence number received).
Otherwise it forwards the message to the SINK over the serial interface by calling the PC sendUART(payload net,
size net).

Info to Gateway

API Implement the following method that sends the given payload to the destination PC or robot through PEIS
(either by means of Tuplespace or PEIS kernel):

void GWSend(RubiconAddress dest, byte[] payload net, short size net)

30/04/2013 Page 42

RUBICON D1.3.2 Final Version of the Communication Layer RUBICON: Project No.: 269914

where the maximum size of the payload is 114 bytes.

Implement also the reception of the sent message at destination point and signal the reception of the message to
the Network by signalling the following event:

event GWReceive(byte[] payload net, short size net)

30/04/2013 Page 43

RUBICON D1.3.2 Final Version of the Communication Layer RUBICON: Project No.: 269914

9.1.2 Transport Message Dispatcher (TMD) Component

It is responsible of dispatching incoming messages to the proper upper-level component. To this purpose, upon
receiving a request to send a message from above components, it adds a flag into the payload that is used at
destination to determine to which component the message should be delivered.

External Interface

command uint16 t send(r addr t dest, int8 t* payload, uint8 t nbytes, bool reliable, uint8 t comp id);

Adds the flag for the message dispatching at destination and forwards the given message to the Network layer. It
returns the sequence number generated by the Network Layer.

Parameters:

dest - (input) The RUBICON address of the destination of the message. If the devid field is null, it addresses a PC
or a Robot.

payload - (input) Pointer to a region where the data to be sent are stored.

nbytes - (input) Number of bytes to be sent.

reliable - (input) TRUE if an ack is requested for the current message.

comp id - (input) The identifier of the Transport-level component sending the message. It is used at destination
side to dispatch the message to the right Transport-level component.

Returns:

The sequence number generated for that message, received from the Network layer.

Implementation: it prepares the new payload (payload TDM = TRANS ID + payload) by adding the comp id
for the message dispatching at the beginning of the received payload. The TRANS ID is a byte. It also up-
dates the nbytes parameter accordingly. Finally it forwards the message to the Network layer by calling the
Network.send(dest, payload TDM, nbytes TDM, reliable), and forwards to the upper layer the sequence number
received from the Network layer.

event void receive(r addr t sender, int8 t* payload, uint8 t nbytes);

It forwards the received message to the proper upper-level component according to the TRANS ID contained in
the message. The implementation of this event MUST be implemented in the upper levels, the TDM component
just notifies this event.

Parameters:

sender - (output) The RUBICON address of the source of the message.

payload - (output) Pointer to the received message.

nbytes - (output) Number of bytes received.

Implementation: it is signaled at the end of the execution of the Network.receive() event.

30/04/2013 Page 44

RUBICON D1.3.2 Final Version of the Communication Layer RUBICON: Project No.: 269914

Internal Functions

It also implements the following event signalled by the Network layer:

event void Network.receive(r addr t sender, int8 t* payload TDM, uint8 t nbytes TDM)

It extracts the TRANS ID contained in the payload TDM and dispatches the received message to the proper upper-
level component, according to the TRANS ID, by signaling the receive(sender, payload, nbytes) event.

9.2 Public APIs of the Communication Layer

9.2.1 Connectioless Component

This component enables the point-to-point communication between two specific devices, typically for sending
commands to remote mote-actuators or pcs.

External Interface

command uint16 t send(r addr t dest, int8 t* payload, uint8 t nbytes, bool reliable, uint8 t comp id);

Adds the flag for the message dispatching at destination and forwards the given message to the Transport Message
Dispatcher. It returns the sequence number generated by the Network Layer.

Parameters:

dest - (input) The RUBICON address of the destination of the message. If the devid field is null, it addresses a PC
or a Robot.

payload - (input) Pointer to a region where the data to be sent are stored.

nbytes - (input) Number of bytes to be sent.

reliable - (input) TRUE if an ack is requested for the current message.

comp id - (input) The identifier of the Application-level component sending the message. It is used at destination
side to dispatch the message to the right Application-level component.

Returns:

The sequence number generated for that message, received from the Network layer.

Implementation: it prepares the new payload (payload CLS = APP ID + payload) by adding the comp id for the
message dispatching at the beginning of the received payload. The APP ID is a byte. It also updates the nbytes
parameter accordingly. Finally it forwards the message to the Transport Message Dispatcher layer by calling the
TransportMD.send(dest, payload CLS, nbytes CLS, reliable), and forwards to the upper layer the sequence number
received from the Network layer.

event void receive(r addr t sender, int8 t* payload, uint8 t nbytes);

It forwards the received message to the proper upper-level component according to the APP ID contained in the
message. The implementation of this event MUST be implemented in the upper levels, the Connectionless compo-
nent just notifies this event.

30/04/2013 Page 45

RUBICON D1.3.2 Final Version of the Communication Layer RUBICON: Project No.: 269914

Parameters:

sender - (output) The RUBICON address of the source of the message.

payload - (output) Pointer to the received message.

nbytes - (output) Number of bytes received.

Implementation: it is signaled at the end of the execution of the TransportMD.receive() event.

Internal Functions

It also implements the following event signalled by the Network layer:

event void TransportMD.receive(r addr t sender, int8 t* payload CLS, uint8 t nbytes CLS)

It extracts the APP ID contained in the payload CLS and dispatches the received message to the proper upper-level
component, according to the APP ID, by signaling the receive(sender, payload, nbytes) event.

30/04/2013 Page 46

RUBICON D1.3.2 Final Version of the Communication Layer RUBICON: Project No.: 269914

9.2.2 Component Management

The API is unchanged (see Deliverable D1.3.1), only the join message has been changed. The new version of the
join message is the following:

typedef nx struct serial joined msg {

nx uint16 t island addr;

nx uint16 t mote addr;

nx uint8 t mote type;

nx uint16 t transducers;

nx uint8 t actuators;

} serial joined msg t;

where mote type identifies the type of mote (advanticsys, kneex, or other), transducers and actuators are bitmasks
representing, respectively, which transducers and actuators are available on the mote. These information have to
be provided at compile time.

9.2.3 Rubicon Ack

It is a transport-level component responsible of manage the sending/reception of the acknowledgement Connec-
tionless messages. When the Connectionless component receives a message that has to be acknowledged, it calls
the send ack() command to send back the ack message to the source. At the sender side, when an ack message is re-
ceived by the network, it is notified to this component (as transport layer notification), and it notifies the application
of the reception of the ack by means of the receive ack() event.

command void send ack(r addr t dest, int8 t* payload, uint8 t nbytes, bool reliable, uint8 t comp id);

Parameters:

dest - (input) The RUBICON address of the destination of the message. If the devid field is null, it addresses a PC
or a Robot.

payload - (input) Contains only the header and the seq num.

nbytes - (input) Number of bytes to be sent.

reliable - (input) Always FALSE, it is left in order to be compliant with the TransportMD interface.

comp id - (input) Always RUBICON ACK, it is left in order to be compliant with the TransportMD interface.

Implementation: Sends the ack for a message. The payload has to be an app msg t contaning, in its payload,
only the seq num of the message to be acknowledged, therefore the expected nbytes is 4 (2 bytes for the APP ID
and TRANS ID and 2 bytes for the seq num). This component intefaces with the TransportMD, as all the other
Transport component.

event void receive ack(r addr t sender, uint16 t seq num);

Signal that the acknowledgment of the message identified by the given sequence number from the given source.
The implementation of this event MUST be implemented in the upper levels, the Network component just notifies

30/04/2013 Page 47

RUBICON D1.3.2 Final Version of the Communication Layer RUBICON: Project No.: 269914

this event.

Parameters:

sender - (output) The RUBICON address of the sender of the acknowledgement message.

seq num - (output) The sequence number of the acknowledged message

9.2.4 Synaptic Channels Component

The API is unchanged (see Deliverable D1.3.1).

9.2.5 Streams Component

The API is unchanged (see Deliverable D1.3.1).

30/04/2013 Page 48

