

RUBICON
Robotic UBUquitous COgnitive Network

 Project No.: 269914

Dissemination level

X PU = Public

 PP = Restricted to other programme participants (including the Commission Services)

 RE = Restricted to a group specified by the consortium (including the Commission Services)

 CO = Confidential, only for members of the consortium (including the Commission Services)

D2.3 – Core Learning

Services API and

Documentation V.2.0

Editor: Davide Bacciu UNIPI
 Claudio Gallicchio UNIPI
 Alessio Micheli (Supervisor) UNIPI
 Claudio Vairo CNR

Contributor(s): Stefano Chessa UNIPI
 Mauro Dragone UCD

Issue Date 30/09/2013 (M30, MS4)

Deliverable Number D2.3

WP WP2 – Learning Layer

Status Draft Working Released Delivered to EC Approved by EC

RUBICON D2.3 Core Learning Service API V2.0 RUBICON: Project No.: 22699145

30/10/2013 Page 2

Disclaimer

The information in this document is provided as is and no guarantee or warranty is given that the
information is fit for any particular purpose. The user thereof uses the information at its sole risk and
liability.

The document reflects only the author’s views and the Community is not liable for any use that may
be made of the information contained therein.

Document history

V Date Author Description

1.0 15/10/2013 Davide Bacciu,
Claudio Gallicchio

First deliverable version for internal revision and
quality assurance review.

1.1 30/10/2013 Davide Bacciu Revised version after quality assurance review.
Changed status to “Released”.

RUBICON D2.3 Core Learning Service API V2.0 RUBICON: Project No.: 22699145

30/10/2013 Page 3

Executive Summary

This report describes the release 2.0 of the “Core Learning Service API” software, presented as
deliverable D2.3. We focus here on a description of the design and implementation of this software,
and we provide an experimental evaluation of its performance on real-world data from the RUBICON
application scenarios in WP5.

This report includes

- External and internal overviews of the learning layer architecture, with a particular focus on
progress since D2.2.

- An outline of how to access the software and the technical platform requirements
- Detailed descriptions of the main components of the learning layer software system

o The Core learning service API v2.0
o The Learning Network (LN)
o The Learning Network Manager
o The Training Manager

- A description of the testing and experimental assessment and the successful results of all the
tests being carried out

- Conclusions that mainly describe the compliance to workplan and the impact on the project

In addition to this report with an appendix documenting the Learning Layer API, the main part of the
deliverable consists of the published software, available on the RUBICON code repository and later to
be released on the project webpage.

RUBICON D2.3 Core Learning Service API V2.0 RUBICON: Project No.: 22699145

30/10/2013 Page 4

Contents

EXECUTIVE SUMMARY .. 3

ABBREVIATIONS ... 6

FIGURES ... 7

TABLES ... 10

1. OVERVIEW ... 11

1.1 TARGET AUDIENCE ... 11
1.2 EXTERNAL VIEW OF THE LEARNING LAYER... 11
1.3 INTERNAL ARCHITECTURE OF THE LEARNING LAYER .. 11
1.4 DELIVERED SOFTWARE .. 13

1.4.1 Accessing the software .. 13
1.4.2 Software requirements and hardware assumptions ... 13

1.4.2.1 Platform dependencies: node hosting the RUBICON Learning Gateway 15
1.4.2.2 Platform dependencies: nodes hosting Learning Modules .. 15
1.4.2.3 The Learning Layer as a Distributed Software System .. 15

1.5 DIFFERENCES FROM D2.2 CORE LEARNING SERVICE V1.0 .. 16

2. LEARNING LAYER SOFTWARE SYSTEM ... 19

2.1 CORE LEARNING SERVICE (CLS) API V2.0 ... 19
2.1.1 The Java Learning Gateway API (LGA) ... 19
2.1.2 The NesC Learning Network API .. 20
2.1.3 The Java Learning Network API ... 23

2.2 LEARNING NETWORK (LN) .. 23
2.2.1 Overview .. 23
2.2.2 Learning Modules .. 23

2.2.2.1 NesC Learning Modules .. 24
2.2.2.2 Java Learning Modules.. 24

2.2.3 Synaptic Connections ... 26
2.2.3.1 NesC Synaptic Connections ... 27
2.2.3.2 Java Synaptic Connections .. 28

2.2.4 Forward Computation .. 29
2.2.5 Learning Network Wrapper ... 31

2.3 LEARNING NETWORK MANAGER (LNM) ... 32
2.3.1 Overview .. 32
2.3.2 Supervisor Interface ... 33
2.3.3 Synaptic Communication Control and Management .. 35
2.3.4 Device and Module Management ... 35

2.4 TRAINING MANAGER .. 37
2.4.1 Overview .. 37
2.4.2 Feature Selection ... 39

2.4.2.1 Feature Filter .. 40
2.4.2.2 Feature Wrapper .. 41

2.4.3 Training of a Learning Module .. 41
2.4.3.1 Training through the Network Mirror ... 41
2.4.3.2 Online learning.. 43

2.4.4 Deployment of a Learning Module .. 45
2.5 HOW TO ACTIVATE LEARNING IN THE LEARNING LAYER: A SUPERVISOR PERSPECTIVE 46

RUBICON D2.3 Core Learning Service API V2.0 RUBICON: Project No.: 22699145

30/10/2013 Page 5

2.5.1 How to activate a new learning task (incremental learning) .. 46
2.5.2 How to supply an instantaneous supervised/reinforcement teaching signal (refinement
learning) .. 47

2.6 GRAPHICAL USER INTERFACE ... 48

3. TESTING ... 51

3.1 OUTLINE... 51
3.2 TESTING LEARNING NETWORK COMPUTATION .. 52

3.2.1 Test Configuration ... 52
3.2.2 Testing Distributed Computation with NesC Learning Modules .. 52
3.2.3 Testing Distributed Computation with Java Learning Modules ... 58
3.2.4 Performance Assessment of the Echo State Network model on Real-World RUBICON Tasks
 62

3.3 TESTING FEATURE SELECTION ... 68
3.4 TESTING ONLINE LEARNING .. 73
3.5 TESTING RECOVERY ... 78

3.5.1 Test Configuration ... 78
3.5.2 Testing Mote Watchdog and Recovery.. 78

4. CONCLUSIONS .. 83

4.1 COMPLIANCE TO WORKPLAN ... 83
4.2 IMPACT ON PROJECT ... 85
4.3 NEW DEVELOPMENTS AND UNFORESEEN ISSUES .. 85

5. APPENDIX A – REFERENCE MANUAL .. 87

RUBICON D2.3 Core Learning Service API V2.0 RUBICON: Project No.: 22699145

30/10/2013 Page 6

Abbreviations

AAL Ambient Assisted Living

API Application Programming Interface

CLS Core Learning Service

ESN Echo State Network

GUI Graphical User Interface

LGA (Java) Learning Gateway API

LN Learning Network

LNM Learning Network Manager

PEIS Physically Embedded Intelligent Systems (Ecology)

RUBICON Robotic UBIquitous COgnitive Network

TM Training Manager

WSN/WSAN Wireless Sensor Network / Wireless Sensor and Actuator Network

RUBICON D2.3 Core Learning Service API V2.0 RUBICON: Project No.: 22699145

30/10/2013 Page 7

Figures

FIGURE 1 EXTERNAL VIEW OF THE LEARNING LAYER WITH AN HIGHLIGHTING OF THE APIS INTERFACING WITH OTHER RUBICON

LAYERS. .. 12

FIGURE 2 SOFTWARE ARCHITECTURE OF THE LEARNING LAYER: DERIVES FROM THE PRELIMINARY SKETCH IN D2.1 AND REFINEMENTS IN

D2.2. LOGICAL SUBSYSTEMS ARE REPRESENTED AS SIMPLE RECTANGULAR BOXES, SOFTWARE COMPONENTS ARE SMALL

RECTANGLES WITH THE UML COMPONENT ICON ON THE TOP-RIGHT CORNER, WHILE INTERLAYER AND INTRALAYER INTERFACES

ARE DENOTED AS THICK AND THIN ARROWS. ... 14

FIGURE 3 ARCHITECTURAL DETAIL OF THE LN SUBSYSTEM: THE MANAGER AND LEARNING MODULE COMPONENTS RUN ON ECOLOGY

DEVICES (REPRESENTED AS L-SHAPED BOXES) DISTRIBUTED IN THE ENVIRONMENT. SUPPORTED DEVICES INCLUDE MOTE-CLASS

AND JAVA-ENABLED NODE. THE LN WRAPPER COMPONENT IS DEPLOYED ON A PC (REFERRED TO AS LEARNING GATEWAY),
REPRESENTED AS A DASHED RECTANGLE. ... 17

FIGURE 4 ARCHITECTURAL DETAIL OF THE LN MANAGER SUBSYSTEM: THE LN CONTROL AGENT COMPONENT IS DEPLOYED ON THE

LEARNING GATEWAY. THE LN MANAGER SUBSYSTEM INTERACTS WITH THE PEIS WRAPPER COMPONENT, RUNNING ON THE

SAME PC, THAT INTERFACES THE LEARNING LAYER WITH EXTERNAL PEIS-ENABLED COMPONENTS. 17

FIGURE 5 ARCHITECTURAL DETAIL OF THE TRAINING MANAGER SUBSYSTEM: THE REPOSITORY, THE TRAINING AGENT AND NETWORK

MIRROR COMPONENTS ALL RUN ON THE LEARNING GATEWAY, REPRESENTED AS A DASHED RECTANGLE. 18

FIGURE 6 THE PACKAGE DIAGRAM OF THE JAVA LEARNING GATEWAY API. .. 21

FIGURE 7 SCHEMATIC ILLUSTRATION OF THE WIRING AMONG SOFTWARE COMPONENTS INVOLVED IN THE NESC LN API. 22

FIGURE 8 A SCHEMATIC ILLUSTRATION OF THE INFORMATION FLOW IN ONE STEP OF THE FEEDFORWARD COMPUTATION ON-BOARD A

MOTE. .. 30

FIGURE 9 INFORMATION FLOW IN THE LEARNINGNETWORKWRAPPER COMPONENT: THE DASHED ARROW REPRESENT A SYNAPTIC

CONNECTION FEEDING THE JAVA LEARNING MODULE B WITH THE NEURON OUTPUT OF A NESC LEARNING MODULE A (OTHER

SYNAPTIC CONNECTIONS ARE OMITTED FOR CLARITY). THE JAVA-SIDE OF THE LN FEEDS AN INPUT BUFFER “JAVA LN” THROUGH

PEIS TUPLES, WHILE THE RUBICON GATEWAY PROVIDES INFORMATION FROM THE NESC –SIDE. THE INFORMATION IN THIS

TWO BUFFERS IS ROUTED TO THE LNOUTPUTS COMPONENT FOR PUBLISHING AND/OR TO THE “LN BYPASS” MECHANISM, THAT

FEEDS IT BACK TO THE TARGET MODULE OF THE LN. THE “VIRTUAL” SYNAPTIC CONNECTION A->B IS IMPLEMENTED BY ARROW

1 (GATEWAYINTERFACE) ENTERING THE NESC BUFFER, BEING RE-ROUTED TO THE “LN BYPASS” WITH ARROW 2 (LOCAL

MESSAGE), AND BEING FINALLY DELIVERED TO B THROUGH ARROW 3 (PEIS TUPLE). .. 32

FIGURE 10 SUMMARY OF THE FUNCTIONALITIES IMPLEMENTED BY THE TWO COMPONENTS OF THE TRAINING MANAGER SUBSYSTEM.
THE TRAININGAGENT RELIES ON THE NETWORKMIRROR FOR THE TRAINING AND MODEL SELECTION OF THE LEARNING MODULES.
ON THE OTHER HAND, THE NETWORKMIRROR EXPLOITS THE FUNCTIONALITIES OF THE TRAININGAGENT TO DEPLOY A TRAINED

COMPUTATIONAL LEARNING TASK TO THE PHYSICAL ECOLOGY. ... 37

FIGURE 11 SCREENSHOT OF THE LEARNING LAYER GUI SHOWING THE LN LAYOUT. .. 49

FIGURE 12 SCREENSHOT OF THE LEARNING LAYER GUI SHOWING THE DEVICE MANAGER. ... 50

FIGURE 13 LEARNING LAYER WAITING DEVICE JOIN AT START-UP. .. 53

FIGURE 14 GUI SNAPSHOT: ONLY THE SINK DEVICE IS AVAILABLE AT LEARNING LAYER STARTUP ... 54

FIGURE 15 GUI SNAPSHOT: INFORMATION ON THE JOINED DEVICES ALONG WITH THEIR CAPABILITIES IS STORED IN THE LEARNING

LAYER AND DISPLAYED IN THE GUI. .. 54

FIGURE 16 RECEPTION OF THE WIRING AND TASK INFORMATION THROUGH PEIS. ... 55

FIGURE 17 RECEPTION OF THE TRAINING SAMPLES THROUGH PEIS. ... 55

FIGURE 18 MODEL-SELECTION, TRAINING AND DEPLOYMENT OF A TINYOS LEARNING MODULE ON THE EXERCISING TASK. 56

FIGURE 19 SNAPSHOT OF THE GUI SHOWING A DEPLOYED SYNAPTIC CONNECTION BETWEEN TWO MOTES IN THE EXERCISING DEMO. 57

FIGURE 20 STARTING OF THE DISTRIBUTED FORWARD COMPUTATION PRODUCING THE PREDICTIONS OF THE TINYOS LEARNING

MODULE FOR THE EXERCISING ACTIVITY. .. 57

FIGURE 21 MODEL-SELECTION, TRAINING AND DEPLOYMENT OF A JAVA LEARNING MODULE ON THE EXERCISING TASK. 59

RUBICON D2.3 Core Learning Service API V2.0 RUBICON: Project No.: 22699145

30/10/2013 Page 8

FIGURE 22 SYNAPTIC CONNECTION DEPLOYMENT FOR THE EXERCISING TASK WITH JAVA LEARNING MODULES: NOTE HOW THE MODULE

REGISTERS IT-SELF AS LISTENER TO THE TUPLE IMPLEMENTING THE INPUT SYNAPTIC CHANNEL (IN RED). 60

FIGURE 23 WIRING TABLE RESULTING FROM THE DEPLOYMENT OF THE NEW TASK... 60

FIGURE 24 STARTING OF THE DISTRIBUTED FORWARD COMPUTATION PRODUCING THE PREDICTIONS OF THE JAVA LEARNING MODULE

FOR THE EXERCISING ACTIVITY. .. 61

FIGURE 25 PUBLICATION OF THE PREDICTIONS FOR THE EXERCISING ACTIVITY ON THE EVENT PUBLISHING TUPLE: THE 3 VALUES

DISPLAYED REFER TO THE RUBICON TIME, EVENT OCCURRENCE (+1=OCCURRENCE, -1=NON-OCCURRENCE) AND PREDICTION

CONFIDENCE (0 MINIMUM CONFIDENCE, 1 MAXIMUM) , RESPECTIVELY. .. 61

FIGURE 26 SNAPSHOT OF THE TUPLES IMPLEMENTING SYNAPTIC COMMUNICATION IN (LEFT) AND OUT(RIGHT) OF THE JAVA LEARNING

MODULE. .. 62

FIGURE 27 LEARNING LAYER OUTPUT PREDICTIONS FOR A SET OF EVENTS IN THE AAL HOME LAB SCENARIO. 64

FIGURE 28 MEAN ABSOLUTE TEST ERROR ACHIEVED BY ESNS ON THE PLANNER WEIGHT PREDICTION FOR LOCALIZATION SYSTEMS –

MIRROR TASK. ... 65

FIGURE 29 MEAN ABSOLUTE TEST ERROR ACHIEVED BY ESNS ON THE PLANNER WEIGHT PREDICTION FOR LOCALIZATION SYSTEMS –

KITCHEN TASK. ... 65

FIGURE 30 MAP OF THE CORRIDORS INVOLVED IN THE MEASUREMENT CAMPAIGN IN THE WING OF THE STELLA MARIS BUILDING. THE

INDICATIVE TRAJECTORY FOLLOWED BY THE ROBOT IS ILLUSTRATED IN RED. ... 66

FIGURE 31 MEAN EUCLIDEAN TEST ERROR ACHIEVED BY ESNS ON THE PRELIMINARY EXPERIMENTS ON THE HOSPITAL ROBOT

LOCALIZATION TASK. PERFORMANCE RESULTS ARE REPORTED FOR VARYING RESERVOIR DIMENSIONALITY AND READOUT

REGULARIZATION. ... 67

FIGURE 32 MAP OF THE AREA USED FOR THE MEASUREMENT CAMPAIGN FOR THE UNIPI INDOOR ROBOT LOCALIZATION TASK. 67

FIGURE 33 ANGEN EXPERIMENTAL SCENARIO: A MOBILE ROBOT USING LASER RANGE-FINDER LOCALIZATION IS PERFORMING TWO

TYPES OF TRAJECTORIES ENDING IN THE KITCHEN, REPRESENTED AS CONTINUOUS AND DASHED LINES. THE PERFORMANCE OF THE

LOCALIZATION SYSTEM IS NEGATIVELY AFFECTED BY THE INTRODUCTION OF A MIRROR; THIS EFFECT CAN ONLY BE NOTICED IN THE

DASHED TRAJECTORY TYPE. ALL THE SENSORS ARE EQUIPPED WITH PIR SENSORS, BUT ONLY M3 AND M6 ARE IN A LINE-OF-
SIGHT THAT IS INFLUENCED BY THE ROBOT MOVING. THE REST OF THE PIRS IS SHIELDED AND IS NOT ACTIVATED BY ROBOT

MOTION. .. 69

FIGURE 34 RESULTS OF THE FEATURE SELECTION ALGORITHM ON CONFIGURATION 5 FOR THE ANGEN DATA (SEE TABLE XVI),
INCLUDING ALL TRANSDUCERS FROM ALL THE INVOLVED MOTES. THE MAJORITY OF THE RUNNING TIME IS SPENT ON THE

COMPUTATION OF THE REDUNDANCY MASK, WHILE THE EFFORT REQUIRED FOR FEATURE FILTERING IS NEGLIGIBLE. ONLY 6

FEATURES ARE RETAINED FROM AN INITIAL SET OF 27. .. 71

FIGURE 35 PLOT OF THE ELAPSED TIME(MILLISECONDS) FOR FEATURE FILTERING AS A FUNCTION OF THE NUMBER OF INPUT FEATURES.
 ... 71

FIGURE 36 RESULT OF THE FEATURE SELECTION MECHANISM WHEN RUNNING INCREMENTAL LEARNING ON THE EXERCISING EVENT. . 73

FIGURE 37 MEAN TEST ACCURACY ON THE AAL HOME LAB-PREPARING COFFEE TASK, ACHIEVED BY ESNS WITH DIFFERENT RESERVOIR

DIMENSIONS, TRAINED USING OFFLINE LEARNING (DASHED LINES) AND ONLINE LEARNING (CONTINUOUS LINES), FOR INCREASING

NUMBER OF TRAINING SAMPLES CONSIDERED. .. 74

FIGURE 38 MEAN TEST ACCURACY ON THE INDOOR USER MOVEMENT FORECASTING TASK, ACHIEVED BY ESNS WITH DIFFERENT

RESERVOIR DIMENSIONS, TRAINED USING OFFLINE LEARNING (DASHED LINES) AND ONLINE LEARNING (CONTINUOUS LINES), FOR

INCREASING NUMBER OF TRAINING SAMPLES CONSIDERED .. 74

FIGURE 39 MEAN ABSOLUTE TEST ERROR ON THE ANGEN SCENARIO-MIRROR TASK, ACHIEVED BY ESNS WITH DIFFERENT RESERVOIR

DIMENSIONS, TRAINED USING OFFLINE LEARNING (DASHED LINES) AND ONLINE LEARNING (CONTINUOUS LINES), FOR INCREASING

NUMBER OF TRAINING SAMPLES CONSIDERED. Y-AXIS IS IN LOGARITHMIC SCALE. ... 75

FIGURE 40 MEAN ABSOLUTE TEST ERROR ON THE ANGEN SCENARIO-MIRROR TASK, ACHIEVED BY ESNS WITH DIFFERENT RESERVOIR

DIMENSIONS, TRAINED USING OFFLINE LEARNING (DASHED LINES) AND ONLINE LEARNING (CONTINUOUS LINES), FOR INCREASING

NUMBER OF TRAINING SAMPLES CONSIDERED. STANDARD RLMS WITH KNOWN TARGET IS USED. Y-AXIS IS IN LOGARITHMIC

SCALE. .. 75

RUBICON D2.3 Core Learning Service API V2.0 RUBICON: Project No.: 22699145

30/10/2013 Page 9

FIGURE 41 MEAN TEST ACCURACY ON THE INDOOR USER MOVEMENT FORECASTING TASK, ACHIEVED BY ESNS WITH DIFFERENT

RESERVOIR DIMENSIONS, TRAINED USING OFFLINE LEARNING, BEFORE (DASHED LINES) AND AFTER (CONTINUOUS LINES) ONLINE

LEARNING, FOR INCREASING NUMBER OF TRAINING SAMPLES CONSIDERED ... 76

FIGURE 42 OUTCOME OF THE ONLINE LEARNING SCRIPT AFTER THE ACTIVATION OF THE ONLINE LEARNING PROCESS. 77

FIGURE 43 OUTCOME OF THE ONLINE LEARNING SCRIPT DURING THE PHASE OF OUTPUT PREDICTION. ... 77

FIGURE 44 THE SCRIPT AWAITS JOINING OF AT LEAST ONE DEVICE, THAT IS ASSIGNED NODEID=720897 AND WILL INITIALLY HOST THE

WAVING LEARNING TASK (CONSOLE AND GUI OUTPUT ON THE LEFT AND RIGHT, RESPECTIVELY). 79

FIGURE 45 TRAINING AND DEPLOYMENT OF THE WAVING TASK ON THE DEVICE WITH NODEID = 720897 80

FIGURE 46 THE LEARNING LAYER PROVIDING PREDICTIONS ON THE WAVING EVENT USING THE OUTPUT GENERATED BY THE ESN ON-
BOARD THE MOTE WITH NODEID = 720897. ... 80

FIGURE 47 ANOTHER DEVICE, WITH NODEID = 720898, JOINS THE ECOLOGY WHILE THE OTHER MOTE KEEPS PROVIDING PREDICTIONS.
 ... 81

FIGURE 48 RECOVERY PROCEDURE TRIGGERED BY THE FAILURE OF DEVICE 720897 (LEFT): THE COLD SPARE WITH NODEID 720898 IS

FOUND TO HAVE COMPATIBLE CAPABILITIES AND IS THEREFORE USED AS A REPLACEMENT. THE LEARNING MODULE

IMPLEMENTING THE WAVING TASK IS DEPLOYED ON 720898 AND STARTS PROVIDING AGAIN ITS PREDICTIONS (RIGHT). 82

RUBICON D2.3 Core Learning Service API V2.0 RUBICON: Project No.: 22699145

30/10/2013 Page 10

Tables

TABLE I DESCRIPTION OF THE TUPLE USED TO DELIVER CONTROL INSTRUCTIONS FROM THE LEARNINGNETWORKWRAPPER TO THE JAVA

LEARNING MODULES ... 24

TABLE II ENCODING OF THE COMMANDS THAT CAN BE INVOKED THROUGH THE LL_INTERNAL TUPLE. THE ARGS COLUMN DESCRIBE

THE ARGUMENTS ASSOCIATED TO THE COMMAND. .. 25

TABLE III THE MAIN MEMBERS OF THE CLASS GENERICS.ECHOSTATENETWORK. .. 26

TABLE IV DEFINITION OF THE INPUTSYNCONNECTION_T DATA STRUCTURE. ... 27

TABLE V DEFINITION OF THE OUTPUTSYNCONNECTION_T DATA STRUCTURE. ... 27

TABLE VI DESCRIPTION OF THE TUPLE USED TO REQUEST THE CREATION OF SYNAPTIC CONNECTIONS WHOSE ENDS INCLUDE AT LEAST

ONE JAVA LEARNING MODULE .. 28

TABLE VII EXAMPLE OF A TUPLE TRANSMITTING N COMMA-SEPARATED VALUES FROM A JAVA LEARNING MODULE WITH NETID=-1 TO

ANOTHER MODULE WITH NETID=-2 ... 28

TABLE VIII DESCRIPTION OF THE TUPLE USED TO PUBLISH THE OUTPUTS OF THE LN ... 30

TABLE IX DESCRIPTION OF THE TUPLE USED TO PUBLISH THE SYMBOLIC NAMES OF THE LN OUTPUTS ... 30

TABLE X DESCRIPTION OF THE TUPLE USED TO DELIVER CONTROL INSTRUCTIONS FROM THE SUPERVISOR TO THE LNM. 33

TABLE XI ENCODING OF THE SUPERVISOR INTERFACE COMMANDS THAT CAN BE INVOKED THROUGH THE CONTROL_CMD TUPLE. THE

ARG1 AND ARG2 COLUMN DESCRIBE THE ARGUMENTS ASSOCIATED TO THE COMMAND. THE DASH “-“ INDICATES THAT THE

COMMAND DOES NOT REQUIRE AN ARGUMENT (SET IT TO 0 FOR CONVENIENCE). .. 34

TABLE XII DESCRIPTION OF THE TUPLE USED TO DELIVER WIRING INSTRUCTIONS FROM THE SUPERVISOR TO THE LNM 35

TABLE XIII EXAMPLE OF A WIRING TABLE, USED BY THE TRAINING MANAGER TO CONVERT WIRING INSTRUCTIONS INTO SYNAPTIC

CONNECTIONS. ... 38

TABLE XIV DESCRIPTION OF THE TUPLE USED TO PUBLISH THE WIRING TABLE .. 39

TABLE XV DESCRIPTION OF THE TUPLE USED TO REQUEST A WIRING TABLE UPDATE: IF ACTION = “+” THE FOLLOWING WIRING ENTRY

IS ADDED TO THE TABLE; IF ACTION = “-”, IT IS REMOVED. .. 39

TABLE XVI DESCRIPTION OF THE TUPLE USED TO DELIVER TRAINING SAMPLES FROM THE SUPERVISOR TO THE LEARNING LAYER. 42

TABLE XVII DESCRIPTION OF THE FIELDS IN THE STRING PAYLOAD FOR THE PEIS TUPLE WITH KEY-STRING LLTRAININGSAMPLE. 42

TABLE XVIII DESCRIPTION OF THE TUPLE USED TO DELIVER ONLINE LEARNING INSTRUCTIONS FROM THE SUPERVISOR TO THE LNM. . 43

TABLE XIX ENCODING OF THE SUPERVISOR INTERFACE COMMANDS THAT CAN BE INVOKED THROUGH THE ONLINE_REFINE TUPLE.
ARG1 COLUMN DESCRIBES THE ARGUMENTS ASSOCIATED TO THE COMMAND. .. 43

TABLE XX MAIN VARIABLES USED FOR ONLINE LEARNING FUNCTIONALITIES IN THE THE LEARNING LAYER NESC API. 45

TABLE XXI FEATURE SELECTION ON THE ANGEN DATA: RESULTS ARE PROVIDED FOR DIFFERENT CONFIGURATIONS OF THE INPUT

FEATURES, E.G. M3 MEANS THAT ALL TRANSDUCERS FROM MOTE 3 ARE PROVIDED AS INPUTS. THE GROUND-TRUTH TASK-
RELEVANT FEATURES (DETERMINED BY EXPERT KNOWLEDGE) ARE MARKED IN RED. .. 70

RUBICON D2.3 Core Learning Service API V2.0 RUBICON: Project No.: 22699145

30/10/2013 Page 11

1. Overview

1.1 Target audience

This report is intended for the project consortium as well as members of the public interested in
using the provided software to deploy a RUBICON ecology and/or develop application specific
software for such an ecology. It assumes that the reader is already confident with the concepts
described in Deliverable D2.1 about the learning mechanisms in RUBICON. On the other hand, this
report is completely self-contained with respect to the contents in D2.2 (preliminary release of the
CLS API V1.0). For convenience, the key differences with respect to the contents of D2.2 have been
summarized in Section 1.5.

1.2 External view of the Learning Layer

“Aka. Blackbox view of the Learning Layer.”

The RUBICON Learning Layer is a distributed software system, executed on a range of devices with
heterogeneous computational, sensing and actuator capabilities, that provides a distributed,
adaptive, and self-organizing memory for the RUBICON ecology.

The RUBICON Learning Layer processes streams of sensor data gathered by the ecology transducers
and delivered to the distributed software components of the Learning Layer through the
communication infrastructure provided by the Communication Layer, whose final version has been
made available through D1.3.2 and D1.4. A Synaptic Connection mechanism is built on the top of the
Synaptic Channel API (described in Sect. 2.2.1, D.3.1.1, and whose final version is in D3.1.2) provided
by the Communication Layer (see Figure 1). It allows the delivery of transducer readings local to the
learning module onboard a device, as well as the construction of a network of cooperating learning
modules that implement a distributed neural computation over the ecology nodes. The Learning
Layer further uses the “Connectionless Message Passing” mechanism of the Communication Layer
(Sect. 9.2.1, D.3.1.2) to configure and control its components.

The streams of sensor data are processed by the Learning Layer to produce a set of predictions that
concern the state of the environment/users monitored by the RUBICON ecology, e.g. events and
actions plans in Figure 1. Such predictions are delivered to the Control and Cognitive layers by
publishing tuples, using the Tuplespace API described in D1.3.1, Sect. 2.1 (see Figure 1.). The same
Tuplespace mechanism is used by the Learning Layer to implement the Supervisor Interface, that
receives control, configuration and training information from the higher levels of the RUBICON
ecology.

1.3 Internal architecture of the Learning Layer

“Aka. Whitebox view, opening up the Learning Layer.”

The Learning Layer is a complex software system comprising several software components,
implemented with different programming languages depending on the underlying hardware and OS
support. Deliverable D2.1 has provided a detailed architectural sketch of the Learning Layer software
system, that has been further refined in D2.2, Sect. 1.3. For the sake of self-containment of this
document, the final software architecture of the Learning Layer is reported in Figure 2.

RUBICON D2.3 Core Learning Service API V2.0 RUBICON: Project No.: 22699145

30/10/2013 Page 12

Figure 1 External view of the Learning Layer with an highlighting of the APIs interfacing with other
RUBICON layers.

The Learning Layer is organized into 3 logical subsystems, represented as light-blue boxes in the
architectural sketch in Figure 2. Each subsystem is made up of a variable number of software
components, depicted as simple rectangular boxes in Figure 2, that are distributed over a
heterogeneous networked architecture comprising both resource constrained devices (e.g. sensor
nodes) as well as more powerful Java-enabled nodes.

The Learning Layer subsystems, whose architectural detail is shown in Figure 3 to Figure 5, are as
follows:

1. The Learning Network (LN) realizes the ecology memory by means of a distributed Echo
State Network (ESN) residing on devices with heterogeneous computational capabilities,
denoted as L-shaped boxes in the architectural detail in Figure 3. Each device hosts a
Learning Module, implementing the Echo State Network (ESN), that is controlled and
configured by a Manager component. In D2.3, these are available both as NesC software,
targeted to low-power TinyOS 2.1 devices, as well as Java components, targeted to the less
constrained nodes of the ecology. The LN Wrapper is a component that abstracts the
distributed nature of the LN. It is a Java-based component that receives configuration,
learning and control related information from the LNM and the TM and forwards them to the
appropriate Manager components in the Learning Network. Further, it realizes the LN
distributed neural computation by bridging and synchronizing the TinyOS and Java learning
modules deployed in the ecology nodes.

2. The Learning Network Manager (LNM) is responsible for the configuration and control of the
Learning Layer. The LNM is implemented by a single software component, the LN Control
Agent, implemented as a Java-based agent and hosted on a gateway device, as shown in
Figure 4. The PEIS Wrapper component, also shown in Figure 4, implements the interface
between the Learning Layer and the Control and Cognitive Layer (Supervisors), realized

Synaptic
Communication
and Message
Passing

Tuplespace API

RUBICON D2.3 Core Learning Service API V2.0 RUBICON: Project No.: 22699145

30/10/2013 Page 13

through the PEIS tuplespace system (see D1.3.1). The PEIS Wrapper is a Java-based software
component that realizes this interface by providing mechanisms for writing into the
appropriate interface tuples and for notifying the reception of messages to the appropriate
Java components of the Learning Layer. The PEIS Wrapper is used by the LNM, the TM and
the LN subsystems.

3. The Training Manager (TM) controls the learning phases of the Learning Layer: it receives
training information from the Supervisor and uses it to update the Learning Modules in the
LN subsystem. The TM functionalities are implemented by two Java-based software
components, i.e. the Training Agent and the Network Mirror, and by a Repository that is
used to store training data and information concerning the computational learning tasks
deployed in the ecology. All the TM components are deployed on a PC, as shown in Figure 5.

1.4 Delivered software

1.4.1 Accessing the software

The software of this deliverable have been stored in the subversion repository of RUBICON and will
be published on the RUBICON public website following the final project review.

1.4.2 Software requirements and hardware assumptions

Successful operation of this software requires the deployment of the following hardware and
software configuration

 Zero or more islands (groups) of nodes that are either WSN devices (also called motes) or
Java-enabled devices; nodes in the same island are within direct communication range with
each other.

 Each sink-mote must be connected through a USB serial to a PC running
o The Communication Layer API from D1.3.2
o The Proxy-Specific software from D1.4

 A PC hosting the RUBICON Gateway software (D1.3.2) and the Proxy-Specific API (D1.4)

 Zero or more nodes in each such island. A mote-class device must deploy the TinyOS based
Communication Layer API (see D1.3.2 and D1.4) and the Learning Layer API. A Java-enabled
device must deploy a PEIS-init and PESI-java component (see D1.3.1, D1.3.2 and D1.4) as well
as the Java Learning Module component (see Section 2.2.2.2).

 One sink-node WSN mote per island deploying the TinyOS based Communication Layer API
(see D1.3.2) and the Learning Layer API.

 A PC acting as RUBICON Learning Gateway that runs
o The Gateway Wrapper software enclosed within the Learning Layer API;
o The Training Manager and LN Manager subsystems of the Learning Layer API,

together with the LN Wrapper component.
o The Communication Layer API from D1.3.2
o The Proxy-Specific software from D1.4
o A PEIS-init component (D1.3.2);
o A working PEIS-java distribution.

RUBICON D2.3 Core Learning Service API V2.0 RUBICON: Project No.: 22699145

30/10/2013 Page 14

Figure 2 Software architecture of the Learning Layer: derives from the preliminary sketch in D2.1 and
refinements in D2.2. Logical subsystems are represented as simple rectangular boxes, software
components are small rectangles with the UML component icon on the top-right corner, while
interlayer and intralayer interfaces are denoted as thick and thin arrows.

N
e

tw
o

rk
 M

ir
ro

r

Tr
ai

n
in

g
A

ge
n

t

R
e

p
o

si
to

ry

Tr
ai

n
in

g
M

an
ag

e
r

LN
 C

o
n

tr
o

l A
ge

n
t

Le
ar

n
in

g
N

e
tw

o
rk

M

an
ag

e
r

Le
ar

n
in

g
M

o
d

u
le

M
an

ag
e

r

Le
ar

n
in

g
N

e
tw

o
rk

Le
ar

n
in

g
La

ye
r

Se
n

so
r

N
o

d
e

C
o

m
m

u
n

ic
at

io
n

 L
ay

e
r

C
o

gn
it

iv
e

 L
ay

e
r

Su
p

e
rv

is
o

r

C
o

n
tr

o
l L

ay
e

r

O
n

lin
e

re
fi

n
em

en
t

Tr
ai

n
in

g
sa

m
p

le
s

W
ir

in
g

&
 C

o
n

tr
o

l
In

st
ru

ct
io

n
s

Sy
n

ap
ti

c
I/

O

Sy
n

ap
ti

c
In

st
ru

ct
io

n
s

W
ei

gh
ts

Se
n

so
r

p
re

d
ic

ti
o

n
s

Ev
en

ts
 c

la
ss

if
ic

at
io

n
/

p
re

d
ic

ti
o

n

Tr
ai

n
in

g
sa

m
p

le
s

Le
ar

n
in

g
Fe

ed
b

ac
k

Tr
ai

n
in

g
co

n
tr

o
l

Tr
ai

n
in

g
se

t

M
o

d
u

le

u
p

d
at

e

Lo
ca

l i
n

p
u

t

R
em

o
te

in

p
u

t

O
u

tp
u

t

C
o

n
fi

gu
ra

ti
o

n
/

C
o

n
tr

o
l m

sg

Le
ar

n
in

g
co

n
tr

o
l

LN
 W

ra
p

p
e

r

PEIS
Wrapper

RUBICON D2.3 Core Learning Service API V2.0 RUBICON: Project No.: 22699145

30/10/2013 Page 15

1.4.2.1 Platform dependencies: node hosting the RUBICON Learning Gateway

The primary target for the RUBICON Learning Gateway is an Ubuntu 11.10 based systems running on
Intel x86 compatible hardware in 32/64-bit modes and with the Oracle Java implementation. The
software has been tested on these systems, but have also to a lesser extent been verified to work
with a range of other Posix conformant operating systems such as other Linux based systems as well
as Macintosh based systems.

1.4.2.2 Platform dependencies: nodes hosting Learning Modules

Two classes of nodes are supported to host the RUBICON Learning modules

 WSN/WSAN motes

 Java-enabled devices.

The supported architecture for WSN/WSAN motes is based on a micro-controller and Bluetooth
radio stack capable of running TinyOS 2.x and the Communication Layer API. Furthermore, we
assume that the motes have a programming flash memory in addition to a minimum of 10KB of on-
board RAM memory. The software has been tested on the TelosB clone CM3000 by Advanticsys: the
mote is equipped with and MSP430 processor, 48KB program flash, 10KB data RAM and 1MB
external flash.

The target architecture for Java-enabled nodes is any device capable of running the Oracle Java
implementation. The software has been tested on an Ubuntu 11.10 based systems running on Intel
x86 compatible hardware in 32/64-bit modes.

1.4.2.3 The Learning Layer as a Distributed Software System

The information on the system requirements provided in the Sections above conveys the picture of
the Learning Layer as a distributed software system whose components (introduced in Section 1.3)
are hosted by different nodes of the ecology. Here we provide a summary of the distributed
allocation of the Learning Layer subsystems:

1. The Learning Network is, by all means, a distributed subsystem whose composing elements,
i.e. the learning modules and the associated management components, resides on ecology
nodes with heterogeneous computational capabilities, including both TinyOS operated
devices and more powerful Java-enabled nodes. Such devices co-operate through a Synaptic
Communication mechanism to realize a fully distributed neural computation that provides
the predictions of the Learning Network.

2. The Learning Network Manager is a software component implemented as a Java-based

agent and hosted on the Learning gateway device which, nevertheless, interacts with the
distributed Learning Network and all high-level components of the RUBICON ecology that
may be hosted by remote devices.

3. The Training Manager is also implemented by a Java component allocated on the Learning

gateway device. Similarly to the LNM, it interacts with the distributed Learning Network for
the purpose of deploying newly trained learning modules and delivering refinement teaching
signals to the ESN on-board the ecology nodes. It also interacts with the remote high-level
components of the RUBICON ecology for receiving learning-related information.

RUBICON D2.3 Core Learning Service API V2.0 RUBICON: Project No.: 22699145

30/10/2013 Page 16

The CLS API V2.0 provides an implementation of a distributed learning systems for devices with
heterogeneous computational capabilities that is innovative with respect to the solutions available in
literature, in particular as regards the following aspects:

 Approaches in literature tend to propose the use of a learning model to solve a very specific
task, whereas the CLS implements a system that can instantiate learning-based solutions to
several ecology or WSN-specific tasks (what we call “general-purpose”).

 Approaches in literature typically use static learning models that do not account for the
sequential nature of data or exploit linear approaches, whereas the CLS implementation
founds on a model in the class of recurrent neural networks, i.e. the Echo State Network,
that has been specifically designed to deal with time-series data within the class of non-linear
approaches, and which is more rarely exploited in these contexts.

 Our proposal is characterized by an efficient design of the recurrent neural network models,
based on ESN learning models, that are compatible with the low-computational capacity of
the cheap sensor motes used in the RUBICON ecology, while they allow the deployment of
more complex computational learning task on more powerful Java-enabled nodes.

 The CLS API V2.0 does not only implement a learning system, whereas it implements a whole
set of functionalities and mechanisms supporting the automated system configuration and
reconfiguration, including support for learning module recovery, as well as tools for
facilitating access to the system, e.g. a Graphical User Interface (GUI).

 The CLS API V2.0 makes available an actual learning system that can be downloaded and
installed by anyone interested. We are not aware of any software with comparable features
that has been made openly available to the scientific community.

1.5 Differences from D2.2 Core Learning Service V1.0

This report describes the release 2.0 of the “Core Learning Service API” software, whose version 1.0
has been distributed as D2.2 in month M18 of the project. For the sake of completeness and self-
containment, this report includes all the relevant information inherited from D2.2 and appropriately
extended to document the new functionalities introduced by V2.0. This section has been designed as
a quick guide to the major changes introduced in D2.3. with respect to D2.2, and it is intended for
knowledgeable readers already acquainted with the contents of D2.2.

The Learning Network subsystem has been extended to allow a distributed neural computation
comprising both NesC learning modules for TinyOS operated devices (already in D2.2) and newly-
developed learning modules for Java-enabled devices. To this end, it has been developed a stand-
alone component that can be run in any Java-enabled device of the Rubicon ecology and that can
allocate and control several learning modules on-board the device (where the maximum number of
deployable learning modules is determined by characteristics of the host). Details of the new Java
component can be found in Section 2.2.2.2.

The forward computation phase has been extended from D2.2 to allow a distributed computation
where learning modules (of any type) residing on different nodes are allowed to interact with each
other: this aspect is discussed in Section 2.2.4. The introduction of Java learning modules has
required the extension of the Synaptic Communication mechanism to enable communication
between Java learning modules and/or with TinyOS modules. This has been realized exploiting the
PEIS-tuple mechanisms, as detailed in Section 2.2.3.

RUBICON D2.3 Core Learning Service API V2.0 RUBICON: Project No.: 22699145

30/10/2013 Page 17

Figure 3 Architectural detail of the LN subsystem: the Manager and Learning Module components run
on ecology devices (represented as L-shaped boxes) distributed in the environment. Supported devices
include mote-class and java-enabled node. The LN Wrapper component is deployed on a PC (referred
to as Learning Gateway), represented as a dashed rectangle.

Figure 4 Architectural detail of the LN Manager subsystem: the LN Control Agent component is
deployed on the Learning Gateway. The LN Manager subsystem interacts with the PEIS Wrapper
component, running on the same PC, that interfaces the Learning Layer with external PEIS-enabled
components.

Learning Module

Manager

Learning Network

Sensor

NODE

Local input

Remote
input

Output

LN Wrapper

RUBICON Learning
Gateway

LN Control Agent

Learning
Network
Manager P

EIS
W

rap
p

e
r

RUBICON Learning
Gateway

RUBICON D2.3 Core Learning Service API V2.0 RUBICON: Project No.: 22699145

30/10/2013 Page 18

Figure 5 Architectural detail of the Training Manager subsystem: the Repository, the Training Agent
and Network Mirror components all run on the Learning Gateway, represented as a dashed
rectangle.

 The Learning Network Manager subsystem has been extended to accommodate the changes to the
Synaptic Communication mechanism, as detailed in Section 2.3.3. Further, the LNM has been
provided with recovery routines for learning modules (TinyOS or Java) failing due to device
disconnection: details can be found in Section 2.3.4.

The Training Manager subsystem has undergone considerable changes, mostly to accommodate
novel learning mechanisms and to support Learning Layer self-configuration capabilities by
automatizing the training and management of the learning modules. A feature selection
mechanisms has been implemented to learn to automatically filter-out irrelevant inputs for a
computational learning task, with the objective of reducing the associated computational and
communication effort, while increasing the quality of the information provided as input of a
computational learning task. A two-level feature selection system has been made available in CLS API
V2.0, comprising a preliminary step of redundancy reduction based on filter methods (see Section
2.4.2.1), followed by the application of a wrapper approach tailored to optimizing the predictive and
generalization abilities of the Echo State Networks (ESNs) in the LN (see Section 2.d.ii). The learning
mechanisms have been extended to provide: (i) an on-mirror validation procedure to batch training
and selection of the best performing ESNs configuration for a Rubicon learning task; (ii) an online
refinement mechanism providing adaptation based on instantaneous teaching/reward information
and that is performed directly on-board the learning module. These mechanisms are overviewed in
Section 2.4.3.1 and 2.4.3.2, respectively.

Finally, the whole of Section 3 has been revised to document testing and performance of the novel
functionalities introduced in D2.3 and discussed above.

Network Mirror

Training Agent

Repository

Training Manager

Training
samples

Learning
Feedback

Training control

Training
set

Module
update

RUBICON Learning Gateway

RUBICON D2.3 Core Learning Service API V2.0 RUBICON: Project No.: 22699145

30/10/2013 Page 19

2. Learning Layer Software System

2.1 Core Learning Service (CLS) API V2.0

The Core Learning Service (CLS) API V2.0 provides the implementation of the RUBICON Learning
Layer, whose specification is discussed in detail in D2.1. The current release provides the
management, control and training functionalities specified in D2.1, Sections 5.2-5.5.

The CLS API is articulated into three software libraries:

1. A Java library, i.e. the Learning Gateway API, comprising software that runs on a PC, referred
to as the RUBICON Learning Gateway, and provides the implementation for the LN Manager
and Training Manager subsystems, as well as the wrapper objects to access the PEIS and the
LN interface.

2. A NesC library, i.e. the NesC Learning Network API, that provides the implementation of the
distributed LN subsystem, including the Synaptic Connection mechanism, targeted to TinyOS
devices.

3. A Java library, i.e. the Java Learning Network API, that provides the implementation of the
distributed LN subsystem, including the Synaptic Connection mechanism, targeted to Java-
enabled devices.

In the remainder of this section, we discuss the main functionalities implemented as part of the CLS
API. Rather than discussing the three software libraries in separation, we provide a description of the
functionalities following the structure of the specification document D2.1, to allow a straightforward
mapping from the specification to the implementation. The key aspects and the design choices of the
libraries are discussed briefly in the following two subsections, whereas a more technical reference
manual of the implemented functionalities is available for download together with the code.

2.1.1 The Java Learning Gateway API (LGA)

The LGA implements the gateway-side functionalities of the Learning Layer: these are provided by
several threads that communicate by means of message queues and dispatcher-listener mechanisms.
A unique interface LLRunnableInterface has been defined to allow unified control over thread
activation, management and termination. The dispatcher-listener mechanism (e.g. see the
LNInformationDispatcher and LNInformationListener interfaces) allows any component
controlling the main LearningLayer object (e.g. a GUI) to subscribe to its publishing service and to
receive information on the status of the layer. The message queue system, on the other hand, is used
internally to the layer to allow thread communication.

The LGA requires the RUBICON Communication Layer and PEIS-java libraries to be installed into the
system where it is deployed. The LGA comprises 6 key packages

 generics – Includes the data structures shared across the Learning Layer subsystems, the
standard interface of the Learning Layer threads, the inter-thread communication
mechanisms as well as some general macros.

 learningnetwork – Includes the Java wrapper for accessing the distributed LN (both Java
and NesC components) and an interface to the RUBICON gateway.

 main – Includes the definition of the main Learning Layer object, as well as the LN output
interface and the wrapper to access the PEIS functionalities.

 manager – Includes the implementation of the LN Manager subsystem.

RUBICON D2.3 Core Learning Service API V2.0 RUBICON: Project No.: 22699145

30/10/2013 Page 20

 training – Includes the implementation of the Training Manager subsystem by two main
components, i.e. the TrainingAgent and the NetworkMirror.

 test – Includes the example scripts for testing and experimenting with the library.

Figure 6 shows the package diagram of the API, detailing the interfaces, the classes and the package
import dependencies among the packages.

In addition to that, the software includes a Java package gui implementing a Graphical User Interface
(GUI) for the configuration and control of the Learning Layer. The GUI is not officially part of D2.3 as
per-DoW description, but it is released as an extra-functionality of D2.3 providing a tool to facilitate
deployment and experimentation with the RUBICON Learning Layer.

The LGA depends on a set of RUBICON packages that implement the communication primitives
exploited by the Learning Layer. In particular, it requires the peisjava.jar library, that provides a Java
interface to the PEIS functionalities. In its current version, the LGA also needs the tinyos,
cnr.rubicon.cml, ucd.rubicon.network and ucd.rubicon.network packages, redistributed
along with the LGA, that serve to provide access to the Communication Layer functionalities in the
RUBICON Gateway. We expect that, in future releases, these will be available as a unique jar
distribution: the LGA package dependencies will be updated accordingly.

2.1.2 The NesC Learning Network API

The NesC LN API provides the mote-side functionalities of the Learning Network. These are
implemented as ESN learning modules for TinyOS devices, including all the data structures and
functions used for the feed-forward computation, online learning mechanisms, implementation of
the synaptic connections, upload/download and activation/stop of the ESN modules. The NesC LN
API also includes the implementation of the Synaptic Connection abstraction, which is used to
properly route the input data towards the units of the neural network, by exploiting the Synaptic
Channel mechanism delivered by the Communication Layer.

The NesC LN API requires TinyOS 2.1.1 to be installed into the devices where it is deployed,
supporting both mobile and sink devices.

The NesC LN API consists in the files

 learning.h – Contains the data structures and macro definitions for the implementation
of the learning network onboard the TinyOS devices.

 LearningP.nc – Contains the NesC implementation of the learning modules.

 LearningC.nc – Contains the NesC configuration for the learning modules.

Figure 7 describes the structure of the NesC LN API, showing the wiring among the different NesC
components involved. More details on the implementation of the NesC Learning Modules are
provided in Section 2.2.2.1.

RUBICON D2.3 Core Learning Service API V2.0 RUBICON: Project No.: 22699145

30/10/2013 Page 21

Figure 6 The package diagram of the Java Learning Gateway API.

s
r
c
.
g
e
n
e
r
i
c
s

+

I
L
N
I
n
f
o
r
m
a
t
i
o
n
L
i
s
t
e
n
e
r

+

I
L
L
R
u
n
n
a
b
l
e
I
n
t
e
r
f
a
c
e

+

C
D
e
v
i
c
e
R
e
p
o
s
i
t
o
r
y

+

C
E
c
h
o
S
t
a
t
e
N
e
t
w
o
r
k

+

C
E
s
n
U
p
l
o
a
d

+

C
H
a
s
h
C
o
d
e
U
t
i
l

+

C
L
L
M
e
s
s
a
g
e
s

+

C
L
N
I
n
f
o
r
m
a
t
i
o
n
D
i
s
p
a
t
c
h
e
r

+

C
L
N
I
n
f
o
r
m
a
t
i
o
n
E
v
e
n
t

+

C
L
N
I
n
f
o
r
m
a
t
i
o
n
M
s
g

+

C
L
N
O
u
t
T
y
p
e

+

C
N
o
d
e
I
n
f
o
r
m
a
t
i
o
n

+

C
S
y
n
a
p
t
i
c
C
o
n
n
e
c
t
i
o
n

+

C
T
a
s
k
D
a
t
a

+

C
T
a
s
k
T
y
p
e

+

C
T
r
a
i
n
i
n
g
D
a
t
a

+

C
T
r
a
i
n
i
n
g
D
a
t
a
s
e
t

+

C
W
i
r
i
n
g
S
p
e
c
i
f
i
c
a
t
i
o
n

+

C
W
i
r
i
n
g
T
a
b
l
e

+

C
W
i
r
i
n
g
T
y
p
e

s
r
c
.
l
e
a
r
n
i
n
g
n
e
t
w
o
r
k

+

I
L
N
M
e
s
s
a
g
e
L
i
s
t
e
n
e
r
I
n
t
e
r
f
a
c
e

+

I
G
a
t
e
w
a
y
I
n
t
e
r
f
a
c
e

+

C
B
r
o
a
d
c
a
s
t
C
m
d
M
s
g

+

C
C
o
m
m
a
n
d
M
s
g

+

C
G
a
t
e
w
a
y
W
r
a
p
p
e
r

+

C
L
e
a
r
n
i
n
g
M
o
d
u
l
e
C
m
d
M
s
g

+

C
L
e
a
r
n
i
n
g
M
o
d
u
l
e
D
o
w
n
M
s
g

+

C
L
e
a
r
n
i
n
g
M
o
d
u
l
e
F
l
o
a
t
C
m
d
M
s
g

+

C
L
e
a
r
n
i
n
g
N
e
t
w
o
r
k
W
r
a
p
p
e
r

+

C
L
e
a
r
n
i
n
g
N
o
t
i
f
i
c
a
t
i
o
n
M
s
g

+

C
L
e
a
r
n
i
n
g
O
u
t
p
u
t
M
s
g

+

C
N
e
t
I
d
C
m
d
M
s
g

+

C
S
e
r
i
a
l
D
a
t
a
M
s
g

+

C
S
e
r
i
a
l
J
o
i
n
e
d
M
s
g

+

C
S
y
n
C
r
e
a
t
e
C
m
d
M
s
g

s
r
c
.
m
a
i
n

+

C
L
e
a
r
n
i
n
g
L
a
y
e
r

+
C

L
N
O
u
t
p
u
t
s

+

C
P
e
i
s
S
y
m
b
o
l
s

+

C
P
e
i
s
W
r
a
p
p
e
r

s
r
c
.
m
a
n
a
g
e
r

+

I
C
o
n
t
r
o
l
I
n
t
e
r
f
a
c
e

+

I
S
u
p
e
r
v
i
s
o
r
I
n
t
e
r
f
a
c
e

+

I
T
r
a
i
n
i
n
g
I
n
t
e
r
f
a
c
e

+

C
L
N
C
o
n
t
r
o
l
A
g
e
n
t

s
r
c
.
t
e
s
t

+

C
G
a
t
e
w
a
y
W
r
a
p
p
e
r
D
u
m
m
y

+

C
s
u
p
e
r
v
i
s
o
r
E
n
t
i
t
y

s
r
c
.
t
r
a
i
n
i
n
g

+

C
N
e
t
w
o
r
k
M
i
r
r
o
r

+

C
T
r
a
i
n
i
n
g
A
g
e
n
t

RUBICON D2.3 Core Learning Service API V2.0 RUBICON: Project No.: 22699145

30/10/2013 Page 22

Figure 7 Schematic illustration of the wiring among software components involved in the NesC LN API.

RUBICON D2.3 Core Learning Service API V2.0 RUBICON: Project No.: 22699145

30/10/2013 Page 23

2.1.3 The Java Learning Network API

The Java LN API provides the PC-side functionalities of the Learning Network, through a Java
implementation of the ESN learning modules and Synaptic Connection abstraction discussed above
for the NesC version.

The Java LN API is a standalone package with respect to the LNA library, but requires a working
installation of PEIS-init and PEIS-java in the devices where it is deployed to.

The Java LN API is made of a single package, whose key classes are

 PCLMmanager.java – Defines the agent (one for each device) that manages all the learning
modules running on the device.

 LearningModulePC.java – Defines the implementation of a learning module object, that
encapsulates the ESN as well as the ingoing/outgoing Synaptic Connections.

 EchoStateNetwork.java – Defines the ESN object and the associated methods for
training, prediction and online learning.

More details on the implementation of the Java Learning Modules are provided in Section 2.2.2.2.

2.2 Learning Network (LN)

2.2.1 Overview

The LN subsystem implements the environmental memory of the RUBICON ecology by means of a
network of learning modules distributed on the ecology devices (e.g. WSN motes, gateways, PC, etc).
It computes the Learning Layer predictions through a distributed neural computation (referred to as
forward computation) realized by the single learning modules interconnected and cooperating
through synaptic connections.

The functionalities of the LN subsystem are implemented partly by the Java LGA and partly by the
Java and NesC LN API. The learningnetwork package of the LGA implements most of the gateway-
side mechanisms and data-structures of the LN. The main Java component is implemented by the
LearningNetworkWrapper class (discussed in Section 2.2.5): it provides methods to interact with the
LN and allows abstracting from the technical details of its implementation and deployment. Further,
the package defines an interface detailing the RUBICON gateway functionalities used by the Learning
Layer (see learningnetwork.GatewayInterface) as well as a stand-alone component
implementing the interface (see learningnetwork.GatewayWrapper).

The actual learning modules executed on the ecology nodes are implemented by the Java and the
NesC LN APIs, where the latter is used for mote-class TinyOS devices while the former supports Java
enabled devices. In addition, the two APIs provide the mechanisms supporting Synaptic
Communication (see Section 2.2.3).

2.2.2 Learning Modules

The Java and NesC LN API provide the stand-alone implementation of the learning modules that are
embedded in the ecology nodes. They comprise an implementation of the Leaky-Integrator ESN
model, including functions for initialization, forward computation, online learning mechanisms,
upload/download and activation/stop of the learning network. Note that the same ESN model used
in the stand-alone APIs is implemented in the Network Mirror component of the Java LGA, where it
serves to perform batch training of the ESNs parameters for incremental learning purposes and to
maintain copies of the modules deployed in the ecology.

RUBICON D2.3 Core Learning Service API V2.0 RUBICON: Project No.: 22699145

30/10/2013 Page 24

Both the Java and the NesC learning modules perform a distributed computation synchronized by a
clock signal, referred to as the RUBICON clock. This clock is unique for all the devices in the ecology
and is its clock signal is made available through the Communication Layer facilities.

In the following sections, an overview of the learning modules is provided.

2.2.2.1 NesC Learning Modules

The NesC LN API implements the learning modules for TinyOS-enabled devices, mainly through the
component LearningP.nc. This file defines the data structures that are used to represent the ESN
parameters and computational components of the network. These include input, reservoir and
readout dimensions, internal weight values of the neural network (input-to-reservoir, recurrent
reservoir and reservoir-to-readout weight matrices), reservoir state transition function parameters,
the readout regularization parameter, online learning related data structures and parameters, and
the input, reservoir state and output of the network. The weight values for the reservoir part of the
ESN are encoded by resorting to a finite alphabet of possible weights.

2.2.2.2 Java Learning Modules

A stand-alone implementation of the learning modules for Java-enabled devices is provided by the
Java LN API. The class PCLMmanager implements the agent that manages the CLS functionalities of a
generic Java-enabled node of the ecology. It defines a main() method that subscribes the host
device to the Learning Layer by posting a formatted join command on the predefined
PeisSymbols.CONTROL_CMD tuple, passing the device address as argument of the command. More
details on the use of the CONTROL_CMD tuple are provided in Section 2.3.2.

After the join protocol, the PCLMmanager agent subscribes itself to the tuple
PeisSymbols.LL_INTERNAL, where it can receive control and configuration commands from the
LearningNetworkWrapper component in the RUBICON Learning Gateway, including instructions for

 creation/destruction of a learning module ;

 activation/stopping forward computation ;

 loading of ESN parameters from the remote NetworkMirror.

The general format of the LL_INTERNAL tuple is provided in Table I: a varying number of comma-
separated arguments are provided depending on the command. The CMD_CODE values for the
different commands are defined in main.PeisSymbols.java and reported in Table II for the sake
of completeness. Note that the PCLMmanager class provides static methods for each command in
Table II that automatically generate the corresponding well-formatted string and post it to the
LL_INTERNAL tuple.

Table I Description of the tuple used to deliver control instructions from the
LearningNetworkWrapper to the Java Learning Modules

Tuple String Peis Name Payload (Byte[] encoding a string of 3 comma-separated int)

LLInternalCmd LL_INTERNAL CMD_CODE,ARG1,ARG2,…,ARGN

RUBICON D2.3 Core Learning Service API V2.0 RUBICON: Project No.: 22699145

30/10/2013 Page 25

Table II Encoding of the commands that can be invoked through the LL_INTERNAL tuple. The Args
column describes the arguments associated to the command.

Name Value Args Description

PC_LEARN_MODULE_CREATE 25 nodeID,
netID,
[argEsn]

Creates a new ESN with arguments
argESN=[inputDimension,
reservoirDimension,
readoutDimension, leakyParameter,
reservoirConnection]

PC_LEARN_MODULE_START 26 nodeID Activates forward computation on the
device

PC_LEARN_MODULE_STOP 27 nodeID Stops forward computation on the
device

PC_LEARN_MODULE_ACTIVATE 28 nodeID,
netID

Registers the callbacks of a target
learning module (for Synaptic
communication)

PC_LEARN_MODULE_DEACTIVATE 29 nodeID,
netID

Unregisters the callbacks of a target
learning module

PC_LEARN_MODULE_LOAD 30 nodeID,
netID,
matID,
mat

Loads a parameter matrix mat of type
matID (e.g. input, reservoir, readout
or scaling parameters) into a target
learning module.

PC_LEARN_MODULE_DESTROY 31 nodeID,
netID

Destroys a target learning module

PC_LEARN_MODULE_REFINE 32 type,
nodeID,
netID,
neurID

Provides an online refinement signal
(of the specified type) directed to a
target neuron of a learning module

The PCLMmanager agent allocates a new LearningModulePC object upon reception of a valid
PC_LEARN_MODULE_CREATE command: therefore, every device runs a single instance of the agent but
can allocate a variable number of learning modules depending on the available memory. A Java
Learning Module is associated to a unique negative integer identifier netID. A LearningModulePC
object encapsulates the actual learning machinery, i.e. the ESN, as well as the associated Synaptic
Connections (more details on Synaptic Communication are provided in Section 2.2.3).

The Java implementation of the Leaky-Integrator ESN module is provided by the class
generics.EchoStateNetwork, which is used both in the LGA and in the Java LN API. This class stores
the parameters of the ESN, including the input, reservoir and readout dimensions, the weight values
for the input-to-reservoir, recurrent reservoir and reservoir-to-readout connections. The weight
matrices are represented both in a standard form, as matrices of float, and in a mote-version
which resembles the NesC implementation, using the same weight alphabet. Other members of the
EchoStateNetwork model the input, the state, the output of the neural network and two vectors of
float values used for normalization of the input signals for the ESN. The class also includes the ID of

RUBICON D2.3 Core Learning Service API V2.0 RUBICON: Project No.: 22699145

30/10/2013 Page 26

the computational task associated. Moreover this class includes the definition of all the variables and
data structures required for online learning computation, in particular the forgetting
lambda_forgetting, the weight update matrix Phi, and an onlineLearningMode flag. The
signature of the most relevant members of the EchoStateNetwork class is provided in Table III.

Table III The main members of the class generics.EchoStateNetwork.
Class EchoStateNetwork

//Forward Computation
 private float[] state;
 private float[] output;
 private float[] input;
 private float leakyParameter;
 private int reservoirDimension;
 private int inputDimension;
 private int outputDimension;

//Weight values
 private float[][] Win,W,Wout;
 private short[][] WinIndices;
 private short[][] WIndices;
 private short[][] WPositions;

//Mote-embedded representations of weight values
 private float[] weightAlphabet;
 private int weightAlphabetLength;
 private short reservoirConnections;
 private short[][] WinE;
 private short[][] Wa;
 private short[][] Wb;
 private short maxDistanceReservoir;

//Training
 private float readoutRegularization;
 private int taskID;

//Input scaling parameters for zero-mean unit-variance
//normalization
private float scalingMean[];
private float scalingStd[];

//Online learning related variables and data structures
private float lambda_online; //forgetting factor
private float[][] Phi; //online weight update
private int onlineLearningMode; //flag for online mode

2.2.3 Synaptic Connections

Synaptic Connections are a multiplexing/demultiplexing mechanism that is used to route input/
output information towards/from the neurons of the distributed learning network. They serve as an
abstraction of the underlying communication mechanism that is responsible of the actual
transmission of neural information across the ecology. Synaptic Connections are realized by the NesC
and Java LN API: a brief overview of their implementation in the two APIs is provided in the following.

RUBICON D2.3 Core Learning Service API V2.0 RUBICON: Project No.: 22699145

30/10/2013 Page 27

Nevertheless, the LNControlAgent component maintains a repository of SynapticConnection
objects, that holds information on the deployed connections for management purposes.

2.2.3.1 NesC Synaptic Connections

NesC Synaptic Connections are built on top of the Synaptic Channel mechanism implemented by the
Communication Layer. A Synaptic Connection is used to route the input and the output information
towards the right units of the local learning network or towards the right positions in the Synaptic
Channels buffers. Synaptic Connections can be remote or local.

The inputSynConnection_t data structure describes the input of Synaptic Connections by
specifying the ID of the associated Synaptic Channel, and the index in the corresponding ChIn buffer
reserved for the Synaptic Connection, the ID of the source device in the ecology and the ID of source
and destination neurons for the connection. The structure definition of the
inputSynConnection_t data structure is reported in Table IV.

Analogously, the outputSynConnection_t data structure describes the Synaptic Connection at
the source-side, i.e. the ID of the corresponding Synaptic Channel, the index in the ChOut buffer and
the ID of the source Neuron. The structure definition of the outputSynConnection_t data
structure is reported in Table V. Both inputSynConnection_t and outputSynConnection_t
are defined in the header file learning.h.

Table IV Definition of the inputSynConnection_t data structure.
typedef struct inputSynConnection {
 syn_ch_id_t synChannelIndex; // id of the synaptic channel
 uint8_t chIndex; // index in the synaptic channel buffer
 WSNnodeID_t sourceNode; // id of the source node
 uint16_t sourceNeuron; // id of the source neuron
 uint16_t destinationNeuron; // id of the destination neuron
 synConnectionStatus status; // status
} inputSynConnection_t;

Table V Definition of the outputSynConnection_t data structure.
typedef struct outputSynConnection {
 syn_ch_id_t synChannelIndex; // id of the synaptic channel
 uint8_t chIndex; // index in the synaptic channel buffer
 uint16_t sourceNeuron; // id of the source neuron
 synConnectionStatus status; // status
} outputSynConnection_t;

Remote input Synaptic Connections are created by the function
configure_syn_connect_in(nodeId, neuronsId_out, neuronsId_in, numNeurons,
params), requesting the configuration of a remote synaptic connection among the numNeurons
neuronsID_out in nodeId and the neuronsId_in in the local node. Analogously, the creation of
an output Synaptic Connection is requested by invoking the function
configure_syn_connect_out(nodeId, neuronsId, numNeurons, params), which
configures an output Synaptic Connection from the numNeurons units neuronsId in the local node
to the node with identifier nodeId. Functions configure_syn_connect_in and
configure_syn_connect_out are both defined in LearningP.nc.

RUBICON D2.3 Core Learning Service API V2.0 RUBICON: Project No.: 22699145

30/10/2013 Page 28

In the case of a local Synaptic Connection the source of the data is represented by local sensor
transducers. This particular case is handled as a special case of the remote Synaptic Connection case,
and corresponds to the creation of an input and an output Synaptic Connections, in which the ID of
the transducer is obtained as a special encoding of the field describing the ID of the source neuron.

2.2.3.2 Java Synaptic Connections

The Java Synaptic Connections build a similar mechanism with respect to their NesC counterpart, but
they rely on a communication mechanism exploiting PEIS tuplespace. In summary, an input Synaptic
Connection of a Java learning module subscribes itself to a PEIS tuple that plays the role of a Synaptic
Channel: at each RUBICON clock, the tuple value is updated and the Synaptic Connection mechanism
routes the updated values to the appropriate neurons similarly to what happens in NesC. Likewise,
an output Synaptic Connection writes a specific PEIS tuple that allows propagating the values to
other learning modules.

More in detail, the instantiation of a set of Java Synaptic Connections is initiated (as in the NesC case)
by a create instruction from the LNControlAgent component. This request is delivered to the
interested learning module by posting an appropriately formatted string on the predefined tuple
PeisSymbols.LL_SYN, to which all the LearningModulePC objects subscribe at construction time
(see the format in Table VI). This request is delivered in broadcast to all the Java Learning Modules in
the ecology, but only the learning modules that are either source or destination will process it. In
particular, the LearningModulePC object that is the source of the Synaptic Channel, will allocate a
new tuple following a predefined naming convention. A tuple implementing a Synaptic Channel
between two Learning Modules with identifier sourceNetID and destNetID will be named as

LL_SN + sourceNetID + : + destNetID

where “+” is the string concatenation operator. Then, the source LearningModulePC object will
allocate appropriate output Synaptic Connections that will write to the tuple at each tick of the
RUBICON clock, following the string encoding in
Table VII. In parallel, the destination LearningModulePC object will allocate the input Synaptic
Connections that will subscribe to the same tuple and deliver its content to the appropriate ESN
units.

Note that 0 is a reserved learning module identifier that is used to denote the RUBICON Learning
Gateway. For instance, the prediction of an ESN with identifier netId=-1 is delivered to the Learning
Gateway (e.g. for propagation to the other RUBICON layers) through a tuple with name “LL_SN-1:0”.

Table VI Description of the tuple used to request the creation of Synaptic Connections whose ends
include at least one Java Learning Module

Tuple String Peis Name Payload (a string of comma-separated arguments)

LLSynConCmd LL_SYN SourceNodeID,DestNodeID,SourceNetId,DestNetId,[SourceNeuron1
#...#SourceNeuronN],[DestNeuron1#...#DestNeuronN]

Table VII Example of a tuple transmitting N comma-separated values from a Java Learning Module

with netID=-1 to another module with netID=-2

Tuple String Payload (String)

LL_SN-1:-2 VALUE1,VALUE2,…,VALUEN

RUBICON D2.3 Core Learning Service API V2.0 RUBICON: Project No.: 22699145

30/10/2013 Page 29

2.2.4 Forward Computation

The distributed forward computation is realized by the instances of the NesC and Java LN API running
on-board the RUBICON nodes and interacting through the Synaptic Communication mechanisms
discussed in Section 2.2.3. Within the NesC API, this is realized by the LearningP.nc component:
the control-flow is schematically shown in Figure 8. In particular, each time the RUBICON clock fires:

1. the input for the ESN module is read from the input Synaptic Connections using the function
read_syn_connection(inConnection);

2. the routine do_feedforward_step() computes the current ESN output ;
3. the output of the ESN module is propagated through a write operation

write_syn_connection(outConnection) into the Output Synaptic connections, from
where it is further transmitted to other distributed components.

Similarly, the LearningModulePC component realizes the forward computation within the Java LN
API, by exploiting the functionalities implemented in the class EchoStateNetwork. Every time a
LN_SNx tuple posts new information, the LearningModulePC object that is the destination of the
synaptic communication collects the new data and routes it to the appropriate positions of the input
buffer of the associated EchoStateNetwork object. When the RUBICON clock fires, the
EchoStateNetwork computes the new ESN outputs and the LearningModulePC takes care of
propagating the outputs to other components by writing them in the appropriate LN_SNx tuples.

The outputs predicted by the various ESNs distributed in the RUBICON ecology can serve as inputs to
other learning modules and/or can be published by the Learning Layer as LN predictions for the other
RUBICON layers. In order for these predictions to be published, the corresponding ESN outputs
distributed in the LN are routed to the LearningNetworkWrapper component in the RUBICON
Learning Gateway, again by means of NesC or Java Synaptic Communication (see Sect. 2.2.5 for the
details). The LearningNetworkWrapper object, in turn, forwards the ESN outputs to the LNOutputs
component, implemented through a java class in the main package of the LGA, that maintains
information concerning the LN predictions, including their symbolic names and their current values.
These can be accessed through getter methods by any component possessing a reference to the
LNOutputs object.

Nevertheless, the information in the LNOutputs component is made available to any ecology
participant (including Control and Cognitive Layer) through a set of PEIS tuples. To receive
information concerning all the LN predictions and their symbolic names, a PEIS-enabled participant
needs only to subscribe to the tuples with key-string “LLoutputIDValue” and “LLoutputID”,
respectively. Table VIII and Table IX show the format of the two tuples as well as the “PEIS Name”
macro defined in main.PeisSymbols.java. In particular, the values predicted for K LN outputs (i.e.
a float array of size K) are serialized to string of comma-separated values (one for each output) and
published to as a tuple with a binary encoding as a byte array (see Table VIII). Symbolic names are
concatenated into a unique string, using the placeholder “#” to separate between names (see Table
IX). A time-stamp with the current RUBICON time is appended to the head of these two tuples.

The LNOutputs component also provides a specialized access to the LN outputs that correspond to
the prediction of events. These are published by two additional tuples, with key-string "LLeventID"
and "LLeventIDValue", where the former provides information on the event symbolic names, while
the latter provides the predicted values. In practice, for each event, the LNOutputs component
publishes a couple of values (and names), where the former element relates to the classification of
the event, while the latter concerns the confidence about the classification. The RUBICON time-

RUBICON D2.3 Core Learning Service API V2.0 RUBICON: Project No.: 22699145

30/10/2013 Page 30

stamp is also attached to the head of these two tuples, whose format is the same shown in Table VIII
and Table IX for the “LLoutputIDValue” and “LLoutputID tuples.

Publishing of all the output-related tuples is achieved by the main.PeisWrapper component, which
takes care of creating all the tuples and updates their value at each tick of the RUBICON clock.

Figure 8 A schematic illustration of the information flow in one step of the feedforward computation
on-board a mote.

Table VIII Description of the tuple used to publish the outputs of the LN

Tuple String Peis Name Payload (Byte[] encoding a string of comma-separated
floats)

LLoutputIDValue OUTPUT_ID_VALUE TIME,OUT_1,OUT_2, …,OUT_K

Table IX Description of the tuple used to publish the symbolic names of the LN outputs

Tuple String Peis Name Payload (String)

LLoutputID OUTPUT_ID TIME#OUT_NAME1# OUT_NAME2#...#OUT_NAMEK

RUBICON D2.3 Core Learning Service API V2.0 RUBICON: Project No.: 22699145

30/10/2013 Page 31

2.2.5 Learning Network Wrapper

The LearningNetworkWrapper class is defined in the learningnetwork package of the LGA: it
provides methods to interact with the LN and allows abstracting from the technical details of its
implementation. The LearningNetworkWrapper implements an agent that receives control and
configuration commands from the LNControlAgent and the NetworkMirror components, it formats
them into appropriate messages and forwards them to the LN through the most adequate
communication mechanism. In particular, messages directed to NesC learning modules exploit the
Connectionless Communication primitives provided by the RUBICON Gateway. The
LearningNetworkWrapper interaction with the RUBICON gateway is defined by the methods listed
in the learningnetwork.GatewayInterface interface. This defines a set of send() operations to
direct messages to the NesC learning modules, as well as a list of command types. The messages
directed to Java learning modules are, instead, posted by the LearningNetworkWrapper agent on
the LL_INTERNAL PEIS tuple as discussed in Section 2.2.2.2.

The LearningNetworkWrapper also collects information from the LN and forwards it to the
appropriate Learning Layer components: e.g. it receives the LN predictions and communicates them
to the LNOutputs component. In fact, the LearningNetworkWrapper component plays a key role in
implementing the distributed forward computation, as it acts as a bridge between the NesC and the
Java learning modules. In particular, it enables Java-based ESN to receive inputs from any neuron
belonging to a NesC learning module, and vice-versa. To this end, to receive information from the
NesC side of the LN (through the RUBICON gateway), the LearningNetworkWrapper implements the
LNMessageListenerInterface method messageReceived(). On the other hand, to receive
information from the Java learning modules, the LearningNetworkWrapper subscribes to all the
“LL_SNsourceNetID:destNetID” PEIS tuples whose destination identifier equals the reserved value
0. At each tick of the RUBICON clock, the LearningNetworkWrapper collects updated neural
readings from both its NesC and Java input interfaces. Then, it demultiplexes this information by
determining if these readings need to be forwarded to a NesC/Java module, and/or if they need to be
sent to the LNOuputs component to be published as LN predictions. Figure 9 summarizes the
synaptic information flow entering and leaving the LearningNetworkWrapper component in a
scenario where a NesC learning module A provides an input to the Java learning module B.

The LearningNetworkWrapper agent also maintains a list of pending control and configuration
commands sent to the LN (i.e. the requestState structure), for the purpose of supporting reliable
delivery of the requests. For each non-broadcast message, the LearningNetworkWrapper awaits the
reception of an acknowledgment of the state of the pending command, that is used to update the
requestState structure and to inform the LNControlAgent and NetworkMirror of the outcome of
their requests.

RUBICON D2.3 Core Learning Service API V2.0 RUBICON: Project No.: 22699145

30/10/2013 Page 32

Figure 9 Information flow in the LearningNetworkWrapper component: the dashed arrow represent
a Synaptic Connection feeding the Java learning module B with the neuron output of a NesC learning
module A (other synaptic connections are omitted for clarity). The Java-side of the LN feeds an input
buffer “Java LN” through PEIS tuples, while the RUBICON Gateway provides information from the
NesC –side. The information in this two buffers is routed to the LNOutputs component for publishing
and/or to the “LN Bypass” mechanism, that feeds it back to the target module of the LN. The
“virtual” Synaptic Connection A->B is implemented by arrow 1 (GatewayInterface) entering the NesC
buffer, being re-routed to the “LN Bypass” with arrow 2 (local message), and being finally delivered to
B through arrow 3 (PEIS tuple).

2.3 Learning Network Manager (LNM)

2.3.1 Overview

The main goal of the LNM subsystem is to configure and manage the Learning Layer. It acts as an
interface towards the RUBICON layers performing as Supervisors, by receiving their instructions (e.g.
wiring information) and transforming them into control and configuration actions (e.g. synaptic
connection setup) that are delivered to the appropriate Learning Layer components (e.g. the LN
Wrapper).

The functionalities of the LNM subsystem are mainly implemented in the
LearningLayerApi.manager package of the Java LGA. The LNControlAgent class implements the
agent controlling the subsystem, which advertises 3 types of input interfaces

Java LN

B

A

NesC LN

LNOutputs

Java LN

LN Bypass

NesC LN

PEIS

PEIS Gateway Interface

Learning
Network
Wrapper

1

2

3

RUBICON D2.3 Core Learning Service API V2.0 RUBICON: Project No.: 22699145

30/10/2013 Page 33

1. SupervisorInterface - Provides methods that are invoked by the Supervisor component.
2. ControlInterface – Provides additional methods that can be (optionally) invoked by a

Supervisor component (e.g. the GUI), to have a finer grained control on the Learning Layer.
3. TrainingInterface - Provides methods that are invoked by the Training Agent in the TM.

The LNControlAgent advertises information concerning the internal status of the Learning Layer
through 3 information dispatchers (LNInformationDispatcher)corresponding to the 3 input
interfaces described, i.e. the superDisp, trainDisp and controlDisp fields. In addition to that, the
LNControlAgent provides an information dispatcher, i.e. the gui field, that publishes data for
visualization through the Learning Layer graphical user interface (see Section 2.5).

For the purpose of LN management, the LNControlAgent maintains

 synConList: a repository of synaptic connections deployed on NesC learning modules;

 synPC: a repository of synaptic connections deployed on Java learning modules;

 deviceRepository: a repository of available ecology nodes;

 pclm: a repository of deployed Java learning modules.

2.3.2 Supervisor Interface

This interface allows the Learning Layer to interact with the entities acting as Supervisor, e.g. other
RUBICON layers or the GUI. The prototype methods that pertain to this interface are listed in
SupervisorInterface.java. Additional (optional) management operations can be found in
ControlInterface.java.

The set of methods pertaining to the Supervisor interface can be invoked either

 Directly, by calling the appropriate method of the SupervisorInterface (or
ControlInterface) implemented in the LNControlAgent; this approach can only be used
by those software entities possessing the handler to the LNControlAgent object (e.g. the
GUI);

 Remotely, by posting a well-formatted request on the appropriate tuple in PEIS; this
approach can be used by any software entity that is integrated in PEIS (e.g. the Control Layer
or the Cognitive Layer).

A PEIS-enabled entity can invoke methods of the Supervisor Interface by means of the tuples with
key-string “LLControlCmd” and “LLWireCmd”: Table X and Table XII show the expected tuple format
as well as the “PEIS Name” macro defined in main.PeisSymbols.java.

The CONTROL_CMD tuple (Table X) expects a String of 3 comma-separated int, such that the first
integer encodes the command, while the second and the third integers denote the (optional)
command arguments. The CMD_CODE values for the different methods are defined in
main.PeisSymbols.java and reported in Table XI for the sake of completeness. E.g. to place a
stop_learn_module(netID) request, the Supervisor should fill the CONTROL_CMD tuple with the int
value 4 (that encodes the stop command), followed by the netID value, followed by 0 (since the stop
command has a single argument), e.g. the String “4,1,0” if netID = 1.

Table X Description of the tuple used to deliver control instructions from the Supervisor to the LNM.

Tuple String Peis Name Payload (Byte[] encoding a string of 3 comma-separated int)

LLControlCmd CONTROL_CMD CMD_CODE,ARG1,ARG2

RUBICON D2.3 Core Learning Service API V2.0 RUBICON: Project No.: 22699145

30/10/2013 Page 34

The WIRING_CMD tuple (Table XII) is used to post the command (see specification 5.3.1 in D2.1)

learn_new_task(WiringType wiringInfo, TaskType taskInfo)

that requests the allocation of a new learning task and provides the necessary wiring and task
information through the objects of type WiringType and TaskType, respectively. These two classes
pertain to the TM subsystem and their details are discussed in Sect. 2.4: they provide serialization
methods to transform the object into a string representation that can be used as a payload for the
tuple (Table XII). Hence a component that is willing to post a learn_new_task()request needs only
to serialize the wiring and task information and publish it in the WIRING_CMD string.

The LNControlAgent object receives the commands posted in the PEIS Supervisor Interface through
the main.PeisWrapper component, which takes care of subscribing to the CONTROL_CMD and
WIRING_CMD tuples and notifies the LNControlAgent by invoking its local methods.

Table XI Encoding of the Supervisor Interface commands that can be invoked through the
CONTROL_CMD tuple. The Arg1 and Arg2 column describe the arguments associated to the command.
The dash “-“ indicates that the command does not require an argument (set it to 0 for convenience).

Name Value Arg1 Arg2 Description

ACTIVATE_FORWARD 1 - - Broadcast message to activate
forward computation

STOP_FORWARD 2 - - Broadcast message to stop forward
computation

ACTIVATE_MODULE 3 nodeID netID Activates a target learning module

STOP_MODULE 4 nodeID netID Stops a target learning module

RESET_MODULE 5 nodeID netID Resets a target learning module

CONNECT_NODE 6 nodeID - Connects a target device to the LN

DISCONNECT_NODE 7 nodeID - Disconnects a target device to the LN

SET_CLOCK 8 clock - Sets the RUBICON clock

STOP_TRAINING_DATA 9 taskID - Signals that no more training data will
be sent for the new learning task

TASK_FEAT_ON 10 taskID - Activates feature selection for the
task in argument

TASK_FEAT_OFF 11 taskID - Stops feature selection for the task in
argument

JOIN_DEV 12 nodeID - Encodes the joining message of a
Java-Enabled device

PC_LEARN_MODULE_REA
DY

13 netID - Signals that the learning module is
ready to provide predictions

RUBICON D2.3 Core Learning Service API V2.0 RUBICON: Project No.: 22699145

30/10/2013 Page 35

Table XII Description of the tuple used to deliver wiring instructions from the Supervisor to the LNM

Tuple String Peis Name Payload (String)

LLWireCmd WIRING_CMD Wiring+Task

FORMAT = <WIRING>[OUTID]{TASK} =
<s1,d1>...<sn,dn>[outid1]…[outidk]{type}{granularity}…
{datatype}{outtype}

2.3.3 Synaptic Communication Control and Management

The LNControlAgent provides mechanisms for the deployment of the synaptic connections and
maintains updated information concerning their status. The deployment of a set of synaptic
connections listSC associated to a learning task with identifier taskID is requested, by the
TrainingAgent, by means of the method

deploy_synaptic_connections(int taskID, List<SynapticConnection> listSC).

The LNControlAgent determines the type of synaptic connection (local or remote, see D2.1) and
forwards the appropriate requests to the LearningNetworkWrapper object. Also, it stores the
synaptic connections into the synConList and synPC repositories and sets their status to
synapticState.INITING. The LNControlAgent will be notified by the LearningNetworkWrapper
upon the successful deployment of a synaptic connection, whose status will be then changed to
synapticState.READY. Single synaptic connections can also be requested by using the
create_synaptic_connections() method in the ControlInterface.

The class generics.SynapticConnection defines the synaptic connection objects used by the
LNControlAgent. It maintains information concerning the type (i.e. remote, local or involving Java
Learning Modules), source and destination endpoints of the connection as well as the QoS
parameters, as specified in Sect. 5.2.2 of D2.1. Further, it stores management related information
such as the ID of the associated learning task (optional), a deployment ID to manage its setup phase
and the state information discussed above. Although the SynapticConnection object encapsulates
information concerning the connection type being Java or NesC, this is not exploited by the
LNControlAgent, given that the LearningNetworkWrapper object provides methods to handle them
transparently.

2.3.4 Device and Module Management

The LNControlAgent provides mechanisms for configuration and control of the devices participating
in the Learning Layer, as well as of the Learning Modules hosted on such devices.

Information concerning the devices is maintained in the deviceRepository structure (defined in
generics.DeviceRepository): an element of such repository provides information on the ID of the
device, on the ID of the (optional) on-board learning module and on its current state (INITING,
CONNECTED, DISCONNECTING). Additionally, the repository stores information on the device
capabilities in terms of on-board sensors, transducers and type of API supported (Java or NesC). Such
information is communicated to the LNControlAgent through the SupervisorInterface method

connect_node(int nodeID, NodeInformation nodeSpec).

RUBICON D2.3 Core Learning Service API V2.0 RUBICON: Project No.: 22699145

30/10/2013 Page 36

Such a notification is automatically provided by the device itself when it joins the ecology. A joining
message containing the nodeSpec information by the Communication Layer to the
LearningNetworkWrapper which, in turns, activates the connect_node() method above.

The nodeSpec information provided by the connect_node() is transformed by the LNControlAgent
into entries of a table, named WiringTable (see Section 2.4.1), that maintains an association
between transducers, actuators and neurons in the ecology and their unique symbolic name. Such
symbolic names facilitate the referencing of specific information sources in the Learning Layer and
are used, for instance, by the Supervisor to instruct the Learning Layer on which input sources should
be used for training on a new computational learning task (see the example in Section 2.5.1). Note
that, upon disconnection of a device from the ecology (method LNControlAgent
.disconnect_node(int nodeID)), the LNControlAgent maintains the WiringTable consistency by
removing the associated entries created at the time of node join. The table is implemented by the
WiringTable object within the TrainingAgent. An up-to-date copy of the table is maintained in a
PEIS tuple for the purpose of sharing it with the other PEIS-enabled components of RUBICON (see
more details in Section 2.4.1). In addition to the physical devices, the LNControlAgent maintains
also a repository pclm of Java Learning Modules deployed in the ecology which, from an architectural
point of view, can be seen as virtual nodes of the ecology, abstracting from the fact that they can be
hosted on the same physical device.

The LNControlAgent provides methods (in its SupervisorInterface) to trigger the activation, stop
and reset of the single learning modules distributed on the ecology device (according to
specifications 5.2.4.4-5.2.4.6 in D2.1). The activation of a learning module netID on the device
nodeID is achieved through the method activate_learn_module(nodeID, netID): note that this
is a NECESSARY step in order to enable the reception of other Learning Layer commands on the
device, which will be otherwise ignored. Activation and stopping of the forward computation in the
LN is triggered by calling the LNControlAgent methods activate_forward_computation() and
stop_forward_computation(). This result in a broadcast message sent by the LN Wrapper and
processed by all the learning modules that have received the activation message.

The LNControlAgent implements a best-effort recovery mechanism catering for the disconnection
of devices embedding deployed learning module. The sudden disconnection of a device and its
associated learning module may result in the LN failing to provide some of its predictions (e.g. if
these were computed by the failed module) or can affect the predictive performance of other
learning modules that were using information produced by the failed device. The recovery routine is
triggered when the LNControlAgent receives from the LN a NODE_FAIL message for a device that is
currently in use by the Learning Layer. First, the LNControlAgent tries to determine if any of the
joined devices is a compatible replacement for the missing node. To this end, it uses the
getCompatibleDevice(capability) method of the deviceRepository component, that
determines which devices in the repository possess the sensing capabilities passed as argument. If a
compatible device is available, the LNControlAgent activates the RecoveryESN() routine, that
retrieves the NetworkMirror copy of the learning module in the failed device and transfer it on-the-
fly to the replacement node. Then, the RecoverySC() routine takes care of recovering the Synaptic
Connections and Channels needed to put the replacement learning module into operation. As soon
as the Synaptic Communication is in place, the LNControlAgent activates the replacement learning
module that starts participating to the distributed forward computation. The recovery routine is
performed while the rest of the LN keeps operating, with no interference on its distributed
computation. The LNControlAgent also allows to place a watchdog on selected Synaptic
Connections through its setRec() method. The watchdog triggers the recovery routine if the values
read by the watched Synaptic Connections are not updated for a predefined timespan.

RUBICON D2.3 Core Learning Service API V2.0 RUBICON: Project No.: 22699145

30/10/2013 Page 37

2.4 Training Manager

2.4.1 Overview

The Training Manager is implemented by two main software components, which are the Training
Agent and the Network Mirror. These two components implement all the functionalities required to
train and deploy a computational learning task to the RUBICON ecology. Figure 10 shows how the
management, control and training functionalities of the Training Manager subsystem are partitioned
among these two components. At a high level, the TrainingAgent relies on the NetworkMirror for
training and model selection of the learning modules implementing a computational learning task.
On the other hand, the NetworkMirror exploits the functionalities of the TrainingAgent to deploy a
trained computational learning task to the physical ecology. A detailed description of the
implementation of the functionalities in Figure 10 is provided in the remainder of this section.

Figure 10 Summary of the functionalities implemented by the two components of the Training
Manager subsystem. The TrainingAgent relies on the NetworkMirror for the training and model
selection of the learning modules. On the other hand, the NetworkMirror exploits the functionalities
of the TrainingAgent to deploy a trained computational learning task to the physical ecology.

The Training Manager receives wiring and task information for the creation and deployment of new
computational tasks. In order to manage the wiring instructions, the Training Manager manages a
Wiring Table (see an example in Table XIII) to convert the wiring instructions into a set of Synaptic
Connections.
Wiring instructions are implemented by the class WiringType, containing ArrayList of symbolic
names for source, destination (in couples) and output entities for the wiring instruction. The entries
of the Wiring Table are implemented by the class WiringSpecification which, for each element,
specifies the symbolic name, the ID of the node, the ID of the ESN, the ID of the unit within the ESN
and some possible associated information.

Wiring
Management

Training Agent

Feature
Selection

Learning Module
Deployment

Training
Interface

Model Selection

Network Mirror

ESN mirror

Learning Module
Training

Learning
module training

Learning task
deploy

RUBICON D2.3 Core Learning Service API V2.0 RUBICON: Project No.: 22699145

30/10/2013 Page 38

Table XIII Example of a wiring table, used by the Training Manager to convert wiring instructions into
synaptic connections.

Symbolic Name Node ID Net ID Sensor/Neuron
ID

Associated
Information
(optional)

T_LIGHT_1 1 0 1

EVENT_FIRE2 4 8 45

LOCATION_PREDICT_X 7 10 30

LOCATION_PREDICT_Y 7 10 31

… … … … …

Task information are specified through the class TaskType, which entails information on the
computational task, namely the task type (a String which may be equal to “classification” or
“regression”), the granularity (a String which may be equal to “sequence-to-sequence” or “sequence-
to-element”), the data type (a String which may be equal to “event” or “sensory”) and the output
type (a String which may be equal to “weight”, “event”, “sensor”).

Training data are used to train the ESN modules. Training examples are implemented by the class
TrainingData. In the constructor of the class TrainingData, the input and the desired (target)
output are specified through two vectors of float. An ArrayList of IDs of the tasks to which the
training sample is associated should be provided as well. Training datasets are implemented by the
class TrainingDataset, which entails an ArrayList of TrainingData objects.

The Training Agent is implemented by the class TrainingAgent. It manages a WiringTable object in
order to realize the functionalities related to the wiring instructions conversion. Wiring instructions
in the form of WiringSpecification objects can be added to the wiring table by using the method
add_wiring_specification(w). Analogously, the entries in the wiring table can be removed by
invoking the method remove_wiring_specification(w). As anticipated in Section 2.3.4, the
WiringTable content is dynamically updated to reflect the current LN situation. In particular, the
LNControlAgent ensures that appropriate wiring entries are added/deleted from the table when a
device joins/leaves the ecology. Similarly, the TrainingAgent ensures that, whenever a new learning
task is deployed to the LN, the WiringTable is updated using the information provided in the
associated wiring instructions. In particular, the allocate_wiring_entries(-,-,WiringType
wiring) method ensures that the Wiring Table is updated with the symbolic names of the ESN inputs
and outputs, that are received from the Supervisor through the wiring argument.

The TrainingAgent also maintains a shared, up-to-date copy of the WiringTable object in the
PeisSymbols.WIRING_TABLE tuple, to allow any PEIS-enabled RUBICON component to access it (e.g.
the Supervisors). To this end, it suffices to subscribe to the WIRING_TABLE tuple, that is updated
every time the local copy of the WiringTable object is modified by the Learning Layer. Serialization
of the WiringTable object to the PeisSymbols.WIRING_TABLE tuple is obtained by concatenation of
the string generated by the WiringSpecification.toPeisString() method for each table entry
(see Table XIV).

The Wiring Table can be also modified by RUBICON layers other than the Learning Layer, by posting a
request in the PeisSymbols.WIRING_TABLE_UPD tuple. The format of the tuple string is shown in
Table XV: the value of the ACTION field determines if the request is for addition (i.e. ACTION = “+”) or
removal (i.e. ACTION = “-”) of the entry passed as argument. The update of Wiring Table object is
performed in a thread-safe fashion by the TrainingAgent and its later propagated to the PEIS copy
in the WIRING_TABLE tuple. The TrainingAgent also provides a multi-threaded implementation of

RUBICON D2.3 Core Learning Service API V2.0 RUBICON: Project No.: 22699145

30/10/2013 Page 39

the Wiring Table update actions that exploits worker threads to avoid overloading of the caller
thread in case of particularly extensive modifications of the table.

Table XIV Description of the tuple used to publish the Wiring Table

Tuple String Peis Name Payload (String)

LLWiringTable WIRING_TABLE {SymbolicName1,nodeId1,netId1,neuronId1,[AssocInfo1]}
{SymbolicName2,nodeId2,netId2,neuronId2,[AssocInfo2]} …

Table XV Description of the tuple used to request a Wiring Table Update: if ACTION = “+” the
following wiring entry is added to the table; if ACTION = “-”, it is removed.

Tuple String Peis Name Payload (String)

LLWiringTable
Update

WIRING_TABLE_
UPD

ACTION,{SymbolicName,nodeId,netId,neuronId,[AssocInfo]}

The Training Agent manages a collection of tasks, through an ArrayList of TaskData objects. A new
task is allocated by calling the method allocate_task(wiring, taskInfo, nodeID), where the
wiring instructions, the information on the task and the ID of the RUBICON node on which to deploy
the task, are specified respectively by the WiringType object wiring, the TaskType object
taskInfo and the integer nodeID.

 All the information pertaining to a computational task and necessary for the Training Agent, is
collected within the class TaskData, which comprises a WiringType object, a TaskInfo object, a
TrainingDataset object (collecting the training data that should be used for training on the task), a
List of SynapticConnection objects (in which the wiring instructions can be converted using the
wiring table) and a status. The TrainingAgent class manages a repository of tasks and related
information by containing an ArrayList of TaskData. Training data examples are passed to the
Training Agent by the function new_training_data(sample), which stores the TrainingData
object sample in the TrainingDataset object associated to all the tasks with identifiers indicated in
the sample itself.

The Network Mirror is implemented by the class NetworkMirror. This class contains an ArrayList of
EchoStateNetwork objects (which correspond to the deployed ESN modules), and manages a queue
of incoming messages from an associated LearningNetworkWrapper object. The creation of a new
ESN is requested to the Network Mirror by invoking the method addESN(taskID, inputDimension,
outputDimension, nodeID), which creates and stores a new EchoStateNetwork object using the
specified information. When the creation of a new ESN is requested, the WiringTable object in the
TrainingAgent is also updated with the neural network ID assigned by the NetworkMirror.

2.4.2 Feature Selection

The NetworkMirror component provides feature selection functionalities to learn to filter irrelevant
inputs for the learning modules, contributing to enforce the self-configuration capabilities of the
Learning Layer by avoiding the deployment of unnecessary inter-node synaptic communication and,
thus, reducing the communication and computational burden of the distributed forward

RUBICON D2.3 Core Learning Service API V2.0 RUBICON: Project No.: 22699145

30/10/2013 Page 40

computation. To this end, the NetworkMirror component implements a two-level feature selection
system, comprising

1. A redundancy reduction procedure, realized through a filter algorithm using linear cross-
correlation time-series analysis to identify and remove those input streams providing
overlapping information.

2. A relevance-guided procedure tailored to optimizing the predictive and generalization
abilities of the LN, realized through a wrapper algorithm using model selection guided by a
search procedure that uses the outcome of the redundancy reduction step.

The details of the two feature selection procedures are provided in Section 2.4.2.1 and 2.4.2.2,
respectively.

2.4.2.1 Feature Filter

The redundancy reduction procedure is implemented by the training.FeatureFilter class of the
Java LGA. This implements a forward selection-elimination algorithm (in the
runFilter(TrainingDataset dataset) method) that filters out redundant inputs measured by a
linear time-series cross-correlation metric. The algorithm is based on the iterative application of a set
of 4 selection/elimination rules, backed-up by the following intuitions

 A variable that is not correlated with any of the other features, should be selected.

 A variable that is correlated with all the variables that have already been selected is a good
candidate for elimination.

 If we are left with a set of mutually correlated variables, act conservatively and maintain all
those features that are less correlated with the selected ones.

The skeleton of the algorithm is as follows

1. Compute a Boolean matrix of feature redundancy, i.e.
computeRedundancyMasks(TrainingDataset T):

a. For each sample in the dataset, compute the maximum absolute normalized cross-
correlation between the pairs of input sequences . If a pair has a sufficiently high
value, assume the features are correlated on the sample.

b. Compute the percentage of training samples in which each pair of feature is
correlated.

c. Set an entry (i,j) of the Boolean matrix to true, if the corresponding pair of features i
and j is correlated on more than TH_SEQP% (e.g. 20%) of the training samples.

2. Iteratively apply, until termination, the following selection-elimination rules (in order of
application priority)

a. RULE 0 - If any of the rows in the matrix is uncorrelated with all the others:
i. save the corresponding features in the selected subset;
ii. update the matrix by removing the row and column corresponding to the

saved features;
iii. If an uncorrelated feature is generated as result of the previous step, remove

it from the matrix and save it to the deleted subset.
b. RULE 1 - If any of the rows in the matrix is correlated with all the others and the

matrix does not contain only true values:
i. put the corresponding features in the deleted subset;
ii. update the matrix by removing the row and column corresponding to the

deleted features;

RUBICON D2.3 Core Learning Service API V2.0 RUBICON: Project No.: 22699145

30/10/2013 Page 41

c. RULE 2 - If all the features left are mutually correlated with each other, i.e. the
matrix contains only true values,

i. Select the feature that is less correlated with those saved until now in the
selected subset;

ii. Move the rest of the features to the deleted subset and terminate.
d. RULE 3 - If neither of RULE 1 or RULE 2 apply,

i. extract the row i that is correlated with the minimum number of other
features still in the matrix;

ii. define S(i) as the subset of features correlated with i and select feature j in
S(i) as the maximally correlated with those saved until now in the selected
subset;

iii. save feature i to the selected subset and move feature j to the deleted
subset;

iv. update the correlation matrix by removing rows and columns corresponding
to i and j.

Once that the filter algorithm is converged, the NetworkMirror can query the FeatureFilter object
to obtain the set of select/deleted features (e.g. get_selected_features()) and to retrieve a clean
TrainingDataset object without redundant features (i.e. getFilteredDataset(TrainingDataset
dataset)).

2.4.2.2 Feature Wrapper

The training.FeatureWrapper class implements a supervised feature selection mechanism, which
exploits model selection (see Section2.4.3.1) to reduce the input dimensionality of a given training
dataset while aiming at optimising the predictive performance of the learning module.

Given a specific training dataset (an object of the class TrainingDataset), the Feature Wrapper
generates a number of datasets derived by dataset, by progressively reducing the input
dimensionality. A model selection pass is then applied to choose the set of input features which leads
to a smaller error on a validation set. The clean dataset is retrieved by calling the method
getFilteredDataset(TrainingDataset dataset, TaskType taskType). The indices of the
selected features then be retrieved by calling the method get_selected_features().

2.4.3 Training of a Learning Module

The ESN modules composing the RUBICON Learning Network can undergo two different processes of
training, i.e. offline training and online training. Offline training is managed through the
functionalities implemented in the Network Mirror component, allowing to perform a standard
training of the ESN modules once a dataset has been made available. Online training functionalities,
implemented both in the NesC and Java API, allow any entity, acting as Learning Layer Supervisor, to
request an adjustment of the output of the learning modules while they are producing their
predictions (i.e. in their forward computation mode). Note that both the mechanisms can be used for
the refinement of already learnt tasks or for the incremental learning of new computational tasks.

2.4.3.1 Training through the Network Mirror

Local and distributed offline training is managed by the functionalities implemented by the Network
Mirror. Offline training requires a dataset (suitable for supervised learning) to be collected and
provided to the Learning Layer.

Training samples are provided by the Supervisor by publishing a PEIS tuple with key-string
LLTrainingSample, following the format specified in Table XVI. The format of the String in the

RUBICON D2.3 Core Learning Service API V2.0 RUBICON: Project No.: 22699145

30/10/2013 Page 42

Payload of this tuple is detailed in Table XVII. Alternatively, training information can be passed
through a direct call to the method new_training_data in class TrainingAgent, specifying an
object of the class TrainingData as argument.

Table XVI Description of the tuple used to deliver training samples from the Supervisor to the Learning
Layer.

Tuple String Peis Name Payload (String)

LLTrainingSample TRAINING_SAMPLE FORMAT = <input>[output]{taskID_1,…,
taskID_k}

Table XVII Description of the fields in the String Payload for the PEIS tuple with key-string

LLTrainingSample.

Field Description

input A float[] input value converted to String

output A float[] target output value converted to a String

taskID_i The int ID of the i-th task associated to the training example, converted to a
String

The Supervisor can signal to the Learning Layer that the process of data gathering for a specific task
has terminated, by posting a STOP_TRAINING_DATA command (see Table XI), specifying the
appropriate taskID as an argument. This triggers the invocation of the method do_training(int
taskID) in the TrainingAgent class. Training is performed only if training data for the task has
already been provided. In this case the TrainingAgent retrieves the TrainingDataset
corresponding to the task and calls the method do_training(taskID, T) in the
NetworkMirror, specifying the ID of the task and the TrainingDataset.

Before the actual training process takes place, appropriate scaling constants are computed for each
input dimension in the training dataset, using the function computeScaling
Constants(TrainingDataset T) in class EchoStateNetwork. Training is then performed in the
EchoStateNetwork.train() method, using standard offline linear methods, i.e. Moore-Penrose
pseudo-inversion and ridge regression [1]. When training on a specific task has been completed, the
corresponding learning modules are deployed in the RUBICON Learning Network (see Section 2.4.4).

The Java API also includes a mechanism for model selection. Using such mechanism, among a set of
different ESNs with different hyper-parameters values, it is possible to choose a specific ESN module
which minimizes an error function on a validation set. Several model selection configuration settings
are possible, ranging from an extensive cross validation, to a setting without model selection. The
cross validation type is specified through the enumeration CvType in the class TrainingAgent, it
can assume the values MOTELM (a simple scheme designed for learning modules embedded on the
motes, i.e. considering small dimensional reservoirs), JAVALM (a simple scheme designed for PC
learning modules, i.e. considering also large dimensional reservoirs), GENERAL (general extensive
cross validation, i.e. considering the largest grid for the values of the hyper-parameters) and NONE
(no cross validation). The cross validation scheme can be set by using the method
setCvConfiguration in the class TrainingAgent (default value is GENERAL). The model
selection procedure is implemented by the method CrossFold_Validation_training in the
class NetworkMirror. Such method exploits the functionalities developed in the helper class

RUBICON D2.3 Core Learning Service API V2.0 RUBICON: Project No.: 22699145

30/10/2013 Page 43

Trainer, which provides methods for organizing the data-folds and the search-grid for the ESN
hyper-parameters, as well as for the computation of the validation and test performance of the ESN
modules.

2.4.3.2 Online learning

Learning modules are equipped with online learning mechanisms both in the NesC API and in the
Java API. Such mechanisms are designed to allow the Supervisor to provide online teaching signals to
the Learning Layer for adjusting the predictions pertaining to specific tasks and are based on the
Recursive Least Mean Square (RLMS) [2] algorithm1.

The Supervisor can activate the online learning mechanisms by posting a specific command for online
learning through the tuple with key-string “LLOnlineRefine” (whose macro is in
PeisSymbols.ONLINE_REFINE). Table XVIII shows the expected tuple format and the PEIS name defined
in the class main.PeisSymbol.

An ONLINE_REFINE tuple expects a String of 2 comma-separated values, where the first one is an int
that encodes the online learning command, while the second is a String that specifies the symbolic
name of the output prediction to which the online learning command is directed (see Table XVIII).
The CMD_CODE values for the different methods are defined in main.PeisSymbols and reported in
Table XIX.

Table XVIII Description of the tuple used to deliver online learning instructions from the Supervisor to
the LNM.

Tuple String Peis Name Payload (Byte[] encoding a string of one int and one String
separated by a comma)

LLOnlineRefine ONLINE_REFINE CMD_CODE,ARG1

Table XIX Encoding of the Supervisor Interface commands that can be invoked through the
ONLINE_REFINE tuple. Arg1 column describes the arguments associated to the command.

Name Value Arg1 Description

ONLINE_EVENT 14 predictionName Activates the online learning
functionalities for the LL output
prediction corresponding to the specific
symbolic name predictionName, in the
case of occurrence of an event (i.e.
classification task with positive target)

ONLINE_NOEVENT 15 predictionName Activates the online learning
functionalities for the LL output
prediction corresponding to the specific
symbolic name predictionName, in the
case of non-occurrence of an event (i.e.

1
 The RLMS algorithm implemented here for the case of regression tasks is a variant of the standard RLMS

algorithm [1], in which the target output is modulated by a delta_output value, which can be used to
increase or decrease the output of the ESN module.

RUBICON D2.3 Core Learning Service API V2.0 RUBICON: Project No.: 22699145

30/10/2013 Page 44

classification task with negative target)

ONLINE_INCR_FEEDBACK 16 predictionName Activates the online learning
functionalities for the LL output
prediction corresponding to the specific
symbolic name predictionName, when
the output of the module is requested
to be incremented (used e.g. for
regression tasks)

ONLINE_DECR_FEEDBACK 17 predictionName Activates the online learning
functionalities for the LL output
prediction corresponding to the specific
symbolic name predictionName,, when
the output of the module is requested
to be decremented (used e.g. for
regression tasks)

STOP_ONLINE 18 predictionName Stops the online learning functionalities
for the LL output prediction
corresponding to the specific symbolic
name predictionName.

Possible commands are:

 ONLINE_EVENT, used to request online learning for an event classification task which is
occurring;

 ONLINE_NOEVENT, used to request online learning for an event classification task which is
not occurring;

 ONLINE_INCR_FEEDBACK, used to request online learning for a regression task (e.g. weight
prediction), when the output of the learning module is considered too small;

 ONLINE_DECR_FEEDBACK, used to request online learning for a regression task (e.g. weight
prediction), when the output of the learning module is considered too large;

 STOP_ONLINE, used to stop online learning mechanisms for a specific task.

When an ONLINE_REFINE command is received, the TrainingAgent takes care of transforming the
symbolic name of the output prediction into a nodeID, netID, neuronID address, by accessing its
Wiring Table. The online-learning method in the LearningNetworkWrapper component that
matches the command code in the tuple is then called, e.g. ln_online_event(nodeID, netID,
neuronID). This method checks if the online learning command is directed to a TinyOS or to a Java
learning module. In the former case a proper TinyOS message is sent to the target mote, through the
GatewayInterface implementation. In the latter case, an appropriately formatted command is
posted on the PeisSymbiols.LL_INTERNAL tuple (see Section 2.2.2.2), to signal the online
refinement to the target PCLMmanager object.

In the NesC API, the online learning mechanism is implemented in the file LearningP.nc. The main
variables involved are reported in Table XX.

RUBICON D2.3 Core Learning Service API V2.0 RUBICON: Project No.: 22699145

30/10/2013 Page 45

Table XX Main variables used for online learning functionalities in the the Learning Layer NesC API.
//Variables involved in online learning

uint8_t onlineLearningMode; //flag for online learning

float delta_output; //delta used to modulate the target for

 //regression tasks

float lambda_online; //forgetting factor

Each time the RUBICON clock fires, the value of the onlineLearningMode flag is used to selectively
activate the online learning functionalities (whenever onlineLearningMode is set to 1) or the
standard feedforward computation (see Section 2.2.4). The forgetting factor lambda_online can
assume strictly positive values not larger than 1. In our implementation we use a value
lambda_online = 0.999, as in [2].

When online learning is activated, at each RUBICON clock, the function
do_onlineLearning_step() is called in place of the standard do_feedforward_step()
method. The former includes a step of forward computation followed by a step of weights’ update
for the connections from the reservoir to the readout, according to the RLMS algorithm. Such
algorithm determines an update for the readout weights values, based on the state of the reservoir,
which encodes the recent history of the ESN inputs (defined by the wiring instructions associated to
the tasks), and on the online output target.

In the Java API, the same online learning functionalities are implemented in the class
EchoStateNetwork. Analogous data structures and variables as in the NesC implementation (see
Table XX) are used, and one step of the RLMS algorithm is implemented in the method
onlineLearningStep().

Both in the NesC and Java implementation of the RLMS, the computation of the weight update
depends on the value of a target output which is set according to the last online learning instruction
that has been received. For classification tasks (e.g. event predictions) the target value is set to +1 or
-1 in correspondence to the commands ONLINE_EVENT or ONLINE_NOEVENT, respectively. In case
of regression tasks (e.g. weight predictions), the target is set to a value which is equal to the value of
the output of the model incremented or decremented by a delta_output quantity (set to 0.1 in
initialization phase), for the commands ONLINE_INCR_FEEDBACK or ONLINE_DECR_FEEDBACK,
respectively. Note that this strategy allows also to treat the case of reinforcement learning as a
special case in which the Supervisor simply requests to increase or decrease the output of the ESN
depending on the success or failure of the action resulting from the prediction.

2.4.4 Deployment of a Learning Module

Once that the model selection and training processes have been completed, the NetworkMirror
needs to deploy the resulting learning module to a physical device. This entails the selection of an
appropriate device for hosting the learning module, the transfer of the matrices holding the trained
ESN parameters and the instantiation of appropriate synaptic connections to feed the input neurons
and to propagate predictions from the output neurons. A short summary of the technical actions
needed to implement this process, is provided in the following.

RUBICON D2.3 Core Learning Service API V2.0 RUBICON: Project No.: 22699145

30/10/2013 Page 46

The successful completion of the training procedure on a task with handler taskID is signalled by the
NetworkMirror to the TrainingAgent, by calling the method training_complete(taskID).
Subsequently, the TrainingAgent method deploy_task(taskID) is invoked to start the
deployment of the learning modules. Within this method, the TrainingAgent uses the
information in the WiringTable to find the best device to store the new computational learning
task. In particular, the allocate_nodeID_from_wiring(int netID, WiringType wiring)
method seeks a matching between the wiring instructions for the task (i.e. the wiring argument)
and the information in the WiringTable, with the objective of deploying the learning module as
close as possible to the source of its inputs. For instance, a learning module using light and humidity
transducers from a give mote will have an high chance of being deployed on the same device.

Once that the computational learning task is associated to a device with a given nodeID, the
TrainingAgent calls the method deploy_modules(taskID) in the NetworkMirror, which calls the
upload_module(nodeID, netID, ESN) function in the associated LearningNetworkWrapper
object for each EchoStateNetwork object which is associated to the task. When the upload of a
module has been completed, the LearningNetworkWrapper object sends a
LEARN_MODULE_READY message to the NetworkMirror. When a LEARN_MODULE_READY
message has been received for all the ESN modules involved in a task, the NetworkMirror signals
the completion of the upload procedure to the TrainingAgent, by calling the method
upload_complete(taskID).

At this point, the TrainingAgent component updates the WiringTable by adding entries
corresponding to the new ESN inputs and outputs. Then, it uses the information in the updated
WiringTable to translate the wiring instructions, originally provided by the Supervisor and possibly
refined by the feature selection phase), into a list sc of SynapticConnection objects by means of
the prepare_synaptic_connections(WiringType wiring, TaskType task) method.
Finally, the TrainingAgent requests the deployment of such connections by a call to the function
deploy_synaptic_connections(taskID, sc) in the LNControlAgent object.

2.5 How to Activate Learning in the Learning Layer: a Supervisor Perspective

In the following, it is provided a succinct guide for triggering the learning mechanisms in the Learning
Layer from the perspective of a Supervisor component. A summary of the steps needed to activate
incremental learning of a new computational learning task is provided in Section 2.5.1, while Section
2.5.2 discusses how to supply instantaneous teaching signal for the online refinement of an existing
learning task.

2.5.1 How to activate a new learning task (incremental learning)

This section summarizes the steps to be taken by the Supervisor to trigger learning of a new
computational task:

1. Construct the wiring instructions
Construct a String wiring, specifying the wiring instructions according to the format
“<source1,destination1>…<sourceN,destinationN>[output1]...[outputM]”. Alternatively,
create a WiringType object using the constructor WiringType(source,
destination, symbolicNames), where source, destination and symbolicNames
are ArrayList of String and use the toPeisTuple() method to obtain an encoding of
the WiringType object as an appropriately formatted string.

2. Construct the task information
Construct a String task, specifying the task information according to the format

RUBICON D2.3 Core Learning Service API V2.0 RUBICON: Project No.: 22699145

30/10/2013 Page 47

"{type}{granularity}{data_type}{output_type}" . Alternatively, create a TaskType object
using the constructor TaskType(type, granularity, dataType, outputType),
where type, granularity, dataType and outputType are String objects, and use the
toPeisTuple() method to obtain its string encoding.

3. Allocate the task
Allocate the new task by posting the String concatenation of wiring+task on the PEIS tuple
PeisSymbols.WIRING_CMD.

4. Wait for the ID of the allocated task
Wait and listen on the PeisSymbols.SUPERVISOR_INFO tuple for the identifier of the new
computational learning task (i.e. the argument of the PeisSymbols.MSG_TASK_
LEARN_READY command).

5. (OPTIONAL) Set the feature selection preferences
Provide preferences on whether the feature selection mechanism should be switched on/off
for the task. This is obtained by posting an appropriately formatted command on the
PeisSymbols.CONTROL_CMD tuple (see Table X).

6. Provide the training data
Provide training examples for the computational task by allocating a TrainingData object
and obtaining its string encoding through its toPeisTuple() method. Post the resulting
string in the PeisSymbols.TRAINING_SAMPLE tuple.

7. Train the Learning Modules
Acknowledge termination of training data for a task by posting the PeisSymbols.
STOP_TRAINING_DATA command in the PeisSymbols.CONTROL_CMD tuple, adding the
task identifier as first argument (see Table X).

As a result of this process, a new learning task is allocated and, when training is completed, the
associated learning modules and supporting synaptic connections are automatically deployed (see
section 2.4.4), and the Forward Computation is activated (see section 2.2.4).

2.5.2 How to supply an instantaneous supervised/reinforcement teaching signal (refinement
learning)

This section summarizes the steps to be taken by the Supervisor to provide online
learning/refinement signals for a computational task:

1. Activate the online learning mode
Activate the online learning mode by posting an appropriate command in the
PeisSymbols.ONLINE_REFINE tuple, adding the symbolic name of the output prediction in
question (see Table XVIII and Table XIX). The posted command should be chosen among
those descripted in Section 2.4.3.2. For the case of an event prediction task, the command is
PeisSymbols.ONLINE_EVENT if the event is occurring or PeisSymbols.ONLINE_NOEVENT if
the event is not occurring. For a regression task (e.g. weight prediction) the command to post
is PeisSymbols.ONLINE_INCR_FEEDBACK if the predicted output for the task is considered
too small, or PeisSymbols.ONLINE_DECR_FEEDBACK if the predicted output for the task is
considered too large.

2. Continue providing online learning signals
When an online learning command is received from the Supervisor, it is continuously applied
at each tick of the RUBICON clock, until another online learning command is received to
change it, or until the online learning mode is stopped with the appropriate instruction. For
example, in the case of an event classification task, a PeisSymbols.ONLINE_EVENT command
should be posted when the event in question is first observed to be occurring, while a
command PeisSymbols.ONLINE_NOEVENT should be posted as soon as the occurrence of the
event is not observed anymore.

RUBICON D2.3 Core Learning Service API V2.0 RUBICON: Project No.: 22699145

30/10/2013 Page 48

3. Stop the online learning
Stop the online learning by posting the command PeisSymbols.STOP_ONLINE in the
PeisSymbols.ONLINE_REFINE tuple, adding the symbolic name of the target output as
argument (see Table XVIII and Table XIX).

As a result of this process, the weight values for the reservoir-to-readout connections in the ESN
learning modules will be adapted to changes in the environmental conditions, as described by the
online learning/refinement signals supplied by the Supervisor.

2.6 Graphical User Interface

A GUI for configuration and control of the Learning Layer is delivered together with the CLS Java API
2.0: the Java package gui, available in the WP2 folder of the RUBICON repository, contains all the
classes needed to instantiate the GUI. The GUI is not officially part of D2.3 as per-DoW description,
but it is released as an extra-functionality of this deliverable D2.3 to help the configuration and
testing of the Learning Layer. The GUI allows the user to organize and access the distributed learning
system implemented by the CLS API, providing a straightforward means for adjusting the Learning
Layer configuration, controlling its execution and monitoring the LN outputs. The key class of the GUI
is gui.main.StartWindow, which also includes the implementation of the main() method for running
the interface. The GUI accesses the LN through the CLS API: it reads the LN predictions from the
LNOutputs component and invokes the methods defined in manager.SupervisorInterface and
manager.ControlInterface.

A screen-shot of the typical appearance of an experiment in the GUI is shown in Figure 11. Here, the
structure of the LN is represented as a graph in which nodes are devices and arcs are Synaptic
Connections between them. Each arc is labelled with the symbolic names of the neurons connected
in the two devices. As connections between modules are usually quite rich, the interface allows to
select a single device to focus only on its connections (the red node in the picture). Figure 11, for
instance, shows a red node receiving three incoming Synaptic Connections for light, position_x and
position_y, and several outgoing Synaptic Connections to other devices.

The GUI provides a device manager where the user can access all the parameters of the learning
module on-board the device. The device manager is activated by double-clicking the node (Figure
12). Each device manager can be docked on the right part of the interface or detached to a new
window to ease user interaction. Through the device manager, the user can adjust the learning
module parameters defined in the generics.EchoStateNetwork class (e.g. the size of the reservoir)
as well as its connection topology with other learning modules (i.e. the Synaptic Connections).

Synaptic Connections can be established both via the device manager in Figure 12 as well as
graphically by drawing a connection in the canvas displaying the LN network, as in Figure 11. In both
cases, the user needs to specify the identifiers of the input and output neurons to be connected. A
new device is automatically added to the GUI when it joins the ecology.

RUBICON D2.3 Core Learning Service API V2.0 RUBICON: Project No.: 22699145

30/10/2013 Page 49

Figure 11 Screenshot of the Learning Layer GUI showing the LN layout.

Commands affecting the whole network can be issued from the “Network” tab menu on the right
side of the GUI (see Figure 11): for instance, it is possible to adjust the global RUBICON clock. The
download and upload buttons are designed to allow the user to deploy the whole LN configuration to
the actual devices, or to retrieve the configuration from the actual LN. The start/stop buttons
activate and disable the forward computation, while the whole LN network can be restarted, possibly
using a different configuration, using the resynch button. The LN output menu allows to select which
neuron output is shown at a given time.

RUBICON D2.3 Core Learning Service API V2.0 RUBICON: Project No.: 22699145

30/10/2013 Page 50

Figure 12 Screenshot of the Learning Layer GUI showing the Device Manager.

RUBICON D2.3 Core Learning Service API V2.0 RUBICON: Project No.: 22699145

30/10/2013 Page 51

3. Testing

3.1 Outline

The distributed neural computation realized by the Learning Layer is an articulated process realized
by a pipeline of independent mechanisms running of different devices of the ecology. A detailed
testing of the independent steps of this pipeline has been presented in deliverable D2.2. This report
focuses on testing and assessing the result of the full pipeline, showing how the Learning Layer can
manage high-level commands on its Supervisor interface by automatically generating the most
appropriate configuration and control instructions for its software components. Further, all the tests
have been performed using real-world data collected on experimental scenarios compatible with the
RUBICON applications in WP5.

The debugging and assessment process described in this section focuses on testing the CLS API V2.0
functionalities with respect to the 4 characterizing aspects of D2.3, as per RUBICON DoW
description, that are

1. Distributed Learning Network Computation: this pertains testing the dynamic deployment of
computational learning tasks entailing a distributed neural computation between multiple
nodes of the ecology. A new computational learning task is deployed from scratch by using
the incremental learning mechanism provided by the Learning Layer. This includes reception
of wiring instructions and training data, learning module training and automated model
selection, automated generation of synaptic instructions from wiring and selection of target
devices and the final, over-the-air deployment of the learning module on the target devices.
The process is tested for both NesC and Java learning modules.

2. Feature Selection: this pertains testing the feature selection mechanism that filters out
redundant/irrelevant inputs for the learning task from those specified by the wiring
instructions.

3. Online Learning: this pertains testing the learning mechanism that allows the Supervisor to
provide instantaneous teaching signals targeted at refining the predictions of an existing
computational learning task. The performance of this online learning mechanism is
benchmarked against the batch training mechanisms using for incremental learning.

4. Recovery: this pertains testing the forward recovery and watchdog mechanisms, that allow
to identify and replace failed motes by recruiting a compatible substitute device to host the
learning module and synaptic connections of the failed node.

These 4 aspects have been assessed with targeted tests scripts whose experimental setup and results
are presented in detail in the following subsections. Nevertheless, all the scripts needed to reproduce
the tests described here can be found in the LearningLayerApi.test package of the CLS Java API.
The key classes of this package are

 supervisorEntity – a stand-alone implementation of the Supervisor for testing and
experimentation purposes; it provides a set of example script including control commands
that exercise the various functionalities and configuration options of the Learning Layer.

 GatewayWrapperDummy - a stub components that wraps the Rubicon Gateway functionalities
needed by the Learning Layer and allows testing the Java objects without needing to be
connected with an actual LN; it collects all command and configuration commands from the
LearningNetworkWrapper component and responds with appropriate acknowledgment
messages. This component is not used in the present deliverable but it has been maintained
for compatibility with the CLS API V1.0.

RUBICON D2.3 Core Learning Service API V2.0 RUBICON: Project No.: 22699145

30/10/2013 Page 52

 TaskDataParser - an helper class to parse data files storing real-world training samples,
from an event prediction task in an Ambient Assisted Living (AAL) scenario, that are used in
the scripts.

 AngenDataParser - an helper class to parse data files storing real-world training samples,
from a planner weight prediction task, that are used in the scripts.

3.2 TESTING LEARNING NETWORK COMPUTATION

3.2.1 Test Configuration

The assessment of the distributed incremental learning and computation in the CLS API V2.0. entails
testing

1. Instantiation of a new computational learning task activated through the incremental
learning mechanisms.

2. Automated training and model selection of the most appropriate learning module for the
task.

3. Automated generation of the synaptic instructions, over-the-air deployment of the learning
module on an appropriate ecology node and instantiation of the synaptic communication
channels.

4. Collection and publishing of the LN predictions on the output interface component.

The hardware configuration used in the tests comprises:

 1 PC (coherent with the platform requirements in 1.4.2.1) running the JLN API.

 1 PC (coherent with the platform requirements in 1.4.2.1) running the Java LM API.

 1 sink mote (coherent with the platform requirements in 1.4.2.2) attached to the PC through
USB and running the sink-specific code of the NesC LM API.

 2 motes (coherent with the platform requirements in 1.4.2.2) equipped with light,
temperature, accelerometer and humidity transducers and running the NesC LM API.

3.2.2 Testing Distributed Computation with NesC Learning Modules

The first round of tests is intended to assess incremental learning and distributed neural computation
capabilities of the NesC learning modules. To this end, we have employed real-world data collected
by a WSN in an AAL scenario. In particular, the test script focus on the incremental acquisition of a
new computational learning task associated with the prediction (classification) of the Exercising
activity performed by the user. The input data used in the test include 2D accelerometer information
from 2 motes deployed on the user wrist and ankle: a total of 30 positive examples and 30 negative
examples have been provided as training dataset. The reservoir size of the learning modules has
been limited to 50 neurons to allow deployment on a mote-class device.

Test 1 Description

The first test script, implemented by the supervisorEntity.set_configuration_demo_motes()
method, is organized as follows

1. Creates the main LearningLayer object and the associated components and waits for the
bring-up message on the PeisSymbols.SUPERVISOR_INFO tuple.

RUBICON D2.3 Core Learning Service API V2.0 RUBICON: Project No.: 22699145

30/10/2013 Page 53

2. Triggers learning of a new task by sending wiring and task instructions on the
PeisSymbols.WIRING_CMD tuple: source transducers include the 2D accelerometers of the
wrist and ankle motes.

3. Loads training data from file and forwards it to the Training Agent component through the
PeisSymbols.TRAINING_SAMPLE tuple.

4. When all training data has been sent, a new task is allocated, a TinyOS learning module is
trained through a cross-validation procedure and deployed on one of the two motes and the
synaptic communication is appropriately configured.

5. Starts the synaptic streaming using by posting the PeisSymbols.ACTIVATE_FORWARD
broadcast command in the PeisSymbols.CONTROL_CMD tuple.

6. Collects and publishes LN predictions generated by the learning module on-board one mote,
using inputs both from its onboard transducers and from the other mote. Keeps streaming
predictions until the user enters the keyboard combination “q+RETURN”.

7. Stops the synaptic streaming by posting the PeisSymbols.STOP_FORWARD broadcast
command in the PeisSymbols.CONTROL_CMD tuple, and activates termination signals in the
Learning Layer components.

At start-up, the Learning Layer activates its PEIS and Gateway interface to receive messages from the
other RUBICON layers: it waits for nodes joining the ecology (see Figure 13), as only the sink device,
connected to the Rubicon Gateway, is available at start-up (see the yellow-node in Figure 14).

Figure 13 Learning Layer waiting device join at start-up.

Upon switching on of mote devices, the Learning Layer receives the joining message of the nodes,
the LNControlAgent stores the information in its deviceRepository, while the TrainingAgent
updates the local and shared WiringTable object with the symbolic links associated with the mote
transducers. The device having joined the ecology, along with their capabilities are displayed in the
GUI as in Figure 15.

RUBICON D2.3 Core Learning Service API V2.0 RUBICON: Project No.: 22699145

30/10/2013 Page 54

Figure 14 GUI Snapshot: only the sink device is available at Learning Layer startup

Figure 15 GUI Snapshot: information on the joined devices along with their capabilities is stored in the
Learning Layer and displayed in the GUI.

RUBICON D2.3 Core Learning Service API V2.0 RUBICON: Project No.: 22699145

30/10/2013 Page 55

Upon reception of the wiring and task information on the PeisSymbols.WIRING_CMD tuple (see
Figure 16), the TrainingAgent allocates the new learning task and returns its identifier on the
PeisSymbols.WIRING_CMD tuple. Similarly, training samples are received by the TrainingAgent as
shown in Figure 17.

Figure 16 Reception of the wiring and task information through PEIS.

Figure 17 Reception of the training samples through PEIS.

Upon reception of all the training data, the NetworkMirror performs the model selection procedure,
whose results are shown in Figure 18: here the number of configurations explored by the cross-

RUBICON D2.3 Core Learning Service API V2.0 RUBICON: Project No.: 22699145

30/10/2013 Page 56

validation scheme has been limited, for the sake of simplicity, to a single reservoir size of 20 neurons
and to four possible values for the regularization parameter (0.1, 0.01, 0.001 and 0.0001). Figure 18
shows that the ESN configuration resulting from the model selection procedure achieves a mean
classification accuracy of 80.81% on a randomly selected test set.

Figure 18 Model-selection, training and deployment of a TinyOS learning module on the Exercising
task.

An ESN with the selected configuration is then trained on the full dataset provided by the supervisor
and deployed to a TinyOS learning module. The TrainingAgent takes care of translating the wiring
instructions into appropriate synaptic communication setup commands: one of the resulting
(remote) synaptic connection is shown on the GUI snapshot in Figure 19.

Upon reception of the broadcast command activating forward computation, the newly deployed
TinyOS learning module starts streaming its predictions on the Exercising activity (see Figure 20).

Model Selection
and Training

RUBICON D2.3 Core Learning Service API V2.0 RUBICON: Project No.: 22699145

30/10/2013 Page 57

Figure 19 Snapshot of the GUI showing a deployed synaptic connection between two motes in the
Exercising demo.

Figure 20 Starting of the distributed forward computation producing the predictions of the TinyOS
Learning module for the Exercising activity.

RUBICON D2.3 Core Learning Service API V2.0 RUBICON: Project No.: 22699145

30/10/2013 Page 58

3.2.3 Testing Distributed Computation with Java Learning Modules

The second round of tests is intended to assess incremental learning and distributed neural
computation capabilities of the Java learning modules in the AAL scenario described in Section 3.2.2.

Test 2 Description

The second test script, implemented by the supervisorEntity.set_configuration_demo_java()
method, is organized as follows

8. Creates the main LearningLayer object and the associated components and waits for the
bring-up message on the PeisSymbols.SUPERVISOR_INFO tuple.

9. Triggers learning of a new task by sending wiring and task instructions on the
PeisSymbols.WIRING_CMD tuple: source transducers include the 2D accelerometers of the
wrist and ankle motes.

10. Loads training data from file and forwards it to the Training Agent component through the
PeisSymbols.TRAINING_SAMPLE tuple.

11. When all training data has been sent, a new task is allocated, a Java learning module is
trained through a cross-validation procedure and deployed on a target device and the
synaptic communication is appropriately configured.

12. Starts the synaptic streaming using by posting the PeisSymbols.ACTIVATE_FORWARD
broadcast command in the PeisSymbols.CONTROL_CMD tuple.

13. Collects and publishes LN predictions generated on the Java learning module using inputs
from remote WSN devices. Keeps streaming predictions until the user enters the keyboard
combination “q+RETURN”.

14. Stops the synaptic streaming by posting the PeisSymbols.STOP_FORWARD broadcast
command in the PeisSymbols.CONTROL_CMD tuple, and activates termination signals in the
Learning Layer components.

Test 2 Outcome

Execution of this script progresses as discussed in Section 3.2.2 for the NesC case, until learning
module training. Figure 21 shows the results of the model selection procedure: here the number of
configurations explored by the cross-validation scheme has been limited, for the sake of simplicity, to
a single reservoir size of 100 neurons and to two possible values for the regularization parameter
(0.01 and 0.001). Nevertheless, the NetworkMirror offers more general (and computationally
intensive) schemes that explore a larger number of configurations. Figure 21 shows that the ESN
configuration resulting from the model selection procedure achieves a mean classification accuracy
of 82.06% on a randomly selected test set. An ESN with the selected configuration is then trained on
the full dataset provided by the supervisor and deployed to a Java learning module with identifier
netID=-1 hosted by the device with nodeID = 72099.

The TrainingAgent takes care of translating the wiring instructions into appropriate synaptic
communication setup commands (see the messages in Figure 21 and Figure 22). These include both
instructions target to TinyOS devices, i.e. for reading the accelerometer transducers, as well as PEIS
messages addressed to the Java learning module (see Figure 22).

RUBICON D2.3 Core Learning Service API V2.0 RUBICON: Project No.: 22699145

30/10/2013 Page 59

Figure 21 Model-selection, training and deployment of a Java learning module on the Exercising task.

In particular, the LearningNetworkWrapper instructs the learning module to subscribe to the tuple
implementing its input synaptic channel. This is achieved by posting an appropriately formatted
string in the PeisSymbols.CONTROL_CMD tuple as discussed in Section 2.2.3. A snapshot of the tuple
posted to register the synaptic channel of the Java learning module is as follows:

Model Selection
and Training

Module creation

Synaptic communication setup

RUBICON D2.3 Core Learning Service API V2.0 RUBICON: Project No.: 22699145

30/10/2013 Page 60

Figure 22 Synaptic connection deployment for the Exercising Task with Java learning modules: note
how the module registers it-self as listener to the tuple implementing the input Synaptic Channel (in
red).

To complete the deployment phase, the TrainingAgent also updates the local and global copy of
the wiring table, to introduce symbolic names for the newly deployed task. These include the
Symbolic name for the task output (i.e. the neuron providing the actual prediction) as well as those
for the input neurons of the learning module. A snapshot of the updated wiring table is provided in
Figure 23.

Figure 23 Wiring table resulting from the deployment of the new task.

PEIS synaptic setup

RUBICON D2.3 Core Learning Service API V2.0 RUBICON: Project No.: 22699145

30/10/2013 Page 61

Upon reception of the broadcast command activating forward computation, the newly deployed Java
learning module starts streaming its predictions on the Exercising activity (see Figure 24), that are
forwarded to the appropriate interfaces tuples of the Learning Layer where they are made available
to the other RUBICON layers (see the event publishing tuple in Figure 25).

Figure 24 Starting of the distributed forward computation producing the predictions of the Java
Learning module for the Exercising activity.

Figure 25 Publication of the predictions for the Exercising activity on the event publishing tuple: the 3
values displayed refer to the RUBICON time, event occurrence (+1=occurrence, -1=non-occurrence)
and prediction confidence (0 minimum confidence, 1 maximum) , respectively.

RUBICON D2.3 Core Learning Service API V2.0 RUBICON: Project No.: 22699145

30/10/2013 Page 62

For the sake of completeness, note, in Figure 26, a snapshot of the tuples implementing the input
synaptic connections from the WSN motes to the Java learning module (left) and the output
communication from the module to the Learning Gateway (right).

Figure 26 Snapshot of the tuples implementing synaptic communication in (left) and out(right) of the
Java learning module.

3.2.4 Performance Assessment of the Echo State Network model on Real-World RUBICON Tasks

The effectiveness and the appropriateness of the ESN models used for realizing the RUBICON
Learning Network, and of the online learning methods implemented in the Learning Layer API, have
been tested on a variety of real-world tasks in the AAL field. In this section, for each task, we provide
a brief description and a summary of the performance assessment results.

Indoor User Movement Forecasting

 Type: Classification of sequences

 Input considered: RSSI

 Target type: +1/-1 class label

 Ground-truth: Manually gathered

 Description: The task consists in predicting user movements (room change vs. room
preservation) in an indoor environment composed of a couple of rooms separated by a
corridor. The dataset contains data pertaining to 3 different couples of rooms.

 Dimension of the dataset: 104 sequences for the first couple of rooms, 106 for the second
couple of rooms, 104 for the third couple of rooms.

 Sampling frequency: 8 Hz

 Availability on the data: The task can be downloaded freely from
http://ala.isti.cnr.it/paolo/index.php/dataset/6rooms

 Performance assessment: Experimental results in [4, 8] showed that the ESN models can
reach an extremely good accuracy on this task (up to 96% of test accuracy), and that ESN
performances scale well with the cost of deployment of the network. Experimental results in
[5] showed the generalization ability of the ESNs to unseen ambient configurations. In [6]
was presented a study the relationship between the predictive performance on this task and
the architectural parameters influencing the computational cost of the ESN models, including
the reservoir dimension. In the same work, the use of a reduced encoding scheme (adopted
in the NesC API Learning Layer) was introduced, showing analogous performance results to
the case of standard (more costly) weight storage schemes. A complete empirical assessment
of several distributed ESN configurations, based on realistic WSN-induced layouts can be

http://ala.isti.cnr.it/paolo/index.php/dataset/6rooms

RUBICON D2.3 Core Learning Service API V2.0 RUBICON: Project No.: 22699145

30/10/2013 Page 63

found in [3]. Further experimental results on this task, concerning the online learning
process, are reported in Section 3.4.

Indoor Robot Localization

 Type: Regression on sequences

 Input considered: RSSI

 Target: (x,y) localization coordinates

 Ground-truth: SLAM/Gmapping

 Description: The task consists in predicting the (x,y) position of a robot moving in a
laboratory environment in Robotnik.

 Dimension of the dataset: 4 sequences.

 Sampling frequency: 10 Hz

 Performance assessment: The experimental analysis presented in [7] showed promising
performance results with an Euclidean test error of approximately 1 m, close to the ground-
truth precision.

AAL Home Lab Scenario

 Type: Step by step classification on sequences

 Input considered: RSSI, pir, accelerometer, light, switch, pressure, sound recognition, other
KNX sensors

 Target: +1/-1 class label for each event

 Ground-truth: Manually gathered

 Description: The AAL Home Lab Scenario comprises a set of event classification tasks
corresponding to different user activities in a home environment, including “prepare food”,
“prepare coffee”, “set the table”, “eating”, “washing dishes”, “exercising”, “get drink”,
“relax”, “sleep”, “user leaving”, “user arriving”. The dataset for this task was collected in
Tecnalia’s Home Lab in 2013.

 Dimension of the dataset: A total number of 26 sequences are available, containing data
pertaining to the different user activities by different actors.

 Sampling frequency: 2 Hz

 Performance assessment: ESNs of a suitable dimension for embedding in the motes of a
WSN (with reservoir size of 50) were tested on a subset of tasks from the AAL Home Lab
Scenario, including “prepare coffee”, “set table”, “eating” and “washing dishes”. Resulting
predictive accuracy was close to the 90% on the test set. Figure 27 shows an example of the
output of the Learning Layer predictions for the four tasks considered, during a test
sequence. Further experimental results considering online learning are illustrated in Section
3.4. This task has been used for the RUBICON live demo of the 2nd year project review.

RUBICON D2.3 Core Learning Service API V2.0 RUBICON: Project No.: 22699145

30/10/2013 Page 64

Figure 27 Learning Layer output predictions for a set of events in the AAL Home Lab scenario.

Angen Scenario - Planner Weight Prediction for Localization Systems

 Type: Regression on sequences

 Input considered: PIR, light, (x,y) localization information

 Target: Real value representing the evaluation of the performance of the robot localization
system

 Ground-truth: Gathered through empirical algorithms

 Description: This dataset contains samples corresponding to two scenarios pertaining to the
prediction of the performance of a robot indoor localization system. In the first scenario
(Mirror), the target performance of the localization system is influenced by the presence or
absence of a mirror in the robot trajectory. In the second scenario (Kitchen), the target
performance of the localization system is influenced by the presence or absence of the user
in the kitchen, due to privacy issues. More details about this task can be found in Section 3.3.

 Dimension of the dataset: A number of 87 sequences are available for the Mirror task, while
69 sequences are available for the Kitchen task.

 Sampling frequency: 2 Hz

 Performance assessment: ESNs were tested on both the Mirror and the Kitchen tasks, in
correspondence of local and global learning settings. Results showed a general better
performance of the global learning settings over the local ones. Moreover, small ESNs with
50-units reservoir suitable for being embedded in the motes of a WSN, turned out to
represent a good tradeoff between predictive performance and computational feasibility.
Figure 28 and Figure 29, show the mean absolute test error achieved by ESNs on the two
tasks Mirror and Kitchen, respectively, varying the reservoir dimension and the learning
setting. This task has been used for the RUBICON video demo of the 2nd year project review

RUBICON D2.3 Core Learning Service API V2.0 RUBICON: Project No.: 22699145

30/10/2013 Page 65

(ORU – UNIPI collaboration).

Figure 28 Mean Absolute Test Error achieved by ESNs on the Planner Weight Prediction for
Localization Systems – Mirror task.

Figure 29 Mean Absolute Test Error achieved by ESNs on the Planner Weight Prediction for
Localization Systems – Kitchen task.

Further experimental results on these tasks, concerning the feature selection and the online learning
functionalities of the Learning Layer can be found in Section 3.3 and 3.4, respectively.

RUBICON D2.3 Core Learning Service API V2.0 RUBICON: Project No.: 22699145

30/10/2013 Page 66

Hospital Robot Localization

 Type: Regression on sequences

 Input considered: RSSI

 Target: (x,y) localization coordinates

 Ground-truth: Both manual and SLAM/Gmapping/amcl

 Description: The Hospital Robot Localization dataset contains data for robot localization in a
critical environment, namely a wing of a pediatric hospital building. Different environmental
conditions are represented in the dataset, e.g. empty corridors and people walking. The
dataset for this task have been collected in Stella Maris, in July 2013 (see Figure 30).
The dataset also includes data for a set of classification tasks, in which couples of WSN motes
represent “flags” and the target is +1 whenever any entity (human or robot) passes through
the flag, and -1 otherwise.

 Dimension of the dataset: The dataset contains 36 sequences.

 Sampling frequency: 4 Hz

 Performance assessment: Preliminary experimental investigations were performed on the
Hospital Robot Localization task, showing the need for a careful choice of the appropriate
tradeoff among the computational cost of the learning model (e.g. reservoir dimension),
regularization and localization performance, due to the critical noise/signal ratio in the target
measurements. Figure 31 shows a plot of the mean Euclidean test error achieved by ESNs in
the first preliminary set of experiments on the Hospital Robot Localization task, using amcl
ground-truth data, and considering different reservoir dimensions and different values for
the readout regularization parameter . Such results also put forward the need for a
higher precision ground-truth system in such critical environment.

Figure 30 Map of the corridors involved in the measurement campaign in the wing of the Stella Maris

building. The indicative trajectory followed by the robot is illustrated in red.

RUBICON D2.3 Core Learning Service API V2.0 RUBICON: Project No.: 22699145

30/10/2013 Page 67

Figure 31 Mean Euclidean Test Error achieved by ESNs on the preliminary experiments on the Hospital

Robot Localization task. Performance results are reported for varying reservoir dimensionality and
readout regularization.

UNIPI Indoor Robot Localization

 Type: Regression on sequences

 Input considered: RSSI

 Target: (x,y) localization coordinates

 Ground-truth: SLAM/amcl

 Description: The UNIPI Indoor Robot Localization task consists in predicting the (x,y)
coordinates of a robot moving in an indoor environment. The input data is provided by a
WSN composed of 5 anchors and 1 mobile (placed on the robot). The dataset for this task
was collected during a measurement campaign in the UNIPI building, in June 2013. Figure 32
shows a map of the area considered in the experimental scenario.

 Dimension of the dataset: The dataset contains 12 sequences.

 Sampling frequency: 2 Hz

 Performance assessment: Preliminary experimental investigations performed on the Indoor
Robot Localization task showed a predictive performance of the ESN modules close to the
ground-truth precision, with a mean Euclidean error on the test set of approximately 1 m.

Figure 32 Map of the area used for the measurement campaign for the UNIPI Indoor Robot
Localization task.

RUBICON D2.3 Core Learning Service API V2.0 RUBICON: Project No.: 22699145

30/10/2013 Page 68

Waving Activity Recognition

 Type: Step by step classification on sequences

 Input considered: light, temperature, humidity, accelerometers

 Target: +1/-1 class label

 Ground-truth: Manually gathered

 Description: The Waving task consist in a binary classification task in which it is requested to
discriminate the user activity of waving her hand versus the still situation.

 Dimension of the dataset: The dataset contains a total number of 30 sequences (15 of which
corresponding to the waving activity, and the other 15 corresponding to the still situation).

 Sampling frequency: 4 Hz

 Performance assessment: ESNs modules were tested on this task, leading to an extremely
good predictive performance, close to 100% of test accuracy. This task has been used for the
WP2 live demo of 2nd year RUBICON review. Details concerning the experimental results on
this task can be found in Section 3.5.2.

UNIPI Activity Recognition

 Type: Step by step classification on sequences

 Input considered: RSSI, light, temperature, humidity

 Target: +1/-1 class label for each event

 Ground-truth: Manually gathered

 Description: The UNIPI Activity Recognition is a multi-classification task, where each class
corresponds to one user activity among “cleaning”, “exercising” and “relaxing”. Input data is
collected through a WSN comprising 4 anchors motes and 3 mobile motes, 2 of which are
worn by the user and 1 is placed on a table.

 Dimension of the dataset: The dataset contains 90 sequences.

 Sampling frequency: 4 Hz

 Performance assessment: Preliminary experimental investigations performed on the UNIPI
Activity Recognition dataset showed very good predictive performance, with test accuracy of
0.81 and F1score of 0.83.

3.3 TESTING FEATURE SELECTION

The second round of tests is intended to assess the capability of feature selection mechanism in
detecting and removing redundant inputs associated to a novel computational learning task. To this
end, we have employed real-world data collected in a task involving prediction of robot navigation
preferences in a sensorized home-environment. This task falls under the “planner weight prediction”
type of task that can be addressed by the Learning Layer (see the definition of TaskInformation in
Section 2.4).

The experimental scenario has been designed and put into operation in the Angen senior residence
facilities in ORU, through a joint work with UNIPI. The scenario, depicted in Figure 33, comprises a
real-world flat sensorized by an RFID floor, a WSN with 6 nodes equipped with light, temperature,
humidity and passive infrared (PIR) presence sensors, as well as a mobile robot with range-finder
localization. The task is intended to predict a weight evaluating the performance of the localization
system on different trajectories. Two trajectory types are considered here, represented as dashed
and continuous lines in Figure 33. Performance on the dashed trajectory is expected to be low due
to the effect of mirror disturbances which, conversely, should not affect trajectories on the
continuous line. Note that the only PIR sensors that are triggered by robot motion are those

RUBICON D2.3 Core Learning Service API V2.0 RUBICON: Project No.: 22699145

30/10/2013 Page 69

onboards motes M3 and M6 in Figure 33. The input data used in the test include all transducers from
the 3 motes, plus robot trajectory information under the form of its (x,y) position and orientation θ in
time.

A second set of test scripts has also been run on the Exercising event task discussed in Section 3.2,
showing how the feature selection mechanisms integrate with the incremental learning process.

Figure 33 Angen Experimental Scenario: a mobile robot using laser range-finder localization is
performing two types of trajectories ending in the kitchen, represented as continuous and dashed
lines. The performance of the localization system is negatively affected by the introduction of a
mirror; this effect can only be noticed in the dashed trajectory type. All the sensors are equipped with
PIR sensors, but only M3 and M6 are in a line-of-sight that is influenced by the robot moving. The rest
of the PIRs is shielded and is not activated by robot motion.

Test 3 Description

The third test script, implemented by the supervisorEntity.set_configuration_test_feature
_filter() method, is organized as follows

1. Load training data from file using the test.AngenDataParser helper class to create a
dataset.

2. Create a stand-alone FeatureFilter object and supply it with the dataset.
3. Run feature filtering and publish information on elapsed time in the different steps of the

process.
4. Publish information on selected and deleted features.

Test 3 Outcome

The test script has been repeated for varying configurations (and number) of the input features,
ranging from the worst-case scenario with all transducers from all the 6 motes, to the simplest
configuration with only the transducers readings from the task-relevant M3 motes. For each
configuration it has been recorded the result of the filtering phase, reported in Table XXI, as well as

Kitchen

Office

Living Room

Entrance

M2 M1

M3

M5

M6

M
IR

R
O

R

RUBICON D2.3 Core Learning Service API V2.0 RUBICON: Project No.: 22699145

30/10/2013 Page 70

the elapsed time spent in the key parts of the filtering algorithm, i.e. the construction of the
redundancy mask, the autocorrelation noise filter and the iterative selection-elimination procedure.

Figure 34 shows the output of the test script on the worst case configuration, i.e. number 5 in Table
XXI. Only 6 features are retained from an initial set of 27: four (out of six) of them are relevant
features based on our expert ground truth, as they encode relevant information for the task at hand.

Table XXI Feature Selection on the Angen data: results are provided for different configurations of the
input features, e.g. M3 means that all transducers from mote 3 are provided as inputs. The ground-
truth task-relevant features (determined by expert knowledge) are marked in red.

ID Configuration N. Initial
Features

Selected Features

1 M3 + (X,Y,θ) 7 X, Y, PIR3

2 M3+M6+(X,Y,θ) 11 X, Y, PIR3

3 M4-M6 + (X,Y,θ) 15 Y, PIR4, PIR6, LIGHT4

4 M3-M6 + (X,Y,θ) 19 X, Y, PIR3, PIR6

5 M1-M6 + (X,Y,θ) 27 X, Y, PIR1, PIR2, PIR3, PIR6

Overall, the results in Table XXI show that the algorithm is capable of consistently reducing the
number of input features by maintaining the majority (if not all) of the relevant features in all the
configurations considered. Figure 34 also shows that the computational complexity is dominated by
computation of the redundancy mask, while the effort required for the iterative selection-elimination
algorithm is negligible (it is equal to 0 milliseconds for initial configurations comprising less than 6
motes). A snapshot of the relationship between the number of initial features and the time required
to complete the feature selection process is provided by the plot in Figure 35.

RUBICON D2.3 Core Learning Service API V2.0 RUBICON: Project No.: 22699145

30/10/2013 Page 71

Figure 34 Results of the feature selection algorithm on configuration 5 for the Angen data (see Table
XXI), including all transducers from all the involved motes. The majority of the running time is spent
on the computation of the redundancy mask, while the effort required for feature filtering is
negligible. Only 6 features are retained from an initial set of 27.

Figure 35 Plot of the elapsed time(milliseconds) for feature filtering as a function of the number of
input features.

5 10 15 20 25 30
200

400

600

800

1000

1200

1400

1600

1800

2000

2200

Number of Input Features

m
ill

is
e
c

RUBICON D2.3 Core Learning Service API V2.0 RUBICON: Project No.: 22699145

30/10/2013 Page 72

Test 4 Description

The fourth test re-uses the same Exercising event data, device configuration and the same script
used in Section 3.2.2 for assessing Java learning modules. Only, the test script
set_configuration_demo_java() is modified to

 post appropriate PEIS messages to switch-on feature selection on the new task;

 to load an extended set of input information which includes humidity and temperature
reading for the ankle and wrist motes, in addition to the 2D accelerometers.

The script runs as follows

1. Creates the main LearningLayer object and the associated components and waits for the
bring-up message on the PeisSymbols.SUPERVISOR_INFO tuple.

2. Triggers learning of a new task by sending wiring and task instructions on the
PeisSymbols.WIRING_CMD tuple: source transducers include humidity, temperature, 2D
accelerometers of the wrist and ankle motes.

3. Activates feature selection on the task by posting the the PeisSymbols.FEAT_SELECTION_ON
command in the PeisSymbols.CONTROL_CMD tuple.

4. Loads training data from file and forwards it to the Training Agent component through the
PeisSymbols.TRAINING_SAMPLE tuple.

5. When all training data has been sent, a new task is allocated, feature filtering is preliminary
run on the dataset and a Java learning module is trained through a cross-validation
procedure on the filtered data. The learning module is then deployed on a target device and
the synaptic communication is appropriately configured.

6. Starts the synaptic streaming using by posting the PeisSymbols.ACTIVATE_FORWARD
broadcast command in the PeisSymbols.CONTROL_CMD tuple.

7. Collects and publishes LN predictions generated on the Java learning module using inputs
from remote WSN devices. Keeps streaming predictions until the user enters the keyboard
combination “q+RETURN”.

8. Stops the synaptic streaming by posting the PeisSymbols.STOP_FORWARD broadcast
command in the PeisSymbols.CONTROL_CMD tuple, and activates termination signals in the
Learning Layer components.

Test 4 Outcome

Execution of this script progresses as discussed in Section 3.2.2 until all the dataset has been
received. Then, instead of directly activating the cross-validation model selection process on the full
dataset, the latter is provided in input to the feature filtering algorithm. Figure 36 shows the result of
the selection process, which maintains the accelerometer and humidity information but deletes the
redundant/irrelevant temperature information, requiring slightly less than one second to complete
the process.

The feature filtered dataset is then supplied to the cross-validation process for models selection: the
results in Figure 36 shows that the selected Java learning module attains a test-set accuracy
equivalent to the manually filtered version in Section 3.2.2.

Before deploying the learning module and the associated synaptic connections, the TrainingAgent
exploits the FeatureFilter to clean the original wiring instructions from the irrelevant features,
thus obtaining a deployed learning task with reduced computational and communication effort.

RUBICON D2.3 Core Learning Service API V2.0 RUBICON: Project No.: 22699145

30/10/2013 Page 73

The rest of the script progresses as in Section 3.2.2, with the successful deployment of the task and
the streaming of the predictions from the Java learning module to the Learning Layer output
interface.

Figure 36 Result of the feature selection mechanism when running incremental learning on the
Exercising event.

3.4 TESTING ONLINE LEARNING

Online learning functionalities have been tested on several benchmark real-world tasks.

A first point to show is that ESN modules trained using the online mechanisms implemented in the
Learning Layer APIs can reach comparable performances to ESN modules trained with standard
offline methods, starting from the same conditions. To this aim, we designed experiments in which
the same ESNs undergo an offline training process and an online training process on the same
training data, starting from the same initial conditions. Figure 37 and Figure 38 compare the mean
accuracy on the test set for the tasks AAL Home Lab-Preparing Coffee and Indoor User Movement
Forecasting, respectively, achieved by ESNs with increasing reservoir dimension, trained with (1
epoch of) online learning, for an increasing number of training patterns used for the online learning
algorithm, and with offline learning. It can be observed that the test set accuracy of the networks
trained using online learning approaches, or even overcomes, that achieved by the networks trained
using offline learning, as the number of online training samples approaches the entirety of the
training set. Analogously, Figure 39 shows a similar comparison between the mean absolute test

Feature
selection result

Elapsed time

Test accuracy

RUBICON D2.3 Core Learning Service API V2.0 RUBICON: Project No.: 22699145

30/10/2013 Page 74

error of ESNs trained using online learning and the same networks trained using offline learning on
the Planner Weight Prediction for Localization Systems-Mirror task. In this case it can be seen that,
for each choice of the reservoir dimensionality, after a number of online learning samples
corresponding to the 25% (or less) of the whole training set the performance of the networks trained
using online learning overcomes that achieved by the same networks trained with offline learning.
We can therefore conclude that the online learning mechanisms designed and implemented in the
Learning Layer APIs can be used to reach analogous performances as the standard offline learning
algorithms, starting from the same conditions. For the sake of completeness, Figure 40 presents
results analogous to Figure 39, but corresponding to a standard RLMS algorithm setting for
regression tasks, in which the target output is known at each time step, and can be used directly for
the reservoir-to-readout weights values adjustment.

Figure 37 Mean test accuracy on the AAL Home Lab-Preparing Coffee task, achieved by ESNs with
different reservoir dimensions, trained using offline learning (dashed lines) and online learning
(continuous lines), for increasing number of training samples considered.

Figure 38 Mean test accuracy on the Indoor User Movement forecasting task, achieved by ESNs with
different reservoir dimensions, trained using offline learning (dashed lines) and online learning
(continuous lines), for increasing number of training samples considered

RUBICON D2.3 Core Learning Service API V2.0 RUBICON: Project No.: 22699145

30/10/2013 Page 75

Figure 39 Mean absolute test error on the Angen Scenario-Mirror task, achieved by ESNs with
different reservoir dimensions, trained using offline learning (dashed lines) and online learning
(continuous lines), for increasing number of training samples considered. Y-axis is in logarithmic scale.

Figure 40 Mean absolute test error on the Angen Scenario-Mirror task, achieved by ESNs with
different reservoir dimensions, trained using offline learning (dashed lines) and online learning
(continuous lines), for increasing number of training samples considered. Standard RLMS with known
target is used. Y-axis is in logarithmic scale.

RUBICON D2.3 Core Learning Service API V2.0 RUBICON: Project No.: 22699145

30/10/2013 Page 76

A second important point to show is that online learning can be useful to improve the prediction
performance of already trained ESN modules, whenever new training samples became available. To
this aim, we have designed experiments in which ESNs trained offline on a training set, undergo a
process of online learning on a separate test set. Figure 41 shows the comparison between the test
accuracy achieved by ESNs on the Indoor User Movement Forecasting task, with different reservoir
dimensions, before and after online learning (for increasing number of online test samples used). It
can be seen that the online learning process has a great impact on the ESN models performance,
leading to an increase of more than 20% of test accuracy. The effectiveness of the online learning
mechanisms in this context is clearly apparent.

Online learning mechanisms have also been tested in the Java API implementation.

Figure 41 Mean test accuracy on the Indoor User Movement forecasting task, achieved by ESNs with
different reservoir dimensions, trained using offline learning, before (dashed lines) and after
(continuous lines) online learning, for increasing number of training samples considered

Test 5 Description

This test is used to assess the online learning mechanism, showing a process of online training of an
ESN module and subsequent predictions. To this end, we use the Waving Activity task and train an
ESN model with a very small subset of the training data. Then we simulate an online process in which
the input samples in the Waving Activity dataset are provided one-by-one to the learning module,
while the online learning mode is active. The script is implemented in the SupervisorEntity method
set_configuration_demo_online(), and it runs as follows:

1. Creates the main LearningLayer object and waits for the bringing message on the
PeisSymbols.SUPERVISOR_INFO tuple.

2. Triggers learning of a new task by sending appropriate wiring and task instructions on the
PeisSymbols.WIRING_CMD tuple.

3. Loads training data from file and forwards a small subset of it to the Training Agent
component through the PeisSymbols.TRAINING_SAMPLE tuple.

4. The learning module is then deployed on a target device and the synaptic communication is
appropriately configured.

5. Starts and proceed with the online learning process by posting the
PeisSymbols.ONLINE_EVENT, or PeisSymbols.ONLINE_NOEVENT command (depending on
the target for the different online training samples) in the PeisSymbols.ONLINE_REFINE
tuple. In this phase the input for the ESN module is forced to be as in the training dataset.

RUBICON D2.3 Core Learning Service API V2.0 RUBICON: Project No.: 22699145

30/10/2013 Page 77

6. When all the training samples have been presented, the online learning is stopped by posting
the command PeisSymbols.STOP_ONLINE in the PeisSymbols.ONLINE_REFINE tuple.

7. Starts the synaptic streaming using by posting the PeisSymbols.ACTIVATE_FORWARD
broadcast command in the PeisSymbols.CONTROL_CMD tuple.

8. Collects and publishes LN predictions generated on the Java learning module using inputs
from remote WSN devices. Keeps streaming predictions until the user enters the keyboard
combination “q+RETURN”.

9. Stops the synaptic streaming by posting the PeisSymbols.STOP_FORWARD broadcast
command in the PeisSymbols.CONTROL_CMD tuple, and activates termination signals in the
Learning Layer components.

Test 5 Outcome

The execution of this script proceeds as described in Section 2.5.2, with the exception of the
preliminary reduced offline training phase (see Figure 42). When the online learning phase
terminates, the ESN starts providing predictions for the Waving Activity task (see Figure 43).

Figure 42 Outcome of the online learning script after the activation of the online learning process.

Figure 43 Outcome of the online learning script during the phase of output prediction.

RUBICON D2.3 Core Learning Service API V2.0 RUBICON: Project No.: 22699145

30/10/2013 Page 78

3.5 TESTING RECOVERY

3.5.1 Test Configuration

The assessment of the recovery procedure in the CLS API V2.0. entails testing

 the triggering of the watchdog detecting mote disconnection ;

 the identification of a suitable replacement device to host the learning module of the failing
device;

 the over-the-air deployment of the learning module from the NetworkMirror copy to the
replacement mote, together with its associated synaptic connections.

The hardware configuration used in the tests comprises:

 1 PC (coherent with the platform requirements in 1.4.2.1) running the JLN API.

 1 sink mote (coherent with the platform requirements in 1.4.2.2) attached to the PC through
USB and running the sink-specific code of the NesC LM API.

 2 motes (coherent with the platform requirements in 1.4.2.2) equipped with light,
temperature, accelerometer and humidity transducers and running the NesC LM API.

3.5.2 Testing Mote Watchdog and Recovery

This test is intended to assess the correct triggering of the disconnection-watchdog for mote devices
and the subsequent execution of the recovery process enabling the re-deployment on a replacement
device of the computational learning task hosted by the failing mote. To this end, we have employed
real-world data collected on a simple task comprising the recognition of the user performing a
waving movement with his/her hand, while holding a mote equipped with 2D accelerometers. The
Waving task is first learned and deployed to the initial mote using the incremental learning
mechanism as in Section 3.2.2. Then, mote failure is simulated by powering off of the device.

Test 6 Description

The test script, implemented by the supervisorEntity.set_configuration_demo_recovery()
method, is organized as follows

1. Creates the main LearningLayer object and the associated components; activates the
recovery procedure by setting a watchdog threshold > 0 (number of clock tick before
considering a device disconnected).

2. Waits for the bring-up message on the PeisSymbols.SUPERVISOR_INFO tuple.
3. Triggers learning of a new task by sending wiring and task instructions on the

PeisSymbols.WIRING_CMD tuple.
4. Loads training data from file and forwards it to the Training Agent component through the

PeisSymbols.TRAINING_SAMPLE tuple.
5. When all training data has been sent, a new task is allocated, a TinyOS learning module is

trained through a cross-validation procedure and deployed on a mote and the synaptic
communication is appropriately configured.

6. Starts the synaptic streaming using by posting the PeisSymbols.ACTIVATE_FORWARD
broadcast command in the PeisSymbols.CONTROL_CMD tuple.

7. Collects and publishes LN predictions generated by the learning module on-board the mote.
8. A mote failure is produced by powering off the active device.

RUBICON D2.3 Core Learning Service API V2.0 RUBICON: Project No.: 22699145

30/10/2013 Page 79

9. Stops the synaptic streaming by posting the PeisSymbols.STOP_FORWARD broadcast
command in the PeisSymbols.CONTROL_CMD tuple, and activates termination signals in the
Learning Layer components.

Test 6 Outcome

At start-up, the Learning Layer activates its PEIS and Gateway interface to receive messages from the
other RUBICON layers: it waits for one mote joining the ecology (see Figure 44), that is assigned the
nodeID = 720897. The script progresses as in Section 3.2.2, with the Learning Layer receiving, through
its PEIS interface, the wiring and task information together with the training data necessary to
allocate the new Waving task. When enough data is received, the TrainingAgent triggers model
selection and training and finally deploys the trained learning module on the device with nodeID =
720897 (see Figure 45).

As soon as the deployment of the learning module and synaptic connections is completed, the ESN
located on the mote 720897 starts providing predictions for the waving task (see Figure 46).

Figure 44 The script awaits joining of at least one device, that is assigned nodeID=720897 and will
initially host the Waving learning task (console and GUI output on the left and right, respectively).

RUBICON D2.3 Core Learning Service API V2.0 RUBICON: Project No.: 22699145

30/10/2013 Page 80

Figure 45 Training and deployment of the Waving task on the device with nodeID = 720897

Figure 46 The Learning Layer providing predictions on the Waving event using the output generated
by the ESN on-board the mote with nodeID = 720897.

RUBICON D2.3 Core Learning Service API V2.0 RUBICON: Project No.: 22699145

30/10/2013 Page 81

While the Learning Layer keeps providing its prediction a new mote joins the ecology (with nodeID
720898) and is kept as a cold spare, e.g. waiting for a new learning task (Figure 47).

At some point in time, the first device (nodeID = 720897) is powered off to simulate failure. After a
number of RUBICON cycles equal to the value of the disconnection threshold set by the script (i.e.
10), the mote watchdog detects the failure on mote 720897 and triggers the recovery procedure.

Figure 48 shows the output produced by the deployment of the Waving task on the cold spare
720898. This includes messages transmitting the ESN parameters as well as the appropriate
configuration commands to setup the new synaptic communication where mote 720898 replaces the
failed 720897 device. The recovery procedure successfully concludes by activating the learning
module, that starts providing (again) the prediction associated with the Waving event (see bottom-
right of Figure 48).

Figure 47 Another device, with nodeID = 720898, joins the ecology while the other mote keeps
providing predictions.

RUBICON D2.3 Core Learning Service API V2.0 RUBICON: Project No.: 22699145

30/10/2013 Page 82

Figure 48 Recovery procedure triggered by the failure of device 720897 (left): the cold spare with
nodeID 720898 is found to have compatible capabilities and is therefore used as a replacement. The
learning module implementing the Waving task is deployed on 720898 and starts providing again its
predictions (right).

RUBICON D2.3 Core Learning Service API V2.0 RUBICON: Project No.: 22699145

30/10/2013 Page 83

4. Conclusions

4.1 Compliance to Workplan

We conclude this report with an overview of the status of the WP2 tasks and Deliverables at Month
30, discussing their compliance with the workplan detailed in the RUBICON DoW.

Task 2.1 - Learning Layer Specification (M1-M6 + M12-M16): the activities have been performed as
planned and the task is completed. The results of the first part of this task (M1-M6) are documented
in D2.1, which provides the Learning Layer specification used to guide the implementation activities
documented in this report. The result of the specification refinement phase (M12-M16) are
documented in D2.2.

Task 2.2 - Core Learning Services (M6-M26): the activities have been performed as planned and the
task is completed. The preliminary version of the Learning Layer infrastructure has been delivered
with the CLS API V1.0 in D2.2. The final version of the infrastructure is delivered now with D2.3. A
summary of the key functionalities is documented in this report as follows:

 Section 2.2.3 describes the Synaptic Communication mechanism ;

 Section 2.2.5 describes the software component wrapping the distributed learning network
functionalities ;

 Section 2.3 describes the implementation of the manager component of the Learning Layer ;

 Section 2.4 describes the implementation of the Training Manager subsystem;
Additionally, Sections 2.3.4, 2.3.4 and 2.4.2 describe the implementation of wiring-table utilities, of a
recovery mechanism and of a feature-selection procedure supporting the self-sustaining and self-
configuration capabilities of the Learning Layer, through automated methods for device and learning
module management and control.

Task 2.3 - Local Learning (M8-18): the activities have been performed as planned and the task is now
completed. The results of the task are documented in the CLS API V1.0 and in its associated report.

Task 2.4 - Distributed Adaptive Memory (M16-24):): the activities have been performed as planned
and the task is completed. The results of the task are documented in the CLS API V2.0 and in this
associated report. In particular:

 Section 2.2.2 describes the NesC and Java components implementing the local learning
modules ;

 Section 2.2.4 describes the implementation of the distributed forward computation
producing the LN predictions ;

 Sections 2.4.3.1 and 2.4.4 describe the training of a distributed learning task , its deployment
to the LN device and a summary of the required instructions for the allocation and training of
a new task, respectively.

 Section 2.4.2 describes the feature selection functionalities and the interaction of the
mechanism with the incremental learning of a new task.

Task 2.5 - Cooperative Cognitive Process (M23-30):): the activities have been performed as planned
and the task is completed. The results of the task are documented in the CLS API V2.0 and in this
associated report. In particular:

RUBICON D2.3 Core Learning Service API V2.0 RUBICON: Project No.: 22699145

30/10/2013 Page 84

 Section 2.4.3.2 describes the implementation of the online learning mechanism for the on-
board adaptation/refinement of deployed learning task using instantaneous teaching signals
(behavioural rewards).

Deliverable D2.1 - Functional Design & Specification document (M6): it has been delivered as
scheduled in the form of a report documenting the detailed architecture of the RUBICON Learning
Layer and the specification of its software components.

Deliverable D2.2 - Core Learning Services API and Documentation, version 1.0 (M18):): it has been
delivered as scheduled in the form of a the CLS V1.0 software, the accompanying report, providing
an high-level description of the developed software, and the Javadoc documentation, whose full
HTML version is available in the RUBICON repository.

Deliverable D2.3 - Core Learning Services API and Documentation, version 2.0 (M30): delivered in the
form of the Core Learning Service (CLS) API V2.0 available in the (timestamped) RUBICON software
repository, along with this report, providing an high-level description of the developed software, and
the Javadoc documentation, whose full HTML version is available in the RUBICON repository. The CLS
API V2.0 contains all the code needed for the execution of the Learning Layer and the example scripts
needed to replicate the testing described in Section 3.

The deliverable description, as per RUBICON DoW, is the following:

“CLS API V2.0 will extend release 1.0 (code, documentation and testing) to include the following
features:

A1. Implementation of the Distributed Adaptive Memory Model: Distributed learning mechanism

A2. Implementation of the Distributed Adaptive Memory Model: Feature selection mechanism

A3. Implementation of the Cooperative Cognitive Process“

These points are addressed in this report as follows:

 The implementation of the distributed learning functionalities (A1) is described in:
o Section 2.2: implementation of distributed learning models and synaptic

communication mechanisms for TinyOS and Java-enabled devices;
o Section 2.4.3.1: implementation of incremental learning of a distributed task through

a mirror-based batch training and its deployment to the LN;
o Section 3.2: testing of distributed incremental learning with TinyOS and Java-enabled

devices.

 The implementation of the feature selection mechanism (A2) is described in:
o Section 2.4.2: implementation of the feature selection mechanism and its interaction

with the distributed learning functionalities;
o Section 3.3: testing of the feature selection mechanism.

 The implementation of the refinement learning functionalities of the cooperative cognitive
process (A3) is described in:

o Section 2.4.3.2: implementation of online learning for the on-board refinement of
deployed learning task both with TinyOS and Java-based learning modules;

o Section 3.4: testing refinement online learning on-board TinyOS and Java learning
modules.

The increment of D2.3 with respect to the functionalities in D2.2 has been summarized in Section 1.5.

RUBICON D2.3 Core Learning Service API V2.0 RUBICON: Project No.: 22699145

30/10/2013 Page 85

4.2 Impact on project

The Learning Layer development has progressed as expected and has been made available to the rest
of the RUBICON project partners through the shared code repository.

The final version of the software is currently in use within the Consortium. Based on the feedback of
the partners and on the preliminary results on the final RUBICON application scenario, some minor
modifications and code upgrades can be expected. Such minor modifications will be addressed until
the conclusion of the project and the updated software will be made available throughout the
project repository.

4.3 New developments and unforeseen issues

The RUBICON Learning Layer interfaces with the RUBICON gateway that provides the enabling
mechanisms for interacting and configuring the distributed learning modules and the synaptic
communication. The implementation of the RUBICON gateway functionalities is still in progress, so
further updates to the CLS are expected to be delivered in case of key changes to the RUBICON
gateway interface.

No other significant unexpected developments have occurred during WP2 research and development
activities interested by the current deliverable.

RUBICON D2.3 Core Learning Service API V2.0 RUBICON: Project No.: 22699145

30/10/2013 Page 86

References

[1] M. Lukosevicius, H. Jaeger, Reservoir computing approaches to recurrent neural network
training, Computer Science Review, 3(3), pages 127–149, 2009.

[2] H. Jaeger, Adaptive nonlinear system identification with echo state networks, In NIPS,
Advances in Neural Information Processing Systems 15, pages 593–600, MIT Press, 2002.

[3] D. Bacciu, P. Barsocchi, S. Chessa, C. Gallicchio, A. Micheli, An Experimental
Characterization of Reservoir Computing in Ambient Assisted Living Applications, Neural
Computing and Applications, Springer-Verlag (In Press), doi: 10.1007/s00521-013-1364-4,
2013

[4] C. Gallicchio, A. Micheli, P. Barsocchi, S. Chessa, User movements forecasting by reservoir
computing using signal streams produced by mote-class sensors, In: Mobile Lightweight
Wireless Systems (Mobilight 2011), Lecture Notes of the Institute for Computer Sciences,
Social Informatics and Telecommunications Engineering, vol 81, Springer Berlin Heidelberg,
pages 151–168, 2012.

[5] D. Bacciu, C. Gallicchio, A. Micheli, S. Chessa, P. Barsocchi, Predicting user movements in
heterogeneous indoor environments by reservoir computing, In: M. Bhatt, H.W. Guesgen,
J.C. Augusto Editors, Proceedings of the IJCAI Workshop on Space, Time and Ambient
Intelligence (STAMI), pages 1–6, 2011.

[6] D. Bacciu, S. Chessa, C. Gallicchio, A. Micheli, P. Barsocchi, An Experimental Evaluation of
Reservoir Computation for Ambient Assisted Living, 22nd Italian Workshop on Neural
Networks, Vietri sul Mare, Salerno, Italy, 17-19 May 2012, In: Neural Networks and
Surroundings, Springer Smart Innovation, Systems and Technologies series, vol. 19, pp. 41-
50, ISBN: 978-3-642-35466-3.

[7] S. Chessa, C. Gallicchio, R. Guzman, A. Micheli, Robot Localization by Echo State Networks
using RSS, 23rd Italian Workshop on Neural Networks (WIRN) 2013 (To Appear).

[8] C. Gallicchio, A. Micheli, P. Barsocchi, S. Chessa, Reservoir computing forecasting of user
movements from RSS mote-class sensors measurements, Technical Report TR-11-03,
University of Pisa, 2011.

RUBICON D2.3 Core Learning Service API V2.0 RUBICON: Project No.: 22699145

30/10/2013 Page 87

5. Appendix A – Reference Manual

In the following, we provide a snapshot of the full Javadoc reference manual for the Learning
Gateway API, including only the package-level documentation. A full HTML version of the manual is
available on the RUBICON SVN repository.

Learning Gateway API Documentation

Package Summary Page

generics
Provides the classes implementing the data structures shared across the Learning
Layer subsystems, the standard interface of the Learning Layer threads, the inter-
thread communication mechanisms as well as some general macros.

learningnetwork
Provides the classes for accessing the distributed Learning Network, implementing
methods to send command and configuration messages to the single learning
modules and to receive status updates from the Learning Network.

main
Provides the definition of the main Learning Layer object, as well as the classes
necessary to create the output interface of the Learning Layer and the wrapper to
access the PEIS functionalities.

manager
Provides the classes implementing the Learning Network Manager (LNM) subsystem,
that is responsible for the configuration and control of the Learning Layer.

test
Includes example scripts and stub implementations for testing and experimenting
with the Learning Layer API.

tinyos
Provides the classes implementing the TinyOS messages used to deliver the Learning
Layer control and configuration messages, as well as the synaptic communication
between mote-devices.

training
Provides the classes for accessing the Training Manager subsystem, implementing
methods for instantiating and managing the datasets, training the learning modules
and deploying them to the devices in the LN.

RUBICON D2.3 Core Learning Service API V2.0 RUBICON: Project No.: 22699145

30/10/2013 Page 88

Package generics

Provides the classes implementing the data structures shared across the Learning Layer subsystems, the
standard interface of the Learning Layer threads, the inter-thread communication mechanisms as well as some
general macros.

Interface Summary Page

LLRunnableInterface
The interface provides methods for controlling the activation and termination of
the Learning Layer threads.

LNInformationListener
Interface that must be implemented by any object interested in receiving LL
status messages through the LL information dispatchers.

Class Summary Page

DeviceRepository

Repository of devices connected to the LL through the joining command
SupervisorInterface.connect_node(int, NodeInformation)

defined in the Supervisor Interface.

EchoStateNetwork This class implements the Echo State Network

EsnUpload
Class encapsulating the readout weights of an ESN for transferring them from

the LN Wrapper to the Network Mirror via message queues.

HashCodeUtil Collected methods which allow easy implementation of hashCode.

LNInformationDispatcher
Defines the information dispatcher of the Learning Layer status messages

defined in LLMessages.

LNInformationEvent<T>

Defines a specific event object for the notification of LL status messages

generated by the Learning Manager and directed towards its Supervisor,

Control and Training interfaces.

LNInformationMsg<T> Class encapsulating the type and payload of LL status messages.

LNOutType Deprecated.

NodeInformation
Specification of the devices sensing and actuator capabilities, as well as their

basic network information, including island and node address.

PCLMRepository Repository for the PC LearnignModules.

Recover
Implements the monitor of the deployed synaptic connections, that is used

to track device behavior and determine the presence of failures.

SynapticChannel Class that encodes a SynapticChannel between PC devices.

SynapticConnection

Models the synaptic connection abstraction: stores information on the

source and destination peers of the connection, as well as its deployment

status.

TaskData Implements the task abstraction used in the Network Mirror.

TaskType Contains the information associated to a computational task.

TrainingData
Implements the Training Agent software component within the Training

Manager in the RUBICON Learning Layer

file:///C:/Users/bacciu/Documents/Software/pdfJavadoc/docflex-doclet-1.6.1/out/LLApi1.0.rtf%23b26
file:///C:/Users/bacciu/Documents/Software/pdfJavadoc/docflex-doclet-1.6.1/out/LLApi1.0.rtf%23b1115
file:///C:/Users/bacciu/Documents/Software/pdfJavadoc/docflex-doclet-1.6.1/out/LLApi1.0.rtf%23b82
file:///C:/Users/bacciu/Documents/Software/pdfJavadoc/docflex-doclet-1.6.1/out/LLApi1.0.rtf%23b86
file:///C:/Users/bacciu/Documents/Software/pdfJavadoc/docflex-doclet-1.6.1/out/LLApi1.0.rtf%23b96
file:///C:/Users/bacciu/Documents/Software/pdfJavadoc/docflex-doclet-1.6.1/out/LLApi1.0.rtf%23b127
file:///C:/Users/bacciu/Documents/Software/pdfJavadoc/docflex-doclet-1.6.1/out/LLApi1.0.rtf%23b119
file:///C:/Users/bacciu/Documents/Software/pdfJavadoc/docflex-doclet-1.6.1/out/LLApi1.0.rtf%23b131
file:///C:/Users/bacciu/Documents/Software/pdfJavadoc/docflex-doclet-1.6.1/out/LLApi1.0.rtf%23b137
file:///C:/Users/bacciu/Documents/Software/pdfJavadoc/docflex-doclet-1.6.1/out/LLApi1.0.rtf%23b139
file:///C:/Users/bacciu/Documents/Software/pdfJavadoc/docflex-doclet-1.6.1/out/LLApi1.0.rtf%23b164
file:///C:/Users/bacciu/workspace/LearningGatewayAPI/doc/generics/Recover.html
file:///C:/Users/bacciu/Documents/Software/pdfJavadoc/docflex-doclet-1.6.1/out/LLApi1.0.rtf%23b183
file:///C:/Users/bacciu/Documents/Software/pdfJavadoc/docflex-doclet-1.6.1/out/LLApi1.0.rtf%23b215
file:///C:/Users/bacciu/Documents/Software/pdfJavadoc/docflex-doclet-1.6.1/out/LLApi1.0.rtf%23b245
file:///C:/Users/bacciu/Documents/Software/pdfJavadoc/docflex-doclet-1.6.1/out/LLApi1.0.rtf%23b257

RUBICON D2.3 Core Learning Service API V2.0 RUBICON: Project No.: 22699145

30/10/2013 Page 89

TrainingDataset
Implements a training dataset, i.e. a collection of examples to be used for

neural network training.

WiringSpecification
This class implements an item in the Wiring Table described in Section 5.4.2

of Deliverable 2.1

WiringTable Implements the Wiring Table as described in Section 5.4.2 of Deliverable 2.1

WiringType Contains the information associated to a wiring instruction.

Enum Summary Page

DeviceRepository.DeviceNature Service class describing the nature of a device (PC or MOTE)

DeviceRepository.DeviceState Service class describing the current state of the device

LLMessages
List of messages exchanged by the Learning Layer components
either through message queues or by the information dispatchers of
the LNControlAgent.

SynapticConnection.synapticState
Enumerated type defining the deployment states of a synaptic
connection

SynapticConnection.synapticType Enumerated type of synaptic connections

TaskData.taskState Service class describing the current state of a task

Exception Summary Page

SynapticConnection.SynapseException
Exception thrown when creating a local synapse with improper
parameters.

file:///C:/Users/bacciu/Documents/Software/pdfJavadoc/docflex-doclet-1.6.1/out/LLApi1.0.rtf%23b270
file:///C:/Users/bacciu/Documents/Software/pdfJavadoc/docflex-doclet-1.6.1/out/LLApi1.0.rtf%23b290
file:///C:/Users/bacciu/Documents/Software/pdfJavadoc/docflex-doclet-1.6.1/out/LLApi1.0.rtf%23b300
file:///C:/Users/bacciu/Documents/Software/pdfJavadoc/docflex-doclet-1.6.1/out/LLApi1.0.rtf%23b310

RUBICON D2.3 Core Learning Service API V2.0 RUBICON: Project No.: 22699145

30/10/2013 Page 90

Package learningnetwork

Provides the classes for accessing the distributed Learning Network, implementing methods to send command
and configuration messages to the single learning modules and to receive status updates from the Learning
Network.

The LearningNetworkWrapper class defines a unified point of access to the Learning Network and interfaces
with the RUBICON gateway, that offers the communication facilities for the TinyOS-enabled devices, and with
the PEIS messaging system for Java-enabled devices. The package includes a GatewayWrapper class that wraps
the RUBICON Gateway functionalities needed by the Learning Layer to communicate with TinyOS devices. The
classes PCLMmanager and LearningModulePC realize the Learning Modules for Java-enabled devices, together
with the associated manager component.

Interface Summary Page

GatewayInterface
Interface for sending LL configuration and control commands to the
modules of the distributed Learning Network.

LNMessageListenerInterface
Interface that must be implemented by objects interested in receiving
messages from the Learning Network through the Gateway component.

Class Summary Page

GatewayWrapper
Implementation of the GatewayInterface wrapping
the Rubicon Gateway functionalities needed by the
Learning Layer.

LearningModuleInputMsg
Class used for delivering inputs from the RUBICON
gateway to a Java Learning Module executed on a PC.

LearningModuleOutputMsg
Class used for delivering inputs to the RUBICON
Gateway from a Java Learning Module executed on a
PC.

LearningModulePC
Class implementing a Java Learning Module targeted to
PC-like (non-motes) devices.

LearningNetworkWrapper
Implements a component that abstracts the
distributed nature of the Learning Network.

PCLMmanager
Implements a stand-alone management component
that runs on Java Enabled devices.

RUBICON D2.3 Core Learning Service API V2.0 RUBICON: Project No.: 22699145

30/10/2013 Page 91

Package main

Provides the definition of the main Learning Layer object, as well as the classes necessary to create the output
interface of the Learning Layer and the wrapper to access the PEIS functionalities.

The constructor of the LearningLayer class instantiate all necessary objects of the Learning Layer. A
component possessing the reference to a LearningLayer object can control the Learning Layer. Alternatively,
the LearningLayer class implements a main method to activate a stand-alone instance of the Learning Layer
from the command line.

Class Summary Page

LearningLayer Creates the main Learning Layer object.

LNOutputs Provides access to the LL predictions generated by the Distributed Learning Network.

PeisSymbols
Provides the vocabulary of strings used as tuple-keys to implement the PEIS interface
of the Learning Layer, as well as the int encoding of the commands written in the
tuples.

PeisWrapper

Realizes the PEIS interface between the Learning Layer and the Control and Cognitive
Layer (Supervisors) Provides mechanisms for writing into the appropriate interface
tuples and notifies the reception of messages to the appropriate Java components of
the Learning Layer.

RUBICON D2.3 Core Learning Service API V2.0 RUBICON: Project No.: 22699145

Package manager

Provides the classes implementing the Learning Network Manager (LNM) subsystem, that is responsible for the
configuration and control of the Learning Layer.

The LNM is implemented by a single software component implemented by the LNControlAgent class. The
package defines three interfaces that serve to interact with the Learning Layer. The SupervisorInterface
regulates the interaction with Supervisor components by providing methods for controlling the single devices
and learning modules of the LN, as well as the activation of the forward computation phase. The
ControlInterface complements the control and configuration functionalities advertised by the
SupervisorInterface. The TrainingInterface regulates the interaction with the Training Manager
subsystem by providing methods for controlling the deployment of synaptic connection bundles associated to
computational learning tasks.

Interface Summary Page

ControlInterface
Defines the LN Manager interface towards an high level controlling component
such as the LL Graphical User Interface.

SupervisorInterface
Defines the LN Manager interface towards an high level component acting as
Supervisor, e.g. the Control and Cognitive Layer.

TrainingInterface Defines the LN Manager interface towards the Training Manager subsystem.

Class Summary Page

LNControlAgent
Implement the LNM agent that collects configuration and control messages from the
Supervisor and routes them to the components of the LL.

RUBICON D2.3 Core Learning Service API V2.0 RUBICON: Project No.: 22699145

30/10/2013 Page 93

Package test

Includes example scripts and stub implementations for testing and experimenting with the Learning Layer API.

The supervisorEntity class provides a test Supervisor component with example scripts that exercise the
various learning layer functionalities. The GatewayWrapperDummy class provides a stub implementation of the
RUBICON gateway that does not require the availability of a fully deployed Learning Network: it receives
Learning Layer commands and respond with appropriate acknowledgement messages. The AngenDataParser
and TaskDataParser provide helper functions to read and parse data files with training samples collected in
real world ecology instantiations.

Class Summary Page

AngenDataParser Parser class to read files from the Angen Experimental Scenario

GatewayWrapperDummy
Stub implementation of the GatewayInterface wrapping the Rubicon
Gateway functionalities needed by the Learning Layer.

supervisorEntity
Stand-alone implementation of the Supervisor component for testing and
experimentation purposes.

TaskDataParser Parser class to read files from UNIPI's in-house experimental scenarios

file:///C:/Users/bacciu/workspace/LearningGatewayAPI/doc/test/AngenDataParser.html

RUBICON D2.3 Core Learning Service API V2.0 RUBICON: Project No.: 22699145

30/10/2013 Page 94

Package training

Provides the classes for accessing the Training Manager subsystem, implementing methods for instantiating
and managing the datasets, training the learning modules and deploying them to the devices in the LN.

The TrainingAgent class defines the agent controlling the Training Manager subsystem: it receives training
samples and requests for the instantiation of new computational learning tasks. The NetworkMirror
component maintains an up-to-date mirror of the modules in the LN and performs the training routines. The
FeatureFilter class implements the redundancy reduction algorithm for the filter phase of the feature

selection mechanism (similarly, FeatureWrapper implements the relevance-guided mechanism). The

Trainer component provides all the routines implementing model-selection and the cross-validation schemes
used by the NetworkMirror.

Class Summary Page

FeatureFilter Implements the redundancy reduction step of the feature selection mechanisms.

FeatureWrapper Implements the relevance-guided step of the feature selection mechanisms.

NetworkMirror
Implements the Network Mirror component: it maintains an up-to-date mirror of the
modules in the LN and performs the training routines.

TaskDataParser
A variant of the parser class in the test package, to read files from UNIPI's in-house
experimental scenarios

Trainer Class that implements the CrossFold-Validation procedure on a learning task.

TrainingAgent
Implements the Training Agent software component within the Training Manager in
the RUBICON Learning Layer.

Java API documentation generated with DocFlex/Doclet v1.6.1

DocFlex/Doclet is both a multi-format Javadoc doclet and a free edition of DocFlex/Javadoc. If you need to customize your

Javadoc without writing a full-blown doclet from scratch, DocFlex/Javadoc may be the only tool able to help you! Find out more

at www.docflex.com

file:///C:/Users/bacciu/workspace/LearningGatewayAPI/doc/training/TaskDataParser.html
http://www.filigris.com/products/docflex_javadoc/#docflex-doclet
http://www.filigris.com/products/docflex_javadoc/
http://www.docflex.com/

