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1. The paper presents an analytical approach for the study of the transverse oscillations of masonry 

columns. 

2. The approach is first applied to free dumped oscillations. 

3. Then applications to forced oscillations in primary resonance on the column’s first mode are 

shown. 

4. Some examples are presented, comparing the analytical results with those obtained via the 

NOSA-ITACA code.  

5. In the Appendix some remarks are included on the use of the averaged Lagrangian method. 

Reviewer 1, first editorial comment. 
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On the dynamic behaviour of masonry beam–columns:

an analytical approach

Maria Girardia,∗

aIstituto di Scienza e Tecnologie dell’Informazione ”A. Faedo”, ISTI–CNR
Via G. Moruzzi 1, 56124 Pisa, Italy

Abstract

The paper presents an analytical approach to the study of the transverse vi-
brations of masonry beam–columns. Starting with the constitutive equation
for beams made of a masonry–like material and the averaged Lagrangian of
the system, some explicit approximate solutions are found to the problem of
free damped periodic oscillations and forced oscillations in the case of pri-
mary resonance on the beam’s first mode. In particular, a set of equations
is obtained that gives the modulation over time of the system’s energy and
of the fundamental frequency of the beam’s response. The analytical results
are compared to those obtained via the finite element code NOSA–ITACA,
developed at ISTI–CNR.

Keywords: masonry–like materials, nonlinear dynamics, averaged
Lagrangian method

1. Introduction

A constitutive model is proposed in [9], [36] for masonry–like materials
with zero tensile strength and infinite compressive strength, where the con-
stitutive equation for masonry–like materials [10], [11], [24], is specialized for
masonry beams. The nonlinear elastic equation provided in [9], [36], which
expresses the internal forces, normal force and bending moment, as functions
of the generalized strains, stretching and change of curvature of the beam
axis, has proven to be simple enough to enable some explicit calculations [9],
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[16], [17], [36]. At the same time, its numerical implementation in the MADY
code [18], [25], [27], represents a quick and effective way to asses the effects
of the load’s eccentricity on the static and dynamic behaviour of masonry
columns, arches and towers.

For cyclic actions, this approach can furnish reasonable results for slen-
der structures, for which the influence of shear forces on the dynamic equi-
librium tends to decrease and the nonlinear behaviour is due essentially to
the opening of cracks. In fact, accurate modelling of the dynamic
behaviour of masonry still represents an open problem. It is influ-
enced by many parameters, involving the mechanical characteris-
tics of the constituents materials, the construction techniques, the
geometric characteristics, the kind of loading and the soil charac-
teristics. Such complexity is extremely difficult to capture with a
single model.

Techniques for modeling masonry structures range from very
complex micro–mechanical approaches [32], [28], to rigid block
modelling for limit analysis [6],[19], to homogenisation techniques
[3], [32], [33] and continuum models [1], [2], [13], [20].

With regard to the seismic vulnerability of masonry structures,
the main instruments for engineers are based on vulnerability anal-
yses derived from a statistic classification of the earthquake damage
[22], [12] and on the use of numerical codes developed by defining
macro–elements with a small number of degrees of freedom. Very
few examples can be found of analytical approaches to the dynamic
problem of masonry structures. (Rev1, comment 1)

In [17] the authors present an analytical study of the transverse vibrations
of masonry beam–columns based on the constitutive equation described in
[9], [36]. They limit themselves to considering free vibrations and obtain an
explicit relation between the fundamental frequency of the beam and ampli-
tude of the displacement. In the present paper the study is generalized in
order to include damped and forced oscillations. In order to simplify compu-
tations, use is made of the averaged Lagrangian method proposed by G.B.
Whitham to study the modulation of nonlinear dispersive waves [8], [34],
[35]. This method reduces the problem to the study of a set of nonlinear
differential equations – the so–called modulation equations – for some pa-
rameters of the problem, specifically energy and frequencies, which, if the
nonconservative terms are small, can be considered slowly varying over time.
The averaged Lagrangian method, whose use in the present context is jus-
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tified in the Appendix, allows obtaining the modulation equations without
the manipulations typical of other conventional methods based on series de-
velopment, such as the multiple scales method [30], [31].

All results presented here have been obtained by assuming a
unimodal expression for the beam’s displacements and considering
transverse vibrations only. With regard to the unimodal assump-
tion, mainly depending on the frequency content of the excitation,
some damage related to the presence of higher modes has been
observed in many masonry towers and also modelled by numerical
codes [4], [5]. However, the use of one single mode to describe the
motion of slender masonry structures has generally proven to be
able to capture some global damage patterns, such as the maximum
displacements and the maximum compressive stresses along the
structure. This hypothesis is also accepted by Italian regulations
[12], provided the structure’s geometry is regular. The interaction
between longitudinal and transverse vibrations is also recognized
to cause additional damage in slender masonry structures, espe-
cially for high values of the compressive stresses and in presence of
vertical components of the dynamic excitation. (Second comment
of Rev 1 and Rev 2)

To face the complex calculations involved in the analysis, we
limit ourselves to considering opportune sets of initial conditions
and harmonic transverse loads in primary resonance of the first
mode, for which, provided that internal resonance phenomena do
not occur [30], a unimodal solution is expected [21], [31]. Un-
der these assumptions, the influence of the longitudinal vibrations
on the transverse response of the beam can be neglected as well
[26] and, provided that the normal force acting along the beam is
known, the problems of the transverse and longitudinal vibrations
of the beam–column can be dealt with separately. (Rev1, second
comment and Rev2)

The paper is divided into three parts. In the first, the averaged La-
grangian method is presented and the modulation equations obtained for
a broad class of nonlinear elastic materials. In the second, the method is
applied to masonry–like materials, in the case of free damped and forced
damped oscillations. Finally, the third part presents a parametric study, by
varying on the one hand the slenderness and modal damping coefficient of
the structure and, on the other, the forcing amplitude and frequency. All
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results are compared with those obtained numerically via the finite element
code NOSA–ITACA [24], http://www.nosaitaca.it/, developed at ISTI–CNR
for static and dynamic equilibrium problems of masonry structures and con-
structions.

2. The averaged Lagrangian method

Let us consider a rectilinear beam with length l and rectangular cross
section with height h and width b, subjected to a uniform axial force N and a
transverse load per unit length q. For the purposes of the present paper,
we limit ourselves to considering solely the transverse vibrations
of the beam. In this context, given a beam made of a nonlinear
elastic material, its constitutive equation can be described by a
function M(χ), where χ is the curvature of the beam and M the
bending moment. (Rev2) This function is assumed to be continuously
differentiable and its second derivative piecewise continuous. Let us denote
by E and ρ the Young’s modulus and the density of the material, respectively,
and by J = bh3/12 the moment of inertia of the beam’s section. Let the
dissipative forces be modeled by a small viscous damping term in the form
C̄vt, where vt is the time derivative of the transverse displacement v, and C̄
is a positive constant (see Figure A.2).

In order to work with dimensionless quantities, if x and t are, respectively,
the abscissa along the beam’s axis and the time, we define

ξ =
x

l
, τ =

t

Tc
, u =

v

l
, κ = χl, p =

q Tc
2

ρbhl
, C =

C̄Tc

ρbh
(1)

with Tc = l2/c and c =
√

EJ/(ρbh) the elastic constant of the beam.
In the following we denote partial derivatives by both the compact no-

tation, using subscripts, and the extended notation, using quotients, while
primes denote total differentiation.

We assume the effects of both the shear strain and the rotary inertia to
be negligible. Moreover, we limit ourselves to considering situations in which
the flexural displacement u(ξ, τ) and its derivative uξ(ξ, τ) are small, so that
we can neglect the effects of the axial force on the dynamic equilibrium of
the beam and write

κ(ξ, τ) = −uξξ(ξ, τ). (2)

In order to obtain small flexural displacements, we also consider the forcing
term p(ξ, τ) to be small.
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Under these hypotheses, putting

f(κ) =
l

EJ
M(κ/l), (3)

the equation of motion is

∂2u

∂τ 2
− ∂2(f ◦ κ)

∂ξ2
= p− C

∂u

∂τ
. (4)

Now, let

L
(

u(τ, ξ)
)

=
1

2
(uτ )

2 − F (−uξξ) (5)

be the Lagrangian, where F is the primitive of f such that F (0) = 0. Thus,
equation (4) can be written in the form

∂

∂τ

(

∂L

∂uτ

)

− ∂2

∂ξ2

(

∂L

∂uξξ

)

= p− C uτ . (6)

We are looking for an approximate solutions to (6) of the form [8, 30, 31]

u(ξ, τ) = φ(ξ) η(τ), (7)

where φ(ξ) is a periodic function of the span of the beam, with

∫ 1

0

φ2dξ = 1, (8)

and η(τ) = U(θ) is a periodic function with period 2π, phase θ and frequency
ω = θτ . In addition, Uθ is a periodic function with period 2π as well. It is a
simple matter to verify [7], [17], that η satisfies the equation

∂

∂τ

∂L̄

∂η′
− ∂L̄

∂η
= −2µη′ + p̄ (9)

where

L̄ =

∫ 1

0

L(φ, φ′′, η, η′)dξ, (10)

µ =

∫ 1

0

Cφ2 dξ = ζω, (11)
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with ζ the damping ratio calculated under the hypothesis of modal damping
[7], and

p̄ =

∫ 1

0

p φ dξ. (12)

These hypotheses may be viewed as a rather strong restriction on the gen-
erality of the problem. However, provided that no internal resonance effects
occur [31], the unimodal expression (7) has proven to work quite well in
a large number of cases, such as the study of the primary resonance on
the first mode of continuous nonlinear systems ([21], see also [30] for a
wide–ranging bibliographic review) (Rev1, comment 2). In addition,
its simplicity enables tackling the difficult calculations typically involved in
nonlinear dynamical problems.

We now introduce the averaged Lagrangian [8],[34], [35]

L =
1

2π

∫ 2π

0

∫ 1

0

L dξdθ =
1

2π

∫ 2π

0

L̄(U, ωUθ) dθ (13)

where

L̄ = L̄(U, ωUθ) =
1

2
ω2U2

θ − V (U) (14)

and

V (U) =

∫ 1

0

F (−φ′′η)dξ (15)

is a potential function.
For conservative systems, when µ = p̄ = 0, a first integral of the equation

of the motion (9) can be found in the form (see Appendix)

1

2
ω2U2

θ + V (U) = a (16)

where a is a constant representing the total energy of the system. Actually,
provided that the nonconservative terms are sufficiently small, equation (16)
can work for nonconservative systems as well. In this case a is no longer
a constant but a slowly varying function of time, approximately constant
during each loop of the oscillations. The same holds for frequency ω, which
can be regarded as the ”slow” variation of the phase θ over the time (see the
Appendix). With the help of (14) and (16), the averaged Lagrangian (13)
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becomes,

L =
1

2π

∫ 2π

0

(
1

2
ω2U2

θ − V (U))dθ =
ω2

2π

∫ 2π

0

U2
θ dθ − a = (17)

=
ω

2π

∮

√

2(a− V )dU − a = L (a, ω) (18)

where integration with respect to θ and U is performed by assuming a and
ω to be constant [35, 34]. The averaged Lagrangian L depends only on the
parameters a and ω, whose variation over time – generally referred to as
”modulation”– is given by the Euler–Lagrange equations for L :

ω

2π

∮

dU
√

2(a− V (U)
− 1 = − 1

2π

∫ 2π

0

p̄ Ua dθ (19)

a′

2π

∮

dU
√

2(a− V (U)
= D + P (20)

with

D =
1

2π

∫ 2π

0

−2µω U2
θ dθ = −

∮

ζω

π

√

2(a− V ) dU (21)

and

P =
1

2π

∫ 2π

0

p̄ dU. (22)

The righthand members of (19) and (20) represent the components of
the vector of the generalized averaged forces acting upon the beam [29, 31].
Note that, for p̄ = 0, equation (19) is analogous to that obtained in [17] for
free undamped oscillations by directly manipulating the equation of motion,
while (20) is an energy balance equation, where the damping dissipation and
the energy injection by the forcing term are taken into account. Provided
that a potential V (U) is known, the equations (19) and (20) work for a broad
class of nonlinear elastic materials.

3. Application to masonry–like beams

Let us briefly recall the constitutive equation for masonry–like material
with zero tensile strength and infinite compressive strength proposed in [9]
and [36] for a rectangular cross–sectional beam.

Let χ be the curvature of the beam, ε the infinitesimal axial strain
(Rev2), M and N the bending moment and normal force, acting on the
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beam’s section. Under the classical Euler–Bernoulli hypothesis, we
can deduce a relation between the generalized stresses N and M
and the generalized strains ε and χ. To this end, given the subsets
of the set E of all generalized strains (ε, χ)

E1 : {(ε, χ) ∈ E :2ε ≤ χh ≤ −2ε, ε ≤ 0};
E2 : {(ε, χ) ∈ E :χh > 2 |ε| , χ > 0};
E3 : {(ε, χ) ∈ E :χh < 2 |ε| , χ < 0},

(23)

we can obtain the relations:

(ε, χ) ∈ E1 : N = Ebhε, M =
Ebh3

12
χ;

(ε, χ) ∈ E2 : N = −Eb(χh− 2ε)2

8χ
, M =

Eb(ε + χh)(χh− 2ε)2

24χ2
;

(ε, χ) ∈ E3 : N =
Eb(χh + 2ε)2

8χ
, M = −Eb(ε− χh)(χh+ 2ε)2

24χ2

(24)

with N ≤ 0 and Nh
2

≤ M ≤ −Nh
2
.

In consequence of the material’s nonlinearity, both M and N
depend on χ and ε, and the extensional and flexural problems are
coupled.

So, if we presume to know, within a certain degree of approxi-
mation, the values of the normal force N along the structure, from
(24) we can obtain a relation M = M(χ,N) that directly links the
bending moment and the curvature. (Rev2) Thus, if we define

χ0 = − 2N

Ebh2
, (25)

where χ0 is the curvature corresponding to the elastic limit, when a trian-
gular stress distribution is reached on the section, the constitutive equation
becomes

M(χ)

ρbh
=

{

c2χ for |χ| ≤ χ0,

c2χ0Sign(χ)(3− 2
√

χ0

|χ|) for |χ| > χ0,
(26)

whose representation is given in Figure A.1.
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The constitutive equation (26) assumes dimensionless form by putting

F (κ) =

{

1
2
κ2 for ξ ≤ ξ0,

κ0

(

3 |κ| − 4
√

κ0 |κ|
)

+ 3
2
κ2
0 for ξ > ξ0,

(27)

where F is the primitive of f = Ml/(EJ) such that F (0) = 0, κ0 =
−2Nl/(Ebh2) represents the dimensionless limit of the elastic curvature of
the section, and ξ0(τ) is the dimensionless abscissa along the beam of the
section where κ0 is reached (see Figure A.2).

In the case of a simply supported beam(Rev.2, second revision),
solution u can be expressed in the form

u(ξ, τ) =
√
2 sin(πξ) η(τ) =

√
2 sin(πξ)U(θ), (28)

with
θτ = ω. (29)

The potential function V (U) of the beam becomes [17]

Vlin(U) =
π4U2

2
(30)

for |U | < κ0

π2
√
2
, and

Vnl(U) = π4U2(θ)ξ0 −
π3U2(θ)

2
sin(2πξ0) + 6

√
2πκ0 |U(θ)| cos(πξ0)+

−16

π

√√
2κ3

0π
2 |U(θ)| E(

π

4
(1− 2ξ0), 2)− 3κ2

0ξ0 +
3

2
κ2
0,

(31)

for |U | ≥ κ0

π2
√
2
, where we use the elliptical integral

E(
π

4
(1− 2ξ0), 2) =

∫ π

4
(1−2ξ0)

0

1
√

1− 2 sin2(ζ)
dζ. (32)

The abscissa ξ0, representing the boundary of the cracked region along
the beam (see Figure A.2), can be deduced from the relation

|κ(ξ0, θ)| = κ0, (33)

so that

ξ0(U) =
1

π
arcsin

(

κ0

π2
√
2 |U |

)

, (34)

9
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for |U | ≥ κ0

π2
√
2
and

ξ0(U) =
1

2
(35)

for |U | < κ0

π2
√
2
.

3.1. Free damped oscillations

Equations (19) and (20) can be arranged to address free damped oscilla-
tions by putting p̄ = 0, which yields

2π

ω
=

∮

dU
√

2(a− V (U))
, (36)

a′

ω2
= − ζ

π

∮

√

2(a− V ) dU. (37)

Equations (36) and (37) can be written, in the linear elastic case, for
|U | < κ0

π2
√
2
,

π

ω
= 2

∫ R1

0

dU
√

2(a− Vlin(U)
, (38)

a′

ω2
= −4ζ

π

∫ R1

0

√

2(a− Vlin(U)) dU, (39)

with R1 the positive root of the equation

a−Vlin(U) = 0. (Rev1, editorial comment 4) (40)

In the masonry–like case, for |U | ≥ κ0

π2
√
2
, we have

π

ω
= 2

∫
κ0

π2
√

2

0

dU
√

2(a− Vlin(U)
+ 2

∫ R2

κ0

π2
√

2

dU
√

2(a− Vnl(U)
, (41)

a′

ω2
= −4ζ

π

∫

κ0

π2
√

2

0

√

2(a− Vlin(U)) dU − 4ζ

π

∫ R2

κ0

π2
√

2

√

2(a− Vnl(U)) dU, (42)

with R2 the positive root of the equation

a− Vnl(U) = 0. (43)

Given the initial conditions a0 and ω0, we can solve the motion equation
in terms of the slowly varying functions energy a and frequency ω.

10
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In order to apply this model, we choose a form of the periodic function
U(θ) as well. This can be accomplished by using the Fourier expansion.
Provided that no internal resonances act on the first mode, we can limit
ourselves to the first term and put

U(θ) = A cos(θ) = A(τ) cos

(
∫ τ

0

ω(τ)dτ + θ0

)

= η(τ), (44)

where A is a non–negative number representing the maximum ”amplitude”
of the transversal motion of the beam. Considering that the energy a of the
system is a slowly varying function of time, a relation between a and A can
be easily found by calculating, with the help of (16) the integral of a on the
period 2π of the oscillation

a(A) =
1

2π

∫ 2π

0

(1

2
ω2Uθ

2 + V (U)
)

dθ, (45)

with U given by (44).
If A0 is the initial amplitude, we are in a position to determine the initial

energy of the system a0 by means of (45), as well as the initial frequency of the
beam by means of (38) and (39) or (41) and (42), respectively, for the linear
and nonlinear case. Then, the modulation equations can be solved and the
evolution of a and ω determined. Figures A.3 and A.4 show the parameters a
and ω vs. τ for different values of the damping ratio ζ . Figures A.5 and A.6
show a plot of the transverse displacement of the beam vs. time for different
values of ζ , for a beam made of linear elastic (dashed line) and masonry–like
(continuous line) material. Energy a decreases following an exponential law,
as does the amplitude A of the motion. Instead, the frequency ω, starting
at the initial value ω0, which is the same as in the absence of damping [17],
tends to the linear elastic value π2. Depending on ζ , the values τ1el and τ2el
represent the instants at which this linear elastic value is reached and the
solution tends to assume the linear elastic form. At these times the beam
will fall entirely in the linear elastic field and ξ0 will towards 1

2
.

3.2. Forced damped oscillations

Equations (19) and (20) are now taken in their complete form. Before
showing an application, some specifications are needed. Firstly, the unimodal
assumption (28) involves some limitations on the form of the forcing term.
In particular, a unimodal form of the solution is expected if the beam is

11
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subjected to a sinusoidal forcing term whose frequency is close to the funda-
mental linear elastic one [30, 31]. This is precisely the case we will study, by
considering a forcing term of the form

p̄ = k̄ sin (π2τ + λτ), (46)

where

k̄ =

∫ 1

0

k(ξ)φ(ξ)dξ (47)

and λ is small.
Secondly, the forcing terms in the modulation equations (19) and (20)

cannot be dealt with without choosing an ”a priori” form for U(θ). We know
that the response over time of nonlinear elastic systems subjected to primary
resonance tends to the forcing action frequency and exhibit a phase shift that
can be considered a slowly varying function of time [30, 31]. Thus, a possible
form for U(θ) is

U(θ) = A sin(θ), (48)

where
θ = (π2 + λ)τ − γ(T ), (49)

Equation (46) thus becomes

p̄ = k̄ sin(θ + γ) (50)

and, by introducing (48) and (50) into (19) and (20), the modulation equa-
tions take the form

ω

2π

∮

dU
√

2(a− V (U))
− 1 = − k̄

2

∂A

∂a
cos γ, (51)

a′

2π

∮

dU
√

2(a− V (U))
=

∮

−ζω

π

√

2(a− V (U)) dU +
k̄

2
A sin γ (52)

and
ω = θ′ = π2 + λ− γ′. (53)

As for free oscillations, we can find a relation between the am-
plitude A of the motion and the energy of the system a (45) by using
expression (48) for U and the approximation ω ≃ π2 + λ for the os-
cillation frequency. Expression (45) can then be inverted to obtain
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the function A(a) we needed to solve the modulation equations (51)
and (52). (Rev 1, editorial comment 5).

The stationary values of the parameters can easily be deduced via Equa-
tions (51) and (52) by putting a′ = γ′ = 0. The system thereby reduces
to

π2 + λ

2π

∮

dU
√

2(a− V (U))
− 1 = − k̄

2

∂A

∂a
cos γ, (54)

∮

ζ(π2 + λ)

π

√

2(a− V (U)) dU =
k̄

2
A(a) sin γ (55)

and frequency ω tends towards its stationary value

ω = π2 + λ. (56)

Remark. It seems worthwhile noting that in [15], [16] a different ap-
proach has been proposed, by which the assumed form of the displacement
is introduced directly in the Lagrangian (5) and integrations performed ex-
plicitly. The Euler–Lagrange equations thus lead to the system

G(A) +
Aπ

2
(λ− γ′) +

k̄

π2
cos γ = 0, (57)

A′π

2
+

ζπ2

2
A− k̄

π2
sin γ = 0, (58)

for the slowly varying parameters A and γ, and function G(A) assumes the
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explicit form

G(A) =

=
Aπ3

4
− Aπ2

2
arcsin

( κ0

Aπ2

)

+
Aπ2

2

κ0
√

A2π4 − κ2
0

+

− 2Aπ4

∫ 1

π2
arccos

(

κ0

Aπ2

)

0

cos2
(

π2τ
)

ξ0 dτ − κ3
0

2Aπ2

1
√

A2π4 − κ2
0

+

− 10π3κ0A

∫ 1

π2
arccos

(

κ0

Aπ2

)

0

cos2(π2τ)
√

A2π4 cos2(π2τ)− κ2
0

dτ+

+ 8πκ2
0

∫ 1

π2
arccos

(

κ0

Aπ2

)

0

√

cos(π2τ)

κ0A

(

∫ 1

2

ξ0

√

sin πξ dξ
)

dτ+

+
10κ3

0

Aπ

∫ 1

π2
arccos

(

κ0

Aπ2

)

0

1
√

A2π4 cos2(π2τ)− κ2
0

dτ.

(59)

The results obtained using (57) and (58) and (19) and (20) are in consid-
erably good agreement. The approach proposed in the present paper
thus offers a more general form of the modulation equations and,
at least in the case of free oscillations, allows solving system (19)
and (20) without having to make any assumption on the explicit
form of U(θ). (Rev. 1, comment 3.)

4. Some example applications

Some numerical tests have been performed, using the scheme shown in
Figure A.7. Three values were chosen for slenderness, with the corresponding
section height h equal to 0.30 m, 0.40 m and 0.50 m; two values of damping
ratio ζ were considered: 2% and 5%. The beam is subjected to a sinusoidal
load of variable amplitude k and frequency (νe + λ). For the three slen-
derness values chosen, the numerical values of the fundamental frequency
are νe(0.3 m) = 4.9 Hz, νe(0.4 m) = 6.5 Hz and νe(0.5 m) = 8.1 Hz. For
all tests, null initial displacements and velocities have been imposed on the
beam. Some tests have been performed for a beam made of a linear elastic
material too.

The analytical results have been compared with those obtained via the
NOSA–ITACA code (https://www.nosaitaca.it), in which the masonry–
like constitutive equation has been implemented, for both static and dynamic
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problems. NOSA-ITACA is a general purpose finite element code,
in which masonry materials are modelled by means of an explicit
nonlinear relation between the Cauchy stress tensor and the total
strain tensor [24]. (Rev.2, second revision) With the aim of optimiz-
ing the comparisons between the analytical and numerical results, different
kinds of elements have been tested, while varying the number of elements
as well. Lastly, the eight–node isoparametric thin–shell element described
in [24] was chosen and the beam divided into 120 finite–elements of equal
length. (Rev.1, comment 4). The good agreement between numer-
ical and analytical results shown in Figures from A.8 to A.11
and from A.14 to A.17 allows us to assess the validity limits of
the model. In particular, in all examples the contribution given
by the coupling effect is negligible. In fact, the NOSA-ITACA
approach to the dynamic problem is totally general and no as-
sumptions are made on the uncoupling between the axial and the
flexural behaviour of the structure. (Rev.2, second revision) Some
other comparisons can be found in [15] and [17], where the analytical re-
sults are tested via the MADY code in which equation (26) is explicitly
implemented. (Rev.2, second revision)

Figures A.8 and A.9 show the displacements of the beam mid–point vL/2
for h = 0.40 m, k = 400 N/m and different values of the damping ratio ζ . In
both cases, the analytical and numerical results are quite consistent. Note
that, after a brief transient stage, the oscillations tend toward stationary
behaviour. Figures A.10 and A.11 instead show the stress σx at the extrados
of the mid–section vs. t for h = 0.40 m, k = 400 N/m and different values of
damping ratio ζ . Figures A.12 and A.13 show the behaviour of amplitude A
and the phase displacement

β = λt− γ (60)

vs. t for λ = 0, k = 400 N/m, h = 0.4 m and different values of ζ . When
compared with Figures A.8 and A.9, these figures confirm the slow variation
of the parameters A and γ. Note that the curves in Figure A.13 start at
the same value β = −π

2
, corresponding to the linear elastic solution to the

problem. Figures A.14 and A.15 show the stationary amplitude Ā =
√
2Al

vs. k for different values of h and ζ . The nonlinear values are quite different
from the corresponding linear ones and all curves tend to exhibit very marked
softening behaviour. It is worth noting that the curves related to the differ-
ent damping values in Figure A.15 tend to coincide for large values of k. All
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the numerical amplitude values are lightly lower than the corresponding ana-
lytical ones, that is to say: the numerical tests tend to reveal more softening
behaviour. Figure A.16 shows the phase displacements β vs. k; the numer-
ical values were obtained using the Fast Fourier Transform, while
the horizontal line for β = −π

2
represents the linear elastic solution.

(Rev1, comment 5) Lastly, Figure A.17 shows a comparison between the
linear elastic frequency response function (dashed curve), the corresponding
analytical nonlinear function (continuous curve) and the results of the nu-
merical tests with variable frequency excitations (red curve). The differences
between the linear and nonlinear responses are considerable, particularly in
the range centred on the linear fundamental frequency. The nonlinear ana-
lytical curve presents the typical shift towards low frequencies characteristic
of softening systems. Moreover, for excitations of given frequency and am-
plitude, the curve presents more than one solution, depending on the initial
conditions. In our tests, with the chosen initial conditions, the numerical so-
lution presents a jump at about 5.6 Hz, from the upper to the lower branch
of the analytical curve.

5. Conclusions

An analytical method has been presented to study the periodic oscillation
of masonry beam–columns, under some hypotheses on the geometry and form
of the solution. The nonlinear behaviour of masonry has been taken into ac-
count by means of a masonry–like constitutive equation expressed in terms of
generalized stresses and strains. Some example applications have been shown
and the analytical results compared to those obtained via the finite element
code NOSA–ITACA. The analytical and numerical results have proven to
be consistently in good agreement. The numerical methods enable solving
problems for very general conditions of geometry and loading. However, the
analytical solutions, albeit limited to some particular cases, provide coincise
descriptions of the nonlinear phenomena involved and contribute to a better
understanding of the overall behaviour of masonry structures. All the re-
sults presented herein were obtained for transverse vibrations only
and assuming a unimodal expression for the beam’s displacements.
Future work is planned to consider other kinds of dynamic loading
for which the effects of higher modes and of the nonlinear inter-
action between longitudinal and transverse displacements can be
no more negligible. (Rev2, second revision)
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Appendix A. Appendix

The averaged Lagrangian method has been described in section 2 and
applied to masonry–like materials in sections 3 and 4. However, finding a
formal justification for this powerful and intuitive method is not an easy mat-
ter. In [35] such a justification is furnished via the multiple scales method:
Whitham applies the multiple scales or ”two–timing” method to the study
of nonlinear dispersive waves and demonstrates analogous results by writ-
ing the variational equations for the averaged Lagrangian. In this Appendix
Whitham’s scheme is followed to prove the effectiveness of the averaged La-
grangian method for nonlinear elastic beams subjected to small nonconser-
vative actions.

Firstly, let us use the multiple scales method [30, 35] to find an approx-
imate solution to (9). To this end, if ε is a small dimensionless parameter
of the same order of magnitude as the amplitude of the beam’s transverse
displacement, we can introduce the new variable

T = ετ, (A.1)

which in same sense measures the ”slow” time scale of the problem. We
can explicitly split function η defined by (7) into its fast and slow oscillating
parts and write

η = U(θ, T ; ε), (A.2)

with

θ = ε−1Θ(T ), θτ = ω. (A.3)

In (A.3) θ represents the phase of the periodic function η, while its derivative
θτ with respect to time is the oscillation frequency ω. Note that ω is a slowly
varying function:

ω = ε−1Θτ = ΘT . (A.4)

The time derivatives can now be scaled so that

∂

∂τ
= ω

∂

∂θ
+ ε

∂

∂T
. (A.5)

Now, by putting

L̄1 =
∂L̄

∂ητ
, L̄2 =

∂L̄

∂η
, (A.6)
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equation (9) becomes

ω
∂L̄1

∂θ
+ ε

∂L̄1

∂T
− L̄2 = −ε

(

2µ̄ω
∂U

∂θ
− ¯̄p

)

, (A.7)

with L̄ given by (10), µ̄ ε = µ, ¯̄p ε = p̄ and we have neglected the terms of the
ε2 order. In (A.7) the smallness of the nonconservative terms is expressed
explicitly by means of ε.

We can write (A.7) in the form

∂

∂θ
(ωL̄1

∂U

∂θ
− L̄) + ε

∂

∂T
(L̄1

∂U

∂θ
) = −ε

(

2µ̄ω
∂U

∂θ
− ¯̄p

)

∂U

∂θ
. (A.8)

Indeed, with the help of (A.5), we have

∂L̄

∂θ
= L̄1

∂

∂θ
(ω

∂U

∂θ
+ ε

∂U

∂T
) + L̄2

∂U

∂θ
= L̄1(ω

∂2U

∂θ2
+ ε

∂2U

∂θ∂T
) + L̄2

∂U

∂θ
. (A.9)

By introducing (A.9) into (A.8) and performing all the calculations we
obtain

∂U

∂θ

(

ω
∂L̄1

∂θ
+ ε

∂L̄1

∂T
− L̄2

)

= −ε

(

2µ̄ω
∂U

∂θ
− ¯̄p

)

∂U

∂θ
(A.10)

which is equivalent to (A.7).
By taking the expressions

U =
∞
∑

n=0

εn U (n), (A.11)

L̄ =

∞
∑

n=0

εn L̄(U (n), ωU
(n)
θ ) =

∞
∑

n=0

εn L̄(n), (A.12)

equation (A.8) can be expanded into the set

∂

∂θ
(ωL̄

(0)
1

∂U

∂θ

(0)

− L̄(0)) = 0, (A.13)

∂

∂θ
(ωL̄

(1)
1

∂U

∂θ

(1)

− L̄(1)) = − ∂

∂T
(L̄

(0)
1

∂U

∂θ

(0)

)− 2µω

(

∂U

∂θ

(0)
)2

+ ¯̄p
∂U (0)

∂θ
,

(A.14)
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where, again, we have neglected terms of the ε2 order.
Equation (A.13) yields

ωL̄
(0)
1

∂U

∂θ

(0)

− L̄(0) = a(T ), (A.15)

where a(T ) is a slowly varying parameter related to the energy of the system.
By virtue of (14), equation (A.15) can be expressed as

1

2
ω2

(

∂U (0)

∂θ

)2

+ V (U (0)) = a(T ). (A.16)

Remembering that U , Uθ are periodic functions with period 2π, the sec-
ular condition on U can be imposed on (A.14) to arrive at

1

2π

∫ 2π

0

∂

∂T
(L̄

(0)
1

∂U

∂θ

(0)

) dθ = D + P, (A.17)

with

D =
1

2π

∫ 2π

0

−2µω

(

∂U

∂θ

(0)
)2

dθ =

∮

−ζω

π

√

2(a− V ) dU (0) (A.18)

and

P =
1

2π

∫ 2π

0

¯̄p dU (0). (A.19)

Equations (A.13) and (A.17) furnish the approximate solution we are
looking for: equation (A.13) provides the form of the solution, while (A.17)
gives us the modulation.

Let us now consider the variational principle

δ

∫

1

2π

∫ 2π

0

L̄(U, ω
∂U

∂θ
+ ε

∂U

∂T
) dθ dT = 0 (A.20)

where the assumptions (A.2) and (A.3) have been introduced in the La-
grangian (13). The explicit separation of θ from T provided by (A.2) allows
us to consider a and ω constant with respect to θ, when performing integra-
tion.

In absence of damping and forcing terms variations δU give [14], [35]

ω
∂

∂θ
L̄1 + ε

∂

∂T
L̄1 − L̄2 = 0, (A.21)
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while variations δΘ (involved through ω = ΘT ) furnish

∂2L

∂T∂ω
= 0 (A.22)

with L the averaged Lagrangian given by (16).
We can generalize these results by the extended Hamilton principle [29],

[30]. Equation (A.21) becomes then

ω
∂

∂θ
L̄1 + ε

∂

∂T
L̄1 − L̄2 = −ε

(

2µ̄ω
∂U

∂θ
− ¯̄p

)

(A.23)

whose right member represents the component along U of the vector of the
generalized forces (damping and external forces) acting upon the system.
Equation (A.21) is equivalent to equation (A.7), which we have obtained
by direct manipulation of the motion equation. Instead, equation (A.22)
becomes

∂2L

∂T∂ω
= − 1

2π

∫ 2π

0

2µ̄ω

(

∂U

∂θ

)2

dθ +
1

2π

∫ 2π

0

¯̄p
∂U

∂θ
dθ (A.24)

where this time the right member is the component along Θ = ε θ of the
vector of the averaged generalized forces. By introducing expressions (A.11)
and (A.12) into (A.21) and (A.22) and neglecting terms of order higher than
ǫ2 we obtain

∂

∂θ
(ωL̄

(0)
1

∂U

∂θ

(0)

− L̄(0)) = 0, (A.25)

1

2π

∫ 2π

0

∂

∂T
(L̄

(0)
1

∂U

∂θ

(0)

) dθ = D + P. (A.26)

Equations (A.25) and (A.26) are indeed the same as (A.13) and (A.17).
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Figure A.1: The constitutive equation M −χ for a rectangular section made
of a masonry–like material with zero tensile strength and infinite compressive
strength.
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Figure A.7: Geometry of the beam and data used for the numerical tests.
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Figure A.8: Displacements of the beam mid–section vs. time t for ζ = 0.02,
k = 400 N/m, h = 0.4 m.
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Figure A.9: Displacements of the beam mid–section vs. time t for ζ = 0.05,
k = 400 N/m, h = 0.4 m.
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Figure A.10: Stress σx at the extrados of the beam mid–section vs. time t
for ζ = 0.02, k = 400 N/m, h = 0.4 m.
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Figure A.11: Stress σx at the extrados of the beam mid–section vs. time t
for ζ = 0.05, k = 400 N/m, h = 0.4 m.
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Figure A.13: Phase-shift β of displacements vs. time t for k = 400 N/m,
h = 0.4 m, λ = 0.
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