
RUBICON
RUBICON Robotic UBiquitous COgnitive Network
Project No.: 269914

D1.2 – Integration of
Communication Layer and

Robotic Components
Editor: Claudio Gennaro CNR

Mauro Dragone UCD

Contributor(s): Alessandro Saffiotti ORU
Héctor Lozano Tecnalia
Maurizio Di Rocco ORU
Claudio Vairo CNR

Dissemination level

X PU = Public

PP = Restricted to other programme participants (including the Commission Services)

RE = Restricted to a group specified by the consortium (including the Commission Services)

CO = Confidential, only for members of the consortium (including the Commission Services)

c© Copyright RUBICON - All rights reserved



RUBICON D1.2 Integr. of Comm. Layer and Robotic Comp. RUBICON: Project No.: 269914

Issue Date 30/04/201
Deliverable Number D1.2
WP WP 1 - Communication Layer
Status Draft Working × Released Delivered to EC Approved by EC

Document history
V Date Author Description

0.1 13/02/2012 Mathias Broxvall Creation of LaTeX template
0.1 11/03/2013 Claudio Gennaro Very first draft
0.2 02/04/2013 Claudio Gennaro Added Chapter about islands routing
0.3 22/04/2013 Maurizio Di Rocco Added Chapter about PEIS-ROS
0.8 24/04/2013 Claudio Gennaro Added Chapter about SALAD
0.9 02/05/2013 Héctor Lozano Internal review
1.0 07/05/2013 Kylie O’Brien Final QA review

Disclamer The information in this document is provided as is and no guarantee or warranty is given that the
information is fit for any particular purpose. The user thereof uses the information at its sole risk and liability.

The document reflects only the author’s views and the Community is not liable for any use that may be made of
the information contained therein.

30/04/2013 Page 1



RUBICON D1.2 Integr. of Comm. Layer and Robotic Comp. RUBICON: Project No.: 269914

Executive Summary

This deliverable (D1.2) describes the work carried out in the Task 1.2 Integration of Robotic Components and
WSAN. In particular, T1.2 concerns the integration of previously existing robotic devices and software components
to satisfy the requirements posed by Task 1.1, which involves the generic integration of pre-existing robotic com-
munication tools (Part of the PEIS-ROS bridge) and the integration of specific PEIS Ecology functionalities to
non-PEIS side of Communication Layer. This latter task includes the routing between islands and the access to
non-WSN sensors inside WSN network.

30/04/2013 Page 2



RUBICON D1.2 Integr. of Comm. Layer and Robotic Comp. RUBICON: Project No.: 269914

Contents

1 Introduction 5

2 PEIS-ROS Bridge 6

3 Routing between WSAN Islands and Robotic Devices 9
3.1 The Topology of the Communication Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 The Intra-Island Connectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3 The Inter-Island Connectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.4 The RUBICON Addressing Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4 Access to non-WSAN Sensors 16
4.1 The SALAD Middleware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.2 Integration with RUBICON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5 Conclusions 24

Figures

2.1 the communication between ROS nodes and PEIS middleware is managed by the PEIS-ROS interface . . . 6
2.2 interface between a Ros node and the RUBICON network . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Decomposition of a ROS package in Peis-Tuples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.1 The general organization of the WSAN network . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 The intra-island communication. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3 The inter-island communication between a mote and a robot/PC. . . . . . . . . . . . . . . . . . . 11
3.4 The inter-island communication between two foreign motes. . . . . . . . . . . . . . . . . . . . . 12
3.5 Flowchart of the reception of a message from the sink network level. . . . . . . . . . . . . . . . 14
3.6 Flowchart of the reception of a message from the mote network level. . . . . . . . . . . . . . . . 15

4.1 General module architecture of SALAD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2 Graph of SALAD and Rubicon communication . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.3 Graph TV Actuation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

30/04/2013 Page 3



RUBICON D1.2 Integr. of Comm. Layer and Robotic Comp. RUBICON: Project No.: 269914

Abbreviations
AF Agent Factory
BDI Belief Desire Intention (agent model)
MAC Media Access Control
PEIS Physically Embedded Intelligent System
ROS Robotic Operating System
RUBICON Robotic UBIquitous COgnitive Network
SPP Serial Port Profile
SW Software
WSN Wireless Sensor Network
WSAN Wireless Sensor and Actuator Network

30/04/2013 Page 4



RUBICON D1.2 Integr. of Comm. Layer and Robotic Comp. RUBICON: Project No.: 269914

Chapter 1

Introduction

This report describes the integration of existing robotic, sensing, and actuation components in the communication
infrastructure of RUBICON and communication between remote WSAN islands based on TinyOS. This integration
is based on the newer version of the PEIS-kernel, generation G6, described in D1.3.1 and D1.1 and on the gateway
and proxy functionalities of the final release described in D1.4.

The document is divided into the following three parts:

• The interface between the PEIS middle-ware and ROS. This interface is used in order to allow multiple
robots equipped with ROS (Robot Operating System) to be part of the RUBICON system, i.e. to exchange
data with other RUBICON nodes.

• Support for multi-island communications. The aim of this feature is twofold: first, to guarantee the scala-
bility of TinyOS WSAN, and second, to permit robotic devices to be integrated with the TinyOS WSAN.
In fact, robots (i.e., PCs) can be viewed as special islands consisting of one just one node, which can be a
basestation or basestation + sink mote connected via USB.

• Access to non-WSAN Sensors. This is about the integration of the SALAD platform, which allows the
interconnection and cooperation among several systems of sensors and actuators in one platform, providing
an easy access to the information and a flexible environment for application development.

The latter two aspects rely on the development of a gateway that is described in the deliverable D1.4.

30/04/2013 Page 5



RUBICON D1.2 Integr. of Comm. Layer and Robotic Comp. RUBICON: Project No.: 269914

Chapter 2

PEIS-ROS Bridge

In this section a description of the interface between the PEIS middle-ware and ROS is provided. This interface is
used in order to allow multiple robots equipped with ROS (Robot Operating System) to be part of the RUBICON
system, i.e. to exchange data with other RUBICON nodes. Such choice is dictated by the fact that ROS entails the
presence of a centralized master program (ROS master) managing the connections between cooperating modules;
this structure doesn’t fit the purpose of having a distributed and dynamic system where robots can join and leave
the network at any time.

To fill this gap, an interface enhancing the capabilities of ROS components has been implemented. Each robot
leveraging ROS can be seen like a monolithic structure internally constituted by a set of nodes. The data exchange
between these nodes is managed by the related ROS master while the data flow within the RUBICON network is
achieved through the PEIS-ROS interface (see Fig. 2.1).

Figure 2.1: the communication between ROS nodes and PEIS middleware is managed by the PEIS-ROS interface

Capabilities are enhanced in both receiving and sending directions. The basic structure of the program implement-
ing a PEIS-ROS node is depicted in 2.2:

In particular the program can be divided into the following parts:

• PREAMBLE: this part, generally present at the beginning of the program, defines tuples from which the
node should gather data as well as tuples that have to be published by the node itself. Note that these
routines can exploit the capabilities of the PEIS middle-ware to subscribe to abstract tuples. In this portion
of code, the routines related to the callback section are launched.

• CALLBACK SECTION: this part is constituted by routines managing incoming data from other RUBICON

30/04/2013 Page 6



RUBICON D1.2 Integr. of Comm. Layer and Robotic Comp. RUBICON: Project No.: 269914

Figure 2.2: interface between a Ros node and the RUBICON network

nodes. In particular they asynchronously update data structures that are managed by the BODY of the
program

• BODY: this part is the core of the program and usually interacts with other internal ROS nodes depending
on the received data from the RUBICON network. During the execution of this portion of program, that is
typically an infinite loop, data structures are modified upon the receiving of new data or information can be
sent out over the network through standard PEIS routines

• RUBICON DATA PUBLISHING SECTION: this section writes into tuples meaningful data for other RU-
BICON nodes

Usually the most likely exchanged data refer to high level events (e.g. command received, task accomplishment
notification) about which the nodes are able to reason about. Beside this configuration, the PEIS-ROS interface also
offers the possibility to split standard ROS packets into tuples that can be read by other RUBICON nodes. Each
ROS message is constituted by a set of static sub-packets; one of them, data field, contains the payload. While
static sub-packets have a permanent representation, i.e. they are always expressed through the same data structures,
the data field varies in accordance to the specific ROS packet: in this case the content of this field is written into
a binary tuple that has to be properly managed by the related subscribers. The decomposition of a ROS packet
into tuples is depicted in Fig. 2.3. This feature is useful when raw message exchanges between robots exploiting
ROS are needed although this modality suffers the lack of a ROS-master and therefore introduce all the related
problems concerning synchronization. These side effects can only be partially mitigated by the API provided by
PEIS middle-ware.

30/04/2013 Page 7



RUBICON D1.2 Integr. of Comm. Layer and Robotic Comp. RUBICON: Project No.: 269914

Figure 2.3: Decomposition of a ROS package in Peis-Tuples

30/04/2013 Page 8



RUBICON D1.2 Integr. of Comm. Layer and Robotic Comp. RUBICON: Project No.: 269914

Chapter 3

Routing between WSAN Islands and Robotic

Devices

3.1 The Topology of the Communication Layer

One of the requirements for the Communication Layer is that the topology and the routing mechanisms must sup-
port a growing number of devices without degradation of performance in communications. Moreover, the Com-
munication Layer must be distributed across the Motes, PCs, and Robots in order to minimize network bandwidth,
latency, and energy consumption. In order to fulfill these requirements, the Communication Layer is based on a
hybrid topology, in which a cluster of motes, called islands, are interconnected by mean of the PEIS “whiteboard”
through a special mote acting as hub. This mote is called sink and it is in turn connected via USB with a basestation
(a PC) that eventually is linked to the PEIS network. The nodes belonging to an island communicate with each
other through the shared standard channel TinyOS (see Figure 3.1). This type of connection can be seen as a bus
topology, in which messages are broadcast on the same mean to all nodes. Each node checks the destination ad-
dress in the message header, and processes the messages addressed to it. The connectivity between distinct islands
relies on a second level of connection provided by PEIS. The central hub is crucial to ensure the routing. All the
nodes are connected to the central hub (i.e., the sink node together the basestation) and hence all the messages go
through the central hub before going to the individual nodes. The main advantage of this two layer topology, which
resemble a tree topology, is that it is easy to add new nodes/machines into the existing network. This topology
is often refereed in literature [2, 1] as Cluster Based Model, the routing in these models is recognized as energy
efficient compared with direct routing and multihop routing.

In addition to supporting network scalability, cluster based model has numerous advantages. It can localize the
route set up within the cluster and thus reduce the size of the routing table stored at the individual node. Clustering
can also conserve communication bandwidth since it limits the scope of inter-island interactions to sink node and
avoids redundant exchange of messages among sensor nodes.

30/04/2013 Page 9



RUBICON D1.2 Integr. of Comm. Layer and Robotic Comp. RUBICON: Project No.: 269914

Figure 3.1: The general organization of the WSAN network

3.2 The Intra-Island Connectivity

The intra-island connectivity is ensured by the communication capabilities offered by TinyOS. Each node of the
island is therefore able to communicate directly with other nodes without having to pass from the sink and without
the use of algorithms for multi-hop. This has the advantage of simplicity, but requires that each node is within the
communication range of the other nodes (see Figure 3.2).

3.3 The Inter-Island Connectivity

Connectivity between islands (inter-island) is guaranteed by the PEIS middleware. Whenever a node of an island
must send a message to a remote node this must first be sent to the sink node, which in turn will forward it, taking
advantage of the basestation, to the receiving basestation through PEIS. The latter is connected to the sink that then
forward the message to the node of the island under its responsibility.

Figures 3.3 and 3.4 show, respectively, the message routing from a mote to PC/Robot connected to PEIS, and the

30/04/2013 Page 10



RUBICON D1.2 Integr. of Comm. Layer and Robotic Comp. RUBICON: Project No.: 269914

Figure 3.2: The intra-island communication.

message routing from two motes belonging to different island.

Figure 3.3: The inter-island communication between a mote and a robot/PC.

30/04/2013 Page 11



RUBICON D1.2 Integr. of Comm. Layer and Robotic Comp. RUBICON: Project No.: 269914

Figure 3.4: The inter-island communication between two foreign motes.

3.4 The RUBICON Addressing Scheme

Addressing algorithm in WSAN have to deal with storage consumption costs, processing costs and the energy, since
addressing cost of storing, processing and energy costs consumption are important in evaluating the performance
and improving scalability of an addressing scheme. In particular, the design of the RUBICON addressing scheme
must satisfy two conflicting requirements, compactness and simplicity, and the ability to target and route messages
to elements within the ecology that may be sensors inside the islands or devices connected to PEIS.

Compactness. WSAN nodes have strong memory constraint. Applying current address such as 32 bit IP addresses
or the 128 bit IPv6 addresses is possible, but results in needless overhead. Significant savings can be realized by
using only the minimum number of bits required to uniquely address all the nodes. However, an address-based
WSAN has its side effects because constructing and maintaining an address structure usually requires additional
cost. It is important to consider this cost in WSAN, where every bit transmitted can reduce the lifetime of the
network. A key factor to consider is that both the packet size and data rate in WSAN are usually very small.

Simplicity. The low processing capabilities of motes prevents the use of multi-hop routing protocols. Moreover,
multi-hop routing in WSN is affected by new nodes constantly entering or leaving the network. Our cluster-based
routing protocols based on a hierarchical network organization provides an efficient and at the same time simple
enough to be managed.

Dynamicity. The address of island of a mote is dynamic, i.e. it can be set at run time and not at compile time. In
this way a mote can join any island. Moreover, each mote in the island can have a local address identical to motes
of other islands. The address of the island is able to make independent islands. In this way, there is no need to
know the addresses of the local mote in the other islands when you have to deploy a new island in the ecology since

30/04/2013 Page 12



RUBICON D1.2 Integr. of Comm. Layer and Robotic Comp. RUBICON: Project No.: 269914

there is no risk of address collision. The sub-addressing solves this problem by passing Island Address at Join time
to the joining time.

The RUBICON address is defined as follows:

typedef r_addr {

uint16_t pid;

uint16_t devid;

} r_addr_t;

where pid is the PEIS identifier and it addresses software components in a PC or a Robot, and devid is the
device identifier. The former identifies also the island where the PC is connected, while the latter is used only to
address a mote displaced in the island identified by the pid.

// reserved island addresses

BROADCAST 0xFFFF

LOCAL_ISLAND 0xFFFE

PROXY_PEIS_ID 0xFFFD

// reserved devid addresses

AM_BROADCAST 0xFFFF

LOCA_MOTE 0xFFFE

NULL_MOTE 0xFFFD

3.4.1 Island Collision Resolution and Safe Join

One problem that has been addressed in the implementation of the islands topology, is the possible overlap of the
islands. A mote may be in communication range of two sinks two different islands and create interferences. One
possible solution is to take advantage of the multiple channels of the MAC protocol, which, however, are few (3 or
4).

The problem is solved by the network layer of the Communication Layer by looking up addresses of the recipient
when a message is received by a mote. In the case of sink, if the recipient is another island then we check whether
the message should be forwarded (remember that the sink has the duty to forward the messages to the basestation
to the remote islands). In the latter case, if the island address of the sending mote is different from that of the island
which the sink belongs to, then the message is ignored because it is a mote of another island. If instead, it is the
same island, then the message must be forwarded to the basestation (which in turn will forward the message to the
remote island via PEIS). In the case of a generic mote of an island (ie, different from the sink) if the message is
addressed to another island then it can simply be ignored.

This behavior is represented by the flowcharts of Figures 3.5 and 3.6. The test of the message that avoids island
collision is expressed by the right branches of the two flowcharts. The branches on the left side express the join
management. The sink keep track of the list of device ids of the motes belonging to its island. When a join
message is received from a mote that wants to take part of the island, the sink check if the mote is already in the
list. If so, the join message is ignored (because the mote that sent the join message may be trying to join another

30/04/2013 Page 13



RUBICON D1.2 Integr. of Comm. Layer and Robotic Comp. RUBICON: Project No.: 269914

Is a JOIN message?

Is the destination 

address of the island

Local?

Is the Destination 

address of the device 

NULL

BEGIN

radio_receive

yes no

Is the source 

address of the island 

Local

yes no

yes no yes no

Ignore 

Message

Forward it 

to  the 

Basestatio

n

Signal 

receive to 

Transport 

level

Forward it 

to the 

Basestatio

n

Add  Source 

address of the 

device in list of the 

device of the Island

Is the Source 

address of the device 

already in the Island?

Ignore join

yes no

Ack from mote 

received?

TinyOS

Communication 

Layer’s Network 

Figure 3.5: Flowchart of the reception of a message from the sink network level.

island and the message has arrived by chance to the sink). Otherwise, the sink send a join reply message to mote
communicating that it is available to take the mote in the island. The mote that sent the join message replies with
an Ack message. Only when the Ack message is received by the sink, the sink adds it in the list of the motes of the
list. This additional check is necessary because the join message by the mote could reach two sinks, with the risk
of joining two islands simultaneously. In this case, the mote decides which island to join and sends the Ack only
to the sink of the island that he decided to join. The distinctions between ordinary messages and join messages is
guaranteed by the mechanism of the Active Message Interfaces of TinyOS.

30/04/2013 Page 14



RUBICON D1.2 Integr. of Comm. Layer and Robotic Comp. RUBICON: Project No.: 269914

Is a JOIN reply message?

BEGIN

radio_receive

yes no

Send an Ack to the 

sink and update 

information about 

mote Island

Is the mote already joined?

Ignore join 

reply 

message

yes no

Ignore 

message

Is the destination 

address of the island

Local?

Signal 

receive to 

Transport 

level

yes no

TinyOS

Communication 

Layer’s Network 

Figure 3.6: Flowchart of the reception of a message from the mote network level.

30/04/2013 Page 15



RUBICON D1.2 Integr. of Comm. Layer and Robotic Comp. RUBICON: Project No.: 269914

Chapter 4

Access to non-WSAN Sensors

With the aim of providing access to non WSAN sensors in Rubicon, the SALAD middleware developed by Tecnalia
offers to third applications the possibility of communicating with a set of sensors and actuators installed in a
homelab by mean of an easy access to the information and a flexible environment for application development.

4.1 The SALAD Middleware

SALAD is a framework which allows the interconnection and cooperation among several systems of sensors and
actuators in one platform, providing an easy access to the information and a flexible environment for application
development.

The main goal of SALAD is to keep the programmer away from the underlying technology, providing a common
API to access the hardware, regardless the manufacturer and type of the devices which will be used. This feature
allows the programmer to focus only on the development of the services which will make use of such devices.

The access to the information is made by several ways, depending on the needs of each application, or even
depending on the needs of the modules of an application. The access can be carried out by using an enquiry, an
event or by sampling.

1. By enquiry: The applications ask SALAD for the information they need, in the time they need it, in an
explicit way. This is the preferred method to process the information in an off-line mode.

2. By event: Each time a change in a sensor status occurs, SALAD sends automatically the status updates to
subscribed applications, by means of a message service. This is the preferred way to process information in
real time.

3. By sampling: The applications which need to do so can subscribe to the Sample & Hold service, selecting
the required sampling frequency. In this way they will receive, periodically at a fixed rate, an “image” of
the status of the whole system at a certain time. This method may be useful for applications which require
a periodic sampling of the information.

30/04/2013 Page 16



RUBICON D1.2 Integr. of Comm. Layer and Robotic Comp. RUBICON: Project No.: 269914

Figure 4.1: General module architecture of SALAD

4.1.1 Architecture

The following paragraphs show the modules of the SALAD architecture, see also Figure 4.1.

4.1.2 Low Level Layer

This is the lowest layer, in charge of performing the direct communication with the hardware. In this layer there is a
module for each of the supported network. The main networks already integrated in the platform are the following
ones:

Domotic networks based on KNX Connecting module with domotic networks KNX, both wired and wireless.
The events generated by the sensors are sent by means of the serial interface of KNX to the SALAD host, where
they are managed. Also an additional PC can be used as a gateway to perform tests in laboratory.

30/04/2013 Page 17



RUBICON D1.2 Integr. of Comm. Layer and Robotic Comp. RUBICON: Project No.: 269914

Ibernexs Network for Tele-assistance Connecting module with the home tele-assistance terminal of the man-
ufacturer Ibernex and its network of wireless sensors. The connection is made by an USB port, and the terminal
must be previously configured to be able to receive the events form the sensors.

Sensors are connected by RF with the tele-assistance module of Ibernex, which sends the events to SALAD.

Sound recognition system by Tecnalia This system collects the data regarding the probabilistic estimation of
the recognition of home sounds. Data are sent via sockets to SALAD from a SW for sound detection, developed
by Tecnalia, which detects the sounds generated inside the home, processes them (searching for previously learnt
sounds, labeled as relevant), and sends them to SALAD with a probabilistic level.

There are 2 methods for processing the information within SALAD:

1. Sound event module: The sound recognition software sends the events generated by the detection system
only if the sound is recognizable. That is to say, if the system recognizes the sound of bell or door, it sends
an event indicating that this sound has been detected. There is a previous pre-processing step in the software,
so SALAD simply stores that value.

2. Sound probabilistic module: SALAD continuously receives the probabilistic data of each frame. In this
case, SALAD will perform the processing in order to store the samplings and to determine which sound has
been detected within that frame.

Medical devices Bluetooth Taidoc/RGB The current available medical devices are connected via Bluetooth to
SALAD. The connection profile is SPP, it is a serial virtual port by Bluetooth, allowing for 7 connection open
simultaneously. The operation is based on automatic connections.

The SALAD system is continuously searching for Bluetooth devices. When it finds an active TAIDOC device, it
asks for data and stores them. In this way, it allows the user to measure his/her physiological signals without the
need to follow certain rules.

TV LG Gateway via Bluetooth This module for monitoring and actuation allows to obtain the current status
of the TV set and to command it through the serial port of this device. In order for the communication to be
performed with SALAD by means of a wireless interface, a RS-232/Bluetooth converter has been set up, allowing
a BT connection for the TV set.

When SALAD starts its execution, it searches for devices with Bluetooth adapter which allows the RS-232 / BT
conversion. Once the device is detected, the connection is established and it remains open as long as SALAD is
running. The TV monitoring activity is performed for:

1. Switch On / Off

2. Video source used

3. Current volume level

In addition, commands simulating the TV remote control can be issued from any SALAD access point.

The manufacturer of the TV set is LG, with a proprietary communication protocol via RS-232.

30/04/2013 Page 18



RUBICON D1.2 Integr. of Comm. Layer and Robotic Comp. RUBICON: Project No.: 269914

4.1.3 Abstraction Layer

This layer collects the information produced by the low level layer, and processes it following SALAD rules. If
the information gas been produced by a registered sensor, it is stored in the data base and a message is sent to all
registered components within the message system. The abstraction modules are the following ones:

1. Abstraction Service: it checks the validity of sensors data. It makes requirements to the higher layer of the
data base in order to know whether the sensor and its associated data have been registered correctly.

2. Dumper Service: once the events have been verified by the Abstraction Service, the Dumper Service sends
them to the higher layer of the data base in order to be stored.

4.1.4 Service Layer

This is the core of the framework. It provides basic services to both the lower and higher layers. It includes the
following services:

1. Config Manager: Service for supporting the configuration. With this service the components (from SALAD
or from the application) have an easy access to files of external configuration. It also eases the parametriza-
tion of several components of the application.

2. Logger: Log service for printing messages on screen and in a file. It supports several levels depending on
the type of message to be shown: informative, advertence, error, debugging, etc. It eases the tasks of testing
and error fixing.

3. Persistence: Service of persistence in the data base. It allows to store information permanently and to
access to it later. It also allows to make enquiries to SALAD about the networks, sensors and rooms in the
installation.

4. Messaging Service: it is used by both SALAD and the applications to receive information about the stuatus
of the system or the sensors. It allows the enquiries to sensor networks by means of events.

5. Sample & Hold: It allows to receive, periodically and with fixed intervals, an image of the status of the
whole system in a certain time.

4.2 Integration with RUBICON

With the aim to provide to third applications (such as the RUBICON case) the information collected from the
networks and to allow remote actuation, SALAD offers a communication protocol, UDP, for that purpose. The
Tecnalia Middleware (SALAD) allows an external application (Rubicon) to:

1. Receive the status of all the sensors

30/04/2013 Page 19



RUBICON D1.2 Integr. of Comm. Layer and Robotic Comp. RUBICON: Project No.: 269914

2. Send actions to the actuators

The dedicated ports for the communication are the following ones:

Internal Service port (Tecnalia Middleware will be listening in this port)

Port: 9000

External Service port (Rubicon will be listening in this port)

Port: 9100

4.2.1 Receive the status of all the sensors:

Using the UDP protocol it is possible to communicate with SALAD to start the transmission of the data and then
stop it. In order to do this there are three commands available:

//Request for the list of HarwareIds

#SALAD#0:2:2:0#END#

//Starting the sending data with frequency 2Hz (500ms)

#SALAD#0:1:2:0#END#

//Stopping the sending of data

#SALAD#0:0:2:0#END#

The first command “#SALAD#0:2:2:0#END#” asks for the name of the devices that are running in SALAD. When
SALAD receives this command it will send a command such as:

#SALAD#:DeviceHardwareId1:DeviceHardwareId2:....:DeviceHardwareIdN:#END#

The order of the Devices names is the same one used by SALAD to send the data when it receives the command
“#SALAD#0:1:2:0#END”

When SALAD receives the command “#SALAD#0:1:2:0#END” it will start to send the status of all the sensors
each 500ms. The message which will be sent has the format:

#SALAD#:StatusDevice1:StatusDevice2:....:StatusDeviceN:#END#

The stopping of the transmission will be done when SALAD receives the command “#SALAD#0:0:2:0#END#”.

In Figure 4.2 the graph of this sequence is shown.

4.2.2 Send actions to the actuators

Using the UDP protocol it is possible to communicate with SALAD, in order to send commands to the available
actuators in the networks integrated in SALAD. The available actuators are:

1. KNX:

(a) Open/Close the door

30/04/2013 Page 20



RUBICON D1.2 Integr. of Comm. Layer and Robotic Comp. RUBICON: Project No.: 269914

Figure 4.2: Graph of SALAD and Rubicon communication

(b) Switch On/Off of Outside and Bedroom lights

(c) Up/Down movement of the blind of the bedroom

2. TV:

(a) Switch On/Off the TV set

(b) Change the AV mode (for example between TDT and the AV3 for the Wii)

(c) Up/Down the volume

The format of the UDP message is:

#SALAD#2:DeviceHardwareId:Action:0#END#

where “DeviceHardwareId” is the name of the actuator, “Action” is what you want to do.

In the following table the HardwareIds are listed.

30/04/2013 Page 21



RUBICON D1.2 Integr. of Comm. Layer and Robotic Comp. RUBICON: Project No.: 269914

HardwareId Tag
1/4/1 KNX DOOR
1/1/1 KNX LIGHT ENTRANCE
2/1/1 KNX LIGHT BEDROOM
2/5/1 KNX BLIND UP
2/5/2 KNX BLIND DOWN
2/5/3 KNX BLIND STOP
1/4/2 KNX DOOR OPEN
LG TV STATE

In the following table the Actions are listed.

Description Action
For all KNX actuators 0 or 1
TV channel 0 0
TV channel to 1 1
TV channel to 2 2
TV channel to 3 3
TV channel to 4 4
TV channel to 5 5
TV channel to 6 6
TV channel to 7 7
TV channel to 8 8
TV channel to 9 9
TV ON 10
TV OFF 11
TV volume Up 12
TV volume Down 13
TV mute 14
TV channel Up 15
TV channel Down 16

In the following tables you can find some example of actuation.

KNX Actuation:

Open the door #SALAD#2:1/4/2:1:0#END#
Close the door #SALAD#2:1/4/2:0:0#END#
Switch On the Bedroom light #SALAD#2:2/1/1:1:0#END#
Switch Off the Bedroom light #SALAD#2:2/1/1:0:0#END#
Switch On the En-
trance/Outside light

#SALAD#2:1/1/1:1:0#END#

Switch Off the En-
trance/Outside light

#SALAD#2:1/1/1:0:0#END#

TV Actuation:

30/04/2013 Page 22



RUBICON D1.2 Integr. of Comm. Layer and Robotic Comp. RUBICON: Project No.: 269914

Figure 4.3: Graph TV Actuation

Switch On the TV #SALAD#2:LG:10:0#END#
Switch Off the TV #SALAD#2:LG:11:0#END#
Change to the Channel 4 (from
0 to 9)

#SALAD#2:LG:4:0#END#

Going Up one channel #SALAD#2:LG:15:0#END#
Going Down one channel #SALAD#2:LG:16:0#END#
Change the AV mode It will be available,
Up the Volume (1 step) #SALAD#2:LG:12:0#END#
Down the Volume (1 step) #SALAD#2:LG:13:0#END#
Mute the Volume #SALAD#2:LG:14:0#END#

In Figure 4.3 the graph of the sequence for the TV Actuation is shown.

30/04/2013 Page 23



RUBICON D1.2 Integr. of Comm. Layer and Robotic Comp. RUBICON: Project No.: 269914

Chapter 5

Conclusions

We summarize this report with an overview of the planned tasks for the second year of RUBICON within WP1,
Task 1.2: Integration of robotic components and WSAN (M13-24), as documented in the Description of Work, and
the performed work as documented in this deliverable and in the Interim Report.

Task 1.2 have been performed as planned and finished in March 2013. The result of this task has provided the
RUBICON with the integration of specific previously existing robotic devices and software components in terms
of sensors, actuators, and commands. These include the integration of autonomous robots developed at ORU by
means of the interface between the PEIS middle-ware and ROS, support to the routing of communication between
WSAN islands connected with PEIS, and access to non-WSAN Sensors within the RUBICON ecology.

The interface between the PEIS middleware and ROS is provided in order to allow multiple robots equipped with
ROS (Robot Operating System) to be part of the RUBICON system, i.e. to exchange data with other RUBICON
nodes. Such choice is dictated by the fact that ROS entails the presence of a centralized master program (ROS
master) managing the connections between cooperating modules; this structure does not fit the purpose of having
a distributed and dynamic system where robots can join and leave the network at any time.

Thanks to the effort made in the development of Communication Layer described in D1.3.2, the multi island routing
allows the ecology to integrate “for free” Robots and PCs since any node that has a PEIS-id is seen in RUBICON as
an autonomous islands consisting of a single node. The routing between the islands is obtained also by the gateway
component described in D1.2.

With the aim of providing access to non WSAN sensors in RUBICON, the SALAD middleware developed by
Tecnalia offers to third applications the possibility of communicating with a set of sensors and actuators installed
in a homelab by mean of an easy access to the information and a flexible environment for application development.

The software is currently present at and in active use by all of the partners. Based on the feedback of the part-
ners, further work is expected in order to validate the performance and tune all the mechanisms presented in this
deliverable once they are operating in the final application testbeds.

30/04/2013 Page 24



RUBICON D1.2 Integr. of Comm. Layer and Robotic Comp. RUBICON: Project No.: 269914

Bibliography

[1] Ameer Ahmed Abbasi and Mohamed Younis. A survey on clustering algorithms for wireless sensor networks.
Computer Communications, 30(14–15):2826–2841, 2007.

[2] Shio Kumar Singh, MP Singh, and DK Singh. A survey of energy-efficient hierarchical cluster-based routing in
wireless sensor networks. International Journal of Advanced Networking and Application (IJANA), 2(02):570–
580, 2010.

30/04/2013 Page 25


