
RUBICON
RUBICON Robotic UBiquitous COgnitive Network
Project No.: 269914

D1.4 – Proxy-specific
Software Suite

Editor: Mauro Dragone UCD

Contributor(s): Claudio Gennaro CNR
Alessandro Saffiotti ORU
Claudio Vairo CNR

Dissemination level

X PU = Public

PP = Restricted to other programme participants (including the Commission Services)

RE = Restricted to a group specified by the consortium (including the Commission Services)

CO = Confidential, only for members of the consortium (including the Commission Services)

c© Copyright RUBICON - All rights reserved

RUBICON D1.4 Proxy-specific Software Suite RUBICON: Project No.: 269914

Issue Date 19/05/2013
Deliverable Number D1.4
WP WP 1 - Communication Layer
Status Draft Working × Released Delivered to EC Approved by EC

Document history
V Date Author Description

0.1 13/02/2012 Mathias Broxvall Creation of LaTeX template
0.2 11/03/2013 Claudio Gennaro First draft
0.3 20/03/2013 Mauro Dragone WEB-based programming tool
0.4 10/04/2013 Claudio Gennaro Appendix
0.5 28/04/2013 Mauro Dragone Final version
0.6 05/05/2013 Maurizio di Rocco Internal Review
0.1 10/05/2013 Kylie O’Brien QA Review
0.1 16/05/2013 Mauro Dragone Final corrections

Disclamer The information in this document is provided as is and no guarantee or warranty is given that the
information is fit for any particular purpose. The user thereof uses the information at its sole risk and liability.

The document reflects only the author’s views and the Community is not liable for any use that may be made of
the information contained therein.

11/03/2013 Page 1

RUBICON D1.4 Proxy-specific Software Suite RUBICON: Project No.: 269914

Executive Summary

This deliverable takes place at the end of (M24) of the RUBICON project WP1 building the RUBICON Com-
munication Layer (CML). The CML provides communication and integration mechanisms built upon middleware
for wireless sensor and actuator networks (WSANs) and robotic ecologies. The objective of this deliverable is
to describe the output of the work carried out in Task 1.4: Adaptation of existing data-sharing middle-ware and
proxy solutions for WSN/robot integration. This task involves the identification of common component description
for automatic discovery of hardware and processing capabilities and the provision of standard mechanisms that
the higher layers of the RUBICON system can use to interact with the underlying sensing and acting infrastruc-
ture, including computational constrained devices. Such a set of functionalities is accomplished by the RUBICON
component Proxy for WSAN, which extends the functionalities of the Gateway, i.e. the bridge between the Peis
middleware and the WSAN described in D1.3.1. The extension of the Gateway includes the generic mechanisms
for representation of motes sensor and actuation capabilities, the routing between multiple islands, and the integra-
tion of heterogeneous networks. This document refines the initial proxy design presented in D1.3.1. It discusses
the motivations behind the design choices and the methods used to ground that initial prototype in the final design
and the implementation of the CML in line with the communication stack presented in D1.3.2. The results of this
deliverable will be an input and the basis for the integration work to be carried out in WP5 in both the transport
and the Ambient Assisted Living application scenarios.

11/03/2013 Page 2

RUBICON D1.4 Proxy-specific Software Suite RUBICON: Project No.: 269914

Contents

1 Introduction 5

2 Architecture 7

3 Application Programming Interface 9

4 Implementation 12

5 Conclusions 15
5.1 Impact . 15

Figures

2.1 Multi-layered architecture of the gateway/proxy component. 8

3.1 Example snapshot of the tuples provided by the Proxy. 11

4.1 Proxy system: Class Diagram . 12

11/03/2013 Page 3

RUBICON D1.4 Proxy-specific Software Suite RUBICON: Project No.: 269914

Abbreviations
API Application Programming Interface
CML Communication Layer
MAC Media Access Control
PEIS Physically Embedded Intelligent System
ROS Robotic Operating System
RUBICON Robotic UBIquitous COgnitive Network
SPP Serial Port Profile
SW Software
UML Unified Modeling Language
USB Universal Serial Bus
WSN Wireless Sensor Network
WSAN Wireless Sensor and Actuator Network

11/03/2013 Page 4

RUBICON D1.4 Proxy-specific Software Suite RUBICON: Project No.: 269914

Chapter 1

Introduction

The software described in this deliverable builds upon the newer version of the PEIS-kernel, generation G6, de-
scribed in D1.3.1 and the final communication stack, presented in D1.3.2, to provide the gateway and proxy func-
tionalities of the final release of the RUBICON CML. Deliverable D1.3.1 described the prototype version of the
gateway and proxy component used in the first version of the CML. Specifically, the gateway/proxy prototype
described in D1.3.1 consists of a unix C program that communicates with a WSAN sink node connected to a local
USB port. For each island controlled by a machine, a local PEIS-init component is created by instantiating the
gateway/proxy software with the specific hardware address of the USB port it uses to communicate with its WSAN
island. This component is configured to start automatically upon boot-up time of the computer. The RUBICON
gateway/proxy software uses the sink-mote to provide access to the raw sensor readings from the WSAN nodes
reachable by the sink-mote.

The prototype implementation described in D1.3.1 successfully supported the preliminary experimentation activi-
ties carried out in the Transport and Ambient Assisted Living RUBICON test-beds. Results of experimentation in
the tesbeds has allowed us to refine our initial design and to develop the final version, described in this deliverable,
in order to support the requirements dictated by the actual applications.

The work carried out in Task 1.4 addressed a number of limitations of the gateway/proxy prototype implementation,
namely:

• It used an ad-hoc description of sensing and acting resources, which was hard to extend to include new types
of sensor and actuators.

• It did not support actuation-type instructions to be used to alter the state of actuators, such as relays used to
activate/de-activate appliances under the control of the RUBICON.

• It worked exclusively for WSAN networks based on TinyOS and it did not support multiple and potentially
heterogeneous network types.

• It did not support the distribution and the management of networks as distinct islands of a multi-island
RUBICON system (as discussed in D1.3.1 and D1.3.2).

• It depended explicitly on the Active Message (AM-message) protocol of TinyOS and of all its application-
specific message type instances, thus limiting the extensibility of the resulting system.

11/03/2013 Page 5

RUBICON D1.4 Proxy-specific Software Suite RUBICON: Project No.: 269914

• It demanded exclusive access to the serial connection used to communicate with the sink node used as base
station of the corresponding WSAN island, thus limiting its interoperability within multiple applications.

In order to address the above limitations and prepare the final version of the gateway/proxy component, in Task 1.4
we have re-factored the design to fit the multi-layered communication stack presented in D1.3.2, and implemented
the final, fully functional release of the software by availing of the Java language. The result, described in the
remaining sections of this document, is a highly modular, network agnostic gateway/proxy component with support
for automatic discovery of sensors and actuators, extensibility, scalability, heterogeneous networks and multi-island
distribution.

11/03/2013 Page 6

RUBICON D1.4 Proxy-specific Software Suite RUBICON: Project No.: 269914

Chapter 2

Architecture

The new RUBICON Proxy implements the proxy design pattern advocated within the PEIS middleware (described
in D1.1 and D1.3.1) to incorporate computationally constrained sensing and acting resources within a robotic
ecology. In addition, the Proxy supports the cluster-based organization of the RUBICON, discussed in details in
D1.3.1 and D1.3.2. Specifically, the proxy supports the following mechanisms:

• Introspection and resource discovery mechanisms to provide an index of available sensing and acting de-
vices available in the RUBICON island controlled by the Proxy, in terms of available sensor signals and
accepted actuator signals. The proxy is used to access a single island of the RUBICON, where each island
is uniquely identified with the peis-id of the Proxy component. However, each proxy can manage multiple
networks (each part of the same island), including 802.15.4/ZigBee networks and KNX 1 home automation
infrastructures. Devices in each network may join or leave the system at run-time without affecting the
operations of the Communication Layer.

• Proxied sensing and actuation by accepting subscriptions to sensors and/or sensing and actuation instructions
to be transmitted to the underlying actuators. The Proxy will interact with the underlying networks, to make
sure that the desired sensor data is sampled and published in the Peis tuplespace, and using the proper
network protocol to configure specific sensors or send actuation instructions (e.g. set-points) to specific
actuators.

Figure 2.1 shows the layered architecture of the Proxy component. In the top layer, the proxy interface acts as a
single access point over the PEIS tuplespace for all sensors and actuators in the Proxy’s island - no matter which
hardware and communication protocol are in use. Components in the RUBICON systems will not communicate
directly with the actual devices - they will have to direct their requests to the Proxy, which will route them to the
devices. The simple reason for this design is that the Proxy manages a single, protocol-independent API, so that
the other components in RUBICON do not need to account for low-level, network-specific details.

The lower layer is populated by a number of network components, each providing a means of integrating with
a particular network protocol. For the purpose of the actual application scenarios tackled in RUBICON, we have

1KNX is approved as an International Standard (ISO/IEC 14543-3) as well as an European Standard (CENELEC EN 50090
and CEN EN 13321-1) and Chinese Standard (GB/Z 20965).

11/03/2013 Page 7

RUBICON D1.4 Proxy-specific Software Suite RUBICON: Project No.: 269914

Gateway
--peis-id=<island-i>

Rubicon Network

Network Impl.
(e.g. ZigBee, KNX)

Gateway
--peis-id=<island-j>

Rubicon Network

Network Impl.
(e.g. ZigBee, KNX)

PEIS Tuple Space

I:RUBICON.GATEWAY j:RUBICON.GATEWAY

Network-Independent

Network-Specific
is is

1 1

* *
send receive

 Proxy

i:proxy.*
 Proxy

i:proxy.*

Figure 2.1: Multi-layered architecture of the gateway/proxy component.

provided network implementations to interact with WSANs and with the KNX home automation systems used in
the Tecnalia HomeLab testbed.

Finally, in the middle layer, a gateway component is used to bridge the network layer and the Proxy interface.
Specifically, the gateway component uses the Peis publish-subscribe mechanism to decouple the Proxy interface
from the underlying networks, while allowing them to communicate both service-type and application-specific
messages. In addition, each Proxy extends the publish-subscribe mechanism across the Peis peer-to-peer network,
by allowing devices in the network layer to exchange messages with devices located in different islands. Island
to island communication is achieved by managing a special tuple, which is used by a gateway component in each
Proxy to receive messages addressed to the devices under its control. Notably, the communication between different
gateways is not a real point-to-point communication because it re-uses the Peis distributed tuplespace so that any
Peis component can simply send a message to the i-th Proxy without having to know its IP address. The link
between two proxies (at the gateway middle level in Figure 2.1) represents a logic link rather than a point-to-point
physical link between proxies.

11/03/2013 Page 8

RUBICON D1.4 Proxy-specific Software Suite RUBICON: Project No.: 269914

Chapter 3

Application Programming Interface

The proxy software released at M24 offer a number of programming interfaces, programming abstractions and
communication protocols to ease the integration of sensing and actuating resources within a RUBICON system.

The main API of the Proxy can be accessed through the Peis middleware. From the point of view of the RU-
BICON Control Layer and all other participating components in the RUBICON ecology, the proxy provides an
homogeneous mechanism for introspection, data collection and configuration for all different types of sensors
and actuators used in the ecology. Notably, all details related to device addressing schemes and network and device
configuration protocols are hidden behind the Proxy.

Thanks to the Proxy introspection mechanism, every Peis component (i.e. either an architectural layer or functional
component in RUBICON) can be aware of what are the sensing and acting capabilities of the ecology, no matter
how they are integrated in the system (i.e. with what protocol). Introspection is a run-time functionality, as the
Proxy provides an up-to-date picture of these resources in order to reflect newly connected and/or newly discon-
nected devices. These resources are described in a homogeneous format, so that, for instance, similar sensors that
are connected to different networks (e.g. ZigBee and KNX), appear exactly the same in the Peis tuplespace.

The Proxy data collection mechanism makes available the data gathered by the sensors in the underlying net-
works to higher layers (e.g. control and learning components), which do not need to account for specific network
protocols.

Finally, thanks to the Proxy data collection mechanism, components in the higher layers can simply post configu-
ration instructions, for both sensors and actuators, and see those instructions automatically translated by the Proxy
in the specific network protocol and routed to their intended device.

Through the Peis tuplespace and the functionalities offered by the Peis kernel, the proxy cooperates with these
higher levels of the robotic ecology architecture to support the implementation of control and learning strategies
for dynamic, peer-to-peer networks.

The Proxy services are performed by collaborating with multiple network implementations installed in the proxy.
This software has been released with support for both 802.15.4/ZigBee wireless networks and for KNX home
automation networks, and with simple mechanisms that system developers can use to support different network
protocols.

As a Peis component with peis-id corresponding to the id of the island it supervises, the Proxy, manages a set of

11/03/2013 Page 9

RUBICON D1.4 Proxy-specific Software Suite RUBICON: Project No.: 269914

tuples with the following keys:

proxy.<networkId>.<deviceId>.property.<propertyId>.value

proxy.<networkId>.<deviceId>.property.<propertyId>.command

proxy.<networkId>.<deviceId>.sensor.<sensorId>.value

proxy.<networkId>.<deviceId>.actuator.<actuatorId>.value

proxy.<networkId>.<deviceId>.actuator.<actuatorId>.command

By default, the first part of the key of each tuple is set to proxy to signal that the tuple is managed by the RUBICON
Proxy. The other variable elements of the key of each tuple represent, respectively:

• networkId - The name of the network to which each device is connected. This starts with the type of the
network (e.g. ”wsn”, ”knx”) and it includes a symbolic name used to identify the instance of the network,
in the case the same Proxy supervises multiple networks of the same type. By default this is a number
automatically generated by the Proxy (e.g. ”wsn-1”, ”wsn-2”) but it can be overridden at installation time,
when it is possible to assign a specific symbolic name to each network (e.g. ”knx-floor1”, ”knx-hall”).

• deviceId - The unique id of the device. By default this is the address of the device in the underlying network
(e.g. the TinyOS device ID, or the KNX device address).

• propertyId: The name of a property associated to a particular device or device type. Properties’ tuples
represent the value of configuration parameters governing the behaviour of the devices (e.g. ”sampling-
rate”, ”duty-cycle”).

• sensorId and actuatorId - The name of the sensor or the actuator. This starts with the type of the sensor or
actuator (e.g. ”temperature”, ”light”, ”switch”) and it includes a symbolic name used to uniquely identify
the instance of the sensor to account for cases in which multiple sensors of the same type were attached
to the same device. By default this is a number automatically generated by the Proxy (e.g. ”switch-1”,
”switch-2”) but it can be overridden at installation time, when it is possible to assign a specific symbolic
name to sensor or actuator (e.g. ”switch-fridge”, ”switch-top-drawer”).

The tuples with leaf sub-key ”value” are used to publish, respectively, the last known sensor reading from each
sensor (for sensor-type tuples), the actual state of each actuator (for actuator-type tuples), and the last known value
of each device property (for property-type tuples). The tuples with leaf sub-key ”command” are used instead to
accept new values with which to set either the property of a device or a status of a specific actuator.

The Proxy creates and publishes these tuples for each known device and utilizes the PEIS-kernel to identify sub-
scribers to specific sensor tuples. This allows initializing sensors only when there exists valid subscribers thus
lowering bandwidth usage and energy consumption in the participating devices, which can be disabled until at
least one other component in the RUBICON system subscribes to its sensor updates. Finally, the Proxy subscribes
to the property and the actuator command tuples, register a Peis callback for each of those tuples so that it is notified
of their value changes, and forwards each new value to the corresponding target device. Any Peis component in
the RUBICON can thus configure a device or send an actuation instruction (e.g. to activate or de-activate a relay)
by simply setting the value of those tuples.

For an example view of the tuples published when the Proxy is running in an ecology with two networks (of type,
respectively, KNX and WSN), see Figure 3.1. In this example, a mote is present as mote 1 with accellerometer,

11/03/2013 Page 10

RUBICON D1.4 Proxy-specific Software Suite RUBICON: Project No.: 269914

Figure 3.1: Example snapshot of the tuples provided by the Proxy.

light, humidity and magnetic sensors. Figure 3.1 highlights one of two KNX devices also present. Specifically, an
unsigned (8 bits) register is used to regulate a light dimmer on KNX address ”1.4.6”.

11/03/2013 Page 11

RUBICON D1.4 Proxy-specific Software Suite RUBICON: Project No.: 269914

Chapter 4

Implementation

Figure 4.1 shows a UML class diagram representing the main classes and the interfaces released with the software
described in this deliverable.

Figure 4.1: Proxy system: Class Diagram

Each new network must subclass the class RubiconNetwork in order to access configuration utilities and to com-
municate with the Proxy. Messages between the network implementation level and the higher levels of the archi-
tecture, and between multiple and distributed higher-level components (e.g. multiple proxies and also multiple and
distributed instances of the RUBICON Control layer) are encapsulated by object instances of the RubiconMessage
class, representing the source of each message and its content. Higher level components can define their own spe-
cialized version of the RubiconMessage (e.g. to carry application or layer-specific information), and use a simple
publish & subscribe API exported by the RubiconGateway class to exchange messages with each other.

In order to cross the boundaries between multiple islands, the RubiconGateway class:

• Creates and subscribes to changes of a special tuple, with key ’GATEWAY’, which other components in the
network can use to post RubiconMessages to any of the components in the island.

11/03/2013 Page 12

RUBICON D1.4 Proxy-specific Software Suite RUBICON: Project No.: 269914

• Offers a send(island, RubiconMessage) function, which can be used to posts the serialized content of the
RubiconMessage class to a remote RubiconGateway.

• Allows clients to add a user object, i.e. a client-specific (but serializible) Java object, to the default Rubi-
conMessage. The user object remains uninterpreted within the Proxy and gets simply passed through the
tuplespace together with the RubiconMessage. Together, each RubiconMessage and its user objects are se-
rialized and stored in Peis as binary tuples with mime-type rubicon/application, by availing of the included
in Peis generation 6, described in D1.3.1.

In order to support dynamic networks, with devices joining and leaving the system at run-time, for instance, due to
device mobility, component failure and power outage, a simple discovery protocol is defined to allow the network
layer to signal the presence of new devices, together with the description of the type of the sensors and actuators
installed on each device. In the case of WSN/WSAN, the protocol must be initiated at the device level. For
WSN/WSAN networks, RUBICON relies on the embedded nesC/TinyOS implementation of the Communication
Layer described in D1.3.2, which can be programmed with the description of the specific sensor and actuator types
installed on each device, and with the join protocol described in D1.3.2. Specifically, once a new device is first
activated, it will initiate the join protocol in order to acquire a valid RUBICON address. After that, the device
will be able to communicate with the Proxy instance in charge of supervising the RUBICON island to which the
device is connected. Noticeably, the join protocol defined in D1.3.2 is able to resolve cases in which a device can
physically communicate with multiple proxies, and also cases in which a device travel among multiple islands. In
addition, the devices and the Proxy use a simple keep-alive message protocol to allow the RUBICON to maintain a
picture of the available devices. The Proxy listens to keep-alive messages and also to data updates sent on regular
intervals by each device. It collects a list of the identifiers of all devices and continuously publishes a list of
reachable devices that satisfy the criteria that at least one message have been received from the device during the
last period (of configurable duration).

The join message is a pre-defined specialization of the default RubiconMessage (RubiconMessageJoin) containing
a list of sensors and actuators types. In order to create a unique representation of these types to be used across all
network types, the ucd.rubicon.network project defines the RubiconSensorsAndActuatorsEnum class to enumerate
a wide range of valid types of sensors and actuators. These include the typical sensors installed on the sensor boards
of the WSN motes used in RUBICON’s application domains, as well as general descriptors for digital/analogic
input/outputs, as supported for instance by home automation protocols, such as KNX (e.g. 1 bit outputs used to
drive relays, N bytes digital registers used to drive dimmers or more complex actuators). Each sensor or actuator
type is described with a 2-byte short number, which will allow the software to be extended to support a maximum
number of 65536 types.

The RubiconMessageJoin message is a default message that must be directly interpreted by each specific Network
implementation. Following the layered design of the RUBICON communication stack presented in D1.3.2, appli-
cation and/or layer-specific messages can still be explicitly represented by specializations of the RubiconMessage
class. However, they are not interpreted by the Network layer but are passed directly to the embedded application
installed on the sensing and/or actuating devices. In both cases, the Network implementation must take care of
transforming (serializing) each RubiconMessage into the network-specific embedded counter-part.

Five Network classes are provided with the software delivered at month 24, respectively:

• 802.15.4/ZigBee Networks - whose implementation (available in /1-Comm/ComunicationLayer/Network)
is detailed in D1.3.2.

11/03/2013 Page 13

RUBICON D1.4 Proxy-specific Software Suite RUBICON: Project No.: 269914

• Salad Tecnalia Middleware - a UDP client to the protocol described in D1.3.2, Section 4.2.1, used to
access the Tecnalia’s SALAD middleware (implemented in 1-Comm/ucd.rubicon.network.salad)

• KNX - an interface to native KNX infrastructures (available in ../1-Comm/ucd.rubicon.network.knx) built
upon the Calimero Java library.

• LOG - a Network implementation that reads sensor data from log files produced with the logger tool de-
scribed in Deliverable 1.3.2. This LOG Network is provided in order to test the higher layers of the RU-
BICON architecture (i.e. Learning, Control and Cognitive layers), offline, with real data gathered from the
WSAN.

• DUMMY - a Dummy Network implementation provided for unit testing purpose.

All the network implementations already supported by the Proxy include a number of built-in messages, which are
used by the Proxy to deliver its configuration service. These include the RubiconMessageCtrlActuateCmd used to
send a new command to an actuator. The 802.15.4/ZigBee implementation also supports the RubiconMessageC-
trlPeriodicCmd message, which is used to instruct a device to start sending updates for a sub-set of its sensors
every N milliseconds (corresponding to a built-in rate property for WSN/WSAN mote-class devices).

Finally, the KNX class allows the RUBICON Proxy to exchange information with KNX bus devices connected via
medium twisted pair, radio frequency, power line or IP/Ethernet in environments not covered by the SALAD mid-
dleware. Bus devices can be either sensors or actuators and potentially include equipment such as lighting, blinds
/ shutters, security systems, energy management, heating, ventilation and air-conditioning systems, signalling and
monitoring systems, interfaces to service and building control systems, remote control, metering, audio / video
control, etc. The Proxy interacts with KNX hardware by way of KNX frames - that are encapsulated in Ethernet
frames. To this end, the Proxy uses the library Calimero 2 - a collection of Java APIs that together form a foundation
for KNX high level applications.

2Available online from http://calimero.sourceforge.net

11/03/2013 Page 14

RUBICON D1.4 Proxy-specific Software Suite RUBICON: Project No.: 269914

Chapter 5

Conclusions

We conclude this report with the an overview of the planned tasks achieved in the second year of RUBICON within
WP1, Task 1.4: Adaptation of existing data-sharing middleware and proxy solutions for WSN/robot integration
(M13-24), as documented in the Description of Work, and the performed work as documented in this deliverable
and in second interim project report.

Task 1.4 have been performed as planned and finished in March 2013. The result of this task have provided the
RUBICON with a modular, network agnostic Proxy component with support for automatic discovery of sensors
and actuators, extensibility, and heterogeneous peer-to-peer networks.

Task 1.4 involved the identification of common and extensible component description and mechanisms for auto-
matic discovery of hardware and processing capabilities and the provision of standard mechanisms that the higher
layers of the RUBICON system can use to interact with the underlying sensing and acting infrastructure, including
computational constrained devices. In order to support heterogeneous networks and operate within the research
and application testbeds used in RUBICON, the Proxy component has been implemented as a Peis peer-to-peer
component and integrated with the network mechanisms and middleware described in D1.2 and D1.3.2.

5.1 Impact

The software described in this deliverable is accessible in the software repository containing all the code and
examples needed for the execution of the Communication Layer, including testing scripts and example classes that
can be used as templates to guide the integration between the RUBICON Proxy and other networks besides the
ones already supported.

The software is currently present at and in active use by all of the partners. Based on the feedback of the part-
ners, further work is expected in order to validate the performance and tune all the mechanisms presented in this
deliverable once they are operating in the final application testbeds.

No significant unexpected developments have occurred during the execution of the second year of WP1.

11/03/2013 Page 15

