
On the dynamic behaviour of masonry beam–columns:

an analytical approach

Maria Girardi∗,a

aIstituto di Scienza e Tecnologie dell’Informazione ”A. Faedo”, ISTI–CNR
Via G. Moruzzi 1, 56124 Pisa, Italy

Abstract

The paper presents an analytical approach to the study of the transverse vi-
brations of masonry beam–columns. Starting with the constitutive equation
for beams made of a masonry–like material and the averaged Lagrangian of
the system, some explicit approximate solutions are found to the problem of
free damped periodic oscillations and forced oscillations in the case of pri-
mary resonance on the beam’s first mode. In particular, a set of equations
is obtained that gives the modulation over time of the system’s energy and
of the fundamental frequency of the beam’s response. The analytical results
are compared to those obtained via the finite element code NOSA–ITACA,
developed at ISTI–CNR.

Key words: masonry–like materials, nonlinear dynamics, averaged
Lagrangian method

1. Introduction

A constitutive model is proposed in [3], [20] for masonry–like materials
with zero tensile strength and infinite compressive strength, where the con-
stitutive equation for masonry–like materials [4], [5], [12], is specialized for
masonry beams. The nonlinear elastic equation provided in [3], [20], which
expresses the internal forces, normal force and bending moment, as functions
of the generalized strains, stretching and change of curvature of the beam
axis, has proven to be simple enough to enable some explicit calculations [3],
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[8], [9], [20]. At the same time, its numerical implementation in the MADY
code [10], [13], [14], represents a quick and effective way to asses the effects
of the load’s eccentricity on the static and dynamic behaviour of masonry
columns, arches and towers. For cyclic actions, this approach can furnish rea-
sonable results for slender structures, for which the influence of shear forces
on the dynamic equilibrium tends to decrease and the nonlinear behaviour
is due essentially to the opening of cracks.

In [9] the authors present an analytical study of the transverse vibrations
of masonry beam–columns based on the constitutive equation described in
[3], [20]. They limit themselves to considering free vibrations and obtain an
explicit relation between the fundamental frequency of the beam and ampli-
tude of the displacement. In the present paper the study is generalized in
order to include damped and forced oscillations. In order to simplify compu-
tations, use is made of the averaged Lagrangian method proposed by G.B.
Whitham to study the modulation of nonlinear dispersive waves [2], [18],
[19]. This method reduces the problem to the study of a set of nonlinear
differential equations – the so–called modulation equations – for some pa-
rameters of the problem, specifically energy and frequencies, which, if the
nonconservative terms are small, can be considered slowly varying over time.
The averaged Lagrangian method, whose use in the present context is jus-
tified in the Appendix, allows obtaining the modulation equations without
the manipulations typical of other conventional methods based on series de-
velopment, such as the multiple scales method [16], [17].

The paper is divided into three parts. In the first, the averaged La-
grangian method is presented and the modulation equations obtained for
a broad class of nonlinear elastic materials. In the second, the method is
applied to masonry–like materials, in the case of free damped and forced
damped oscillations. Finally, the third part presents a parametric study, by
varying on the one hand the slenderness and modal damping coefficient of
the structure and, on the other, the forcing amplitude and frequency. All
results are compared with those obtained numerically via the finite element
code NOSA–ITACA [12], http://www.nosaitaca.it/, developed at ISTI–CNR
for static and dynamic equilibrium problems of masonry structures and con-
structions.
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2. The averaged Lagrangian method

Let us consider a rectilinear beam with length l and rectangular cross
section with height h and width b, subjected to a uniform axial force N and
a transverse load per unit length q. The beam is made of a nonlinear elastic
material described by constitutive equationM(χ), where χ is the curvature of
the beam and M the bending moment. Function M(χ) is assumed to be con-
tinuously differentiable and its second derivative piecewise continuous. Let
us denote by E and ρ the Young’s modulus and the density of the material,
respectively, and by J = bh3/12 the moment of inertia of the beam’s section.
Let the dissipative forces be modeled by a small viscous damping term in the
form C̄vt, where vt is the time derivative of the transverse displacement v,
and C̄ is a constant (see Figure 2).

In order to work with dimensionless quantities, if x and t are, respectively,
the abscissa along the beam’s axis and the time, we define

ξ =
x

l
, τ =

t

Tc

, u =
v

l
, κ = χl, p =

q Tc
2

ρbhl
, C =

C̄Tc

ρbh
(1)

with Tc = l2/c and c =
√

EJ/(ρbh) the elastic constant of the beam.
In the following we denote partial derivatives by both the compact no-

tation, using subscripts, and the extended notation, using quotients, while
primes denote total differentiation.

We assume the effects of both the shear strain and the rotary inertia to
be negligible. Moreover, we limit ourselves to considering situations in which
the flexural displacement u(ξ, τ) and its derivative uξ(ξ, τ) are small, so that
we can neglect the effects of the axial force on the dynamic equilibrium of
the beam and write

κ(ξ, τ) = −uξξ(ξ, τ). (2)

In order to obtain small flexural displacements, we also consider the forcing
term p(ξ, τ) to be small.

Under these hypotheses, putting

f(κ) =
l

EJ
M(κ/l), (3)

the equation of motion is

∂2u

∂τ 2
− ∂2(f ◦ κ)

∂ξ2
= p− C

∂u

∂τ
. (4)

3



Now, let

L
(
u(τ, ξ)

)
=

1

2
(uτ )

2 − F (−uξξ) (5)

be the Lagrangian, where F is the primitive of f such that F (0) = 0. Thus,
equation (4) can be written in the form

∂

∂τ

(
∂L

∂uτ

)
− ∂2

∂ξ2

(
∂L

∂uξξ

)
= p− C uτ . (6)

We are looking for an approximate solutions to (6) of the form [2, 16, 17]

u(ξ, τ) = ϕ(ξ) η(τ), (7)

where ϕ(ξ) is a periodic function of the span of the beam, with∫ 1

0

ϕ2dξ = 1, (8)

and η(τ) = U(θ) is a periodic function with period 2π, phase θ and
frequency ω = θτ . In addition, Uθ is a periodic function with period 2π as
well. It is a simple matter to verify [1], [9], that η satisfies the equation

∂

∂τ

∂L̄

∂η′
− ∂L̄

∂η
= −2µη′ + p̄ (9)

where

L̄ =

∫ 1

0

L(ϕ, ϕ′′, η, η′)dξ, (10)

µ =

∫ 1

0

Cϕ2 dξ = ζω, (11)

with ζ the damping ratio calculated under the hypothesis of modal damping
[1], and

p̄ =

∫ 1

0

p ϕ dξ. (12)

These hypotheses may be viewed as a rather strong restriction on the gen-
erality of the problem. However, provided that no internal resonance effects
[16] occur, the unimodal expression (7) has proven to work quite well in a
large number of cases, such as the study of the primary resonance on the first
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mode. In addition, its simplicity enables tackling the difficult calculations
typically involved in nonlinear dynamical problems.

We now introduce the averaged Lagrangian [2],[18], [19]

L =
1

2π

∫ 2π

0

∫ 1

0

L dξdθ =
1

2π

∫ 2π

0

L̄(U, ωUθ) dθ (13)

where

L̄ = L̄(U, ωUθ) =
1

2
ω2U2

θ − V (U) (14)

and

V (U) =

∫ 1

0

F (−ϕ′′η)dξ (15)

is a potential function.
For conservative systems, when µ = p̄ = 0, a first integral of the equation

of the motion (9) can be found in the form (see Appendix)

1

2
ω2U2

θ + V (U) = a (16)

where a is a constant representing the total energy of the system. Actually,
provided that the nonconservative terms are sufficiently small, equation (16)
can work for nonconservative systems as well. In this case a is no longer
a constant but a slowly varying function of time, approximately constant
during each loop of the oscillations. The same holds for frequency ω, which
can be regarded as the ”slow” variation of the phase θ over the time (see the
Appendix). With the help of (14) and (16), the averaged Lagrangian (13)
becomes,

L =
1

2π

∫ 2π

0

(
1

2
ω2U2

θ − V (U))dθ =
ω2

2π

∫ 2π

0

U2
θ dθ − a = (17)

=
ω

2π

∮ √
2(a− V )dU − a = L (a, ω) (18)

where integration with respect to θ and U is performed by assuming a and
ω to be constant [19, 18]. The averaged Lagrangian L depends only on the
parameters a and ω, whose variation over time – generally referred to as
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”modulation”– is given by the Euler–Lagrange equations for L :

ω

2π

∮
dU√

2(a− V (U)
− 1 = − 1

2π

∫ 2π

0

p̄ Ua dθ (19)

a′

2π

∮
dU√

2(a− V (U)
= D + P (20)

with

D =
1

2π

∫ 2π

0

−2µω U2
θ dθ = −

∮
ζω

π

√
2(a− V ) dU (21)

and

P =
1

2π

∫ 2π

0

p̄ dU. (22)

The righthand members of (19) and (20) represent the components of
the vector of the generalized averaged forces acting upon the beam [15, 17].
Note that, for p̄ = 0, equation (19) is analogous to that obtained in [9] for
free undamped oscillations by directly manipulating the equation of motion,
while (20) is an energy balance equation, where the damping dissipation and
the energy injection by the forcing term are taken into account. Provided
that a potential V (U) is known, the equations (19) and (20) work for a broad
class of nonlinear elastic materials.

3. Application to masonry–like beams

Let us briefly recall the constitutive equation for masonry–like material
with zero tensile strength and infinite compressive strength proposed in [3]
and [20].

Let χ be the curvature of the beam, M and N the generalized stress,
bending moment and normal force, acting on the beam’s section. If N is
a known quantity along the beam, we can obtain a relation M = M(χ,N)
between the bending moment and the curvature, directly. Thus, if we define

χ0 = − 2N

Ebh2
, (23)

where χ0 is the curvature corresponding to the elastic limit, when a trian-
gular stress distribution is reached on the section, the constitutive equation
becomes

M(χ)

ρbh
=

{
c2χ for |χ| ≤ χ0,

c2χ0Sign(χ)(3− 2
√

χ0

|χ|) for |χ| > χ0,
(24)
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Figure 1: The constitutive equation M −χ for a rectangular section made of
a masonry–like material with zero tensile strength and infinite compressive
strength.

whose representation is given in Figure 1.
The constitutive equation (24) assumes dimensionless form by putting

F (κ) =

{
1
2
κ2 for ξ ≤ ξ0,

κ0

(
3 |κ| − 4

√
κ0 |κ|

)
+ 3

2
κ2
0 for ξ > ξ0,

(25)

where F is the primitive of f = Ml/(EJ) such that F (0) = 0, κ0 =
−2Nl/(Ebh2) represents the dimensionless limit of the elastic curvature of
the section, and ξ0(τ) is the dimensionless abscissa along the beam of the
section where κ0 is reached (see Figure 2).

In the case of beam hinged at its ends, the solution u can be expressed
in the form

u(ξ, τ) =
√
2 sin(πξ) η(τ) =

√
2 sin(πξ)U(θ), (26)

with
θτ = ω. (27)

The potential function V (U) of the beam becomes [9]

Vlin(U) =
π4U2

2
(28)
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Figure 2: A masonry beam–column
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for |U | < κ0

π2
√
2
, and

Vnl(U) = π4U2(θ)ξ0 −
π3U2(θ)

2
sin(2πξ0) + 6

√
2πκ0 |U(θ)| cos(πξ0)+

−16

π

√√
2κ3

0π
2 |U(θ)| E(

π

4
(1− 2ξ0), 2)− 3κ2

0ξ0 +
3

2
κ2
0,

(29)

for |U | ≥ κ0

π2
√
2
, where we use the elliptical integral

E(
π

4
(1− 2ξ0), 2) =

∫ π
4
(1−2ξ0)

0

1√
1− 2 sin2(ζ)

dζ. (30)

The abscissa ξ0, representing the boundary of the cracked region along
the beam (see Figure 2), can be deduced from the relation

|κ(ξ0, θ)| = κ0, (31)

so that

ξ0(U) =
1

π
arcsin

(
κ0

π2
√
2 |U |

)
, (32)

for |U | ≥ κ0

π2
√
2
and

ξ0(U) =
1

2
(33)

for |U | < κ0

π2
√
2
.

3.1. Free damped oscillations

Equations (19) and (20) can be arranged to address free damped oscilla-
tions by putting p̄ = 0, which yields

2π

ω
=

∮
dU√

2(a− V (U))
(34)

a′

ω2
= − ζ

π

∮ √
2(a− V ) dU. (35)

Equations (34) and (35) can be written, for a beam made of linear elastic
material, for |U | < κ0

π2
√
2
,

π

ω
= 2

∫ R1

0

dU√
2(a− Vlin(U)

(36)

a′

ω2
= −4ζ

π

∫ R1

0

√
2(a− Vlin(U)) dU (37)
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with R1 the positive root of the equation

a− Vl(U) = 0. (38)

In the masonry–like case, for |U | ≥ κ0

π2
√
2
, we have

π

ω
= 2

∫ κ0
π2

√
2

0

dU√
2(a− Vlin(U)

+ 2

∫ R2

κ0
π2

√
2

dU√
2(a− Vnl(U)

(39)

a′

ω2
= −4ζ

π

∫ κ0
π2

√
2

0

√
2(a− Vlin(U)) dU − 4ζ

π

∫ R2

κ0
π2

√
2

√
2(a− Vnl(U)) dU (40)

with R2 the positive root of the equation

a− Vnl(U) = 0. (41)

Given the initial conditions a0 and ω0, we can solve the motion equation
in terms of the slowly varying functions energy a and frequency ω.

In order to apply this model, we choose a form of the periodic function
U(θ) as well. This can be accomplished by using the Fourier expansion.
Provided that no internal resonances act on the first mode, we can limit
ourselves to the first term and put

U(θ) = A cos(θ) = A(τ) cos

(∫ τ

0

ω(τ)dτ + θ0

)
= η(τ), (42)

where A is a non–negative number representing the maximum ”amplitude”
of the transversal motion of the beam. Considering that the energy a of the
system is a slowly varying function of time, a relation between a and A can
be easily found by calculating, with the help of (16) the integral of a on the
period 2π of the oscillation

a(A) =
1

2π

∫ 2π

0

(1
2
ω2Uθ

2 + V (U)
)
dθ, (43)

with U given by (42).
If A0 is the initial amplitude, we are in a position to determine the initial

energy of the system a0 by means of (43), as well as the initial frequency of
the beam by means of (36) and (37) or (39) and (40), respectively, for the
linear and nonlinear case. Then, the modulation equations can be solved and
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Π

2

Ω

Figure 3: Frequency ω vs. τ for ζ1 = 0.02 (green) and ζ2 = 0.05 (red).

the evolution of a and ω determined. Figures 3 and 4 show the parameters
a and ω vs. τ for different values of the damping ratio ζ. Figures 5 and 6
show a plot of the transverse displacement of the beam vs. time for different
values of ζ, for a beam made of linear elastic (dashed line) and masonry–like
(continuous line) material. Energy a decreases following an exponential law,
as does the amplitude A of the motion. Instead, the frequency ω, starting
at the initial value ω0, which is the same as in the absence of damping [9],
tends to the linear elastic value π2. Depending on ζ, the values τ1el and τ2el
represent the instants at which this linear elastic value is reached and the
solution tends to assume the linear elastic form. At these times the beam
will fall entirely in the linear elastic field and ξ0 will towards 1

2
.

3.2. Forced damped oscillations

Equations (19) and (20) are now taken in their complete form. Before
showing an application, some specifications are needed. Firstly, the unimodal
assumption (26) involves in some limitations on the form of the forcing term.
In particular, a unimodal form of the solution is expected if the beam is
subjected to a sinusoidal forcing term whose frequency is close to the funda-
mental linear elastic one [16, 17]. This is precisely the case we will study, by
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Τ
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4´10-6

5´10-6

a

Figure 4: Energy a vs. τ for ζ1 = 0.02 (green) and ζ2 = 0.05 (red).

1 2 3 4 5
Τ

-0.0004

-0.0002

0.0002

0.0004

u

Figure 5: Transverse displacements u of the beam midpoint vs. τ for ζ =
0.05, κ0 = 0.002 and A0 = 0.0005/

√
2 in the linear (dotted) and nonlinear

(continuous) case.
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1 2 3 4 5
Τ

-0.0004

-0.0002

0.0002

0.0004

u

Figure 6: Transverse displacements u of the beam midpoint vs. τ for ζ =
0.02, κ0 = 0.002 and A0 = 0.0005/

√
2 in the linear (dotted) and nonlinear

(continuous) case.

considering a forcing term of the form

p̄ = k̄ sin (π2τ + λτ), (44)

where

k̄ =

∫ 1

0

k(ξ)ϕ(ξ)dξ (45)

and λ is small.
Secondly, the forcing terms in the modulation equations (19) and (20)

cannot be dealt with without choosing an ”a priori” form for U(θ). We know
that the response over time of nonlinear elastic systems subjected to primary
resonance tends to the forcing action frequency and exhibit a phase shift that
can be considered a slowly varying function of time [16, 17]. Thus, a possible
form for U(θ) is

U(θ) = A sin(θ), (46)

where
θ = (π2 + λ)τ − γ(T ), (47)
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Equation (44) thus becomes

p̄ = k̄ sin(θ + γ) (48)

and, by introducing (46) and (48) into (19) and (20), the modulation equa-
tions take the form

ω

2π

∮
dU√

2(a− V (U))
− 1 = − k̄

2

∂A

∂a
cos γ, (49)

a′

2π

∮
dU√

2(a− V (U))
=

∮
−ζω

π

√
2(a− V (U)) dU +

k̄

2
A sin γ (50)

and
ω = θ′ = π2 + λ− γ′. (51)

As for free oscillations, we can find a relation between amplitude A of the
motion and energy a of the system

a(A) =
1

2π

∫ 2π

0

(1
2
ω2U2

θ + V (U)
)
dθ, (52)

by using expression (46) for U and the approximation ω ≃ π2 + λ for the
oscillation frequency. Expression (52) can be inverted to obtain the function
A(a) we need to solve the modulation equations (49) and (50).

The stationary values of the parameters can easily be deduced via Equa-
tions (49) and (50) by putting a′ = γ′ = 0. The system thereby reduces
to

π2 + λ

2π

∮
dU√

2(a− V (U))
− 1 = − k̄

2

∂A

∂a
cos γ, (53)∮

ζ(π2 + λ)

π

√
2(a− V (U)) dU =

k̄

2
A(a) sin γ (54)

and frequency ω tends towards its stationary value

ω = π2 + λ. (55)
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Remark. It seems worthwhile noting that in [7], [8] a different approach
has been proposed, by which the assumed form of the displacement is intro-
duced directly in the Lagrangian (5) and integrations performed explicitly.
The Euler–Lagrange equations thus lead to the system

G(A) +
Aπ

2
(λ− γ′) +

k̄

π2
cos γ = 0, (56)

A′π

2
+

ζπ2

2
A− k̄

π2
sin γ = 0, (57)

for the slowly varying parameters A and γ, and function G(A) assumes the
explicit form

G(A) =

=
Aπ3

4
− Aπ2

2
arcsin

( κ0

Aπ2

)
+

Aπ2

2

κ0√
A2π4 − κ2

0

+

− 2Aπ4

∫ 1
π2 arccos

(
κ0
Aπ2

)
0

cos2
(
π2τ
)
ξ0 dτ − κ3

0

2Aπ2

1√
A2π4 − κ2

0

+

− 10π3κ0A

∫ 1
π2 arccos

(
κ0
Aπ2

)
0

cos2(π2τ)√
A2π4 cos2(π2τ)− κ2

0

dτ+

+ 8πκ2
0

∫ 1
π2 arccos

(
κ0
Aπ2

)
0

√
cos(π2τ)

κ0A

( ∫ 1
2

ξ0

√
sin πξ dξ

)
dτ+

+
10κ3

0

Aπ

∫ 1
π2 arccos

(
κ0
Aπ2

)
0

1√
A2π4 cos2(π2τ)− κ2

0

dτ.

(58)

The results obtained using (56) and (57) and (19) and (20) are in consid-
erably good agreement.

4. Some example applications

Some numerical tests have been performed, using the scheme shown in
Figure 7. Three values were chosen for slenderness, with the corresponding
section height h equal to 0.30 m, 0.40 m and 0.50 m; two values of damping
ratio ζ were considered: 2% and 5%. The beam is subjected to a sinusoidal
load of variable amplitude k and frequency (νe + λ). For the three slen-
derness values chosen, the numerical values of the fundamental frequency

15



Fixed parameters:

l = 6 m; b = 1 m;
ρ = 1800 kg/m3; E = 3 · 109 Pa;
N = 100 KN.

For ζ = 0.02 and λ = 0:

h [m] k [N/m]
0.30 100 200 300 400 600 800
0.40 100 200 300 400 600 800
0.50 100 200 300 400 600 800

For ζ = 0.05 and λ = 0:

h [m] k [N/m]
0.40 100 200 300 400 600 800

For ζ = 0.02 and k = 400 N/m:

h [m] λ [Hz]
0.40 -1.5 -1.25 -1 -0.75 -0.5 0 0.25 0.5

Figure 7: Geometry of the beam and data used for the numerical tests.

are νe(0.3 m) = 4.9 Hz, νe(0.4 m) = 6.5 Hz and νe(0.5 m) = 8.1 Hz. For
all tests, null initial displacements and velocities have been imposed on the
beam. Some tests have been performed for a beam made of a linear elastic
material too.

The analytical results have been compared with those obtained via the
NOSA–ITACA, in which the masonry–like constitutive equation has been
implemented, for both static and dynamic problems. With the aim of opti-
mizing the comparisons between the analytical and numerical results, differ-
ent kinds of elements have been tested, while varying the number of elements
as well. Lastly, the eight–node isoparametric thin–shell element described in
[12] was chosen and the beam divided into 120 finite–elements. Some other
comparisons can be found in [7] and [9], where the analytical results are
tested via the MADY code.

Figures 8 and 9 show the displacements of the beam mid–point vL/2 for
h = 0.40 m, k = 400 N/m and different values of the damping ratio ζ. In
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-0.01
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0.005

0.01

vL�2@mD

nonlinear, numeric nonlinear, analytic linear elastic

Figure 8: Displacements of the beam mid–section vs. time t for ζ = 0.02,
k = 400 N/m, h = 0.4 m.

1 2 3 4
t @sD

-0.004

-0.002

0

0.002

0.004

vL�2@mD

nonlinear, numeric nonlinear, analytic linear elastic

Figure 9: Displacements of the beam mid–section vs. time t for ζ = 0.05,
k = 400 N/m, h = 0.4 m.
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10.�105

Σx@N�m
2D

nonlinear, numeric nonlinear, analytic linear elastic

Figure 10: Stress σx at the extrados of the beam mid–section vs. time t for
ζ = 0.02, k = 400 N/m, h = 0.4 m.

1 2 3 4
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-6.�105
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-2.�105
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2D
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Figure 11: Stress σx at the extrados of the beam mid–section vs. time t for
ζ = 0.05, k = 400 N/m, h = 0.4 m.
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Figure 12: Amplitude Ā of displacements vs. time t for k = 400 N/m,
h = 0.4 m, λ = 0.
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-3.25

-2.75

-2.5

-2.25

-2
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Β

ζ = 0.02 ζ = 0.05

Figure 13: Phase-shift β of displacements vs. time t for k = 400 N/m,
h = 0.4 m, λ = 0.
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both cases, the analytical and numerical results are quite consistent. Note
that, after a brief transient stage, the oscillations tend toward stationary
behaviour. Figures 10 and 11 instead show the stress σx at the extrados of
the mid–section vs. t for h = 0.40 m, k = 400 N/m and different values of
damping ratio ζ. Figures 12 and 13 show the behaviour of amplitude A and
the phase displacement

β = λt− γ (59)

vs. t for λ = 0, k = 400 N/m, h = 0.4 m and different values of ζ. When
compared with Figures 8 and 9, these figures confirm the slow variation of
the parameters A and γ. Note that the curves in Figure 13 start at the same
value β = −π

2
, corresponding to the linear elastic solution to the problem.

Figures 14 and 15 show the stationary amplitude Ā =
√
2Al vs. k for dif-

ferent values of h and ζ. The nonlinear values are quite different from the
corresponding linear ones and all curves tend to exhibit very marked soft-
ening behaviour. It is worth noting that the curves related to the different
damping values in Figure 15 tend to coincide for large values of k. All the
numerical amplitude values are lightly lower than the corresponding analyt-
ical ones, that is to say: the numerical tests tend to reveal more softening
behaviour. Figure 16 shows the phase displacements β vs. k; the numeri-
cal values were obtained using the Fast Fourier Transform. The analytical
solution shows two branches. However, for all the numerical solutions, the
phase displacements lie on the lower branch, while the horizontal line for
β = −π

2
represents the linear elastic solution. Lastly, Figure 17 shows a

comparison between the linear elastic frequency response function (dashed
curve), the corresponding analytical nonlinear function (continuous curve)
and the results of the numerical tests with variable frequency excitations
(red curve). The differences between the linear and nonlinear responses are
considerable, particularly in the range centred on the linear fundamental fre-
quency. The nonlinear analytical curve presents the typical shift towards low
frequencies characteristic of softening systems. Moreover, for excitations of
given frequency and amplitude, the curve presents more than one solution,
depending on the initial conditions. In our tests, with the chosen initial con-
ditions, the numerical solution presents a jump at about 5.6 Hz, from the
upper to the lower branch of the analytical curve.
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Figure 14: Maximum stationary displacement of the beam vs. k for λ = 0,
ζ = 0.02 and different values of h. nonlinear, numeric nonlinear,
analytic linear elastic.

5. Conclusions

An analytical method has been presented to study the periodic oscilla-
tion of masonry beam–columns, under some hypotheses on the geometry and
form of the solution. The nonlinear behaviour of masonry has been taken
into account by means of a masonry–like constitutive equation expressed in
terms of generalized stresses and strains. Some example applications have
been shown and the analytical results compared to those obtained via the fi-
nite element code NOSA–ITACA. The analytical and numerical results have
proven to be consistently in good agreement. The numerical methods enable
solving problems for very general conditions of geometry and loading. How-
ever, the analytical solutions, albeit limited to some particular cases, provide
coincise descriptions of the nonlinear phenomena involved and contribute to
a better understanding of the overall behaviour of masonry structures.

A. Appendix

The averaged Lagrangian method has been described in section 2 and
applied to masonry–like materials in sections 3 and 4. However, finding a
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Figure 15: Maximum stationary displacement of the beam vs. k for λ =
0, h = 0.4 m and different values of ζ. nonlinear, numeric
nonlinear, analytic linear elastic.

formal justification for this powerful and intuitive method is not an easy mat-
ter. In [19] such a justification is furnished via the multiple scales method:
Whitham applies the multiple scales or ”two–timing” method to the study
of nonlinear dispersive waves and demonstrates analogous results by writ-
ing the variational equations for the averaged Lagrangian. In this Appendix
Whitham’s scheme is followed to prove the effectiveness of the averaged La-
grangian method for nonlinear elastic beams subjected to small nonconser-
vative actions.

Firstly, let us use the multiple scales method [16, 19] to find an approx-
imate solution to (9). To this end, if ε is a small dimensionless parameter
of the same order of magnitude as the amplitude of the beam’s transverse
displacement, we can introduce the new variable

T = ετ, (60)

which in same sense measures the ”slow” time scale of the problem. We
can explicitly split function η defined by (7) into its fast and slow oscillating
parts and write

η = U(θ, T ; ε), (61)
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Figure 16: Stationary values of β vs. k for λ = 0, ζ = 0.02 and different
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nonlinear, numeric nonlinear, analytic linear elastic.

5.25 5.5 5.75 6 6.25 vf 6.75 7
v @HzD

0.002

0.004

0.006

0.008

0.01

A
���

@mD

nonlinear, numeric nonlinear, analytic linear elastic

Figure 17: Maximum stationary displacement of the beam vs. the excitation
frequency ν for ζ = 0.02 and k = 400 N/m, h = 0.4 m.
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with

θ = ε−1Θ(T ), θτ = ω. (62)

In (62) θ represents the phase of the periodic function η, while its derivative
θτ with respect to time is the oscillation frequency ω. Note that ω is a slowly
varying function:

ω = ε−1Θτ = ΘT . (63)

The time derivatives can now be scaled so that

∂

∂τ
= ω

∂

∂θ
+ ε

∂

∂T
. (64)

Now, by putting

L̄1 =
∂L̄

∂ητ
, L̄2 =

∂L̄

∂η
, (65)

equation (9) becomes

ω
∂L̄1

∂θ
+ ε

∂L̄1

∂T
− L̄2 = −ε

(
2µ̄ω

∂U

∂θ
− ¯̄p

)
, (66)

with L̄ given by (10), µ̄ ε = µ, ¯̄p ε = p̄ and we have neglected the terms of
the ε2 order. In (66) the smallness of the nonconservative terms is expressed
explicitly by means of ε.

We can write (66) in the form

∂

∂θ
(ωL̄1

∂U

∂θ
− L̄) + ε

∂

∂T
(L̄1

∂U

∂θ
) = −ε

(
2µ̄ω

∂U

∂θ
− ¯̄p

)
∂U

∂θ
. (67)

Indeed, with the help of (64), we have

∂L̄

∂θ
= L̄1

∂

∂θ
(ω

∂U

∂θ
+ ε

∂U

∂T
) + L̄2

∂U

∂θ
= L̄1(ω

∂2U

∂θ2
+ ε

∂2U

∂θ∂T
) + L̄2

∂U

∂θ
. (68)

By introducing (68) into (67) and performing all the calculations we ob-
tain

∂U

∂θ

(
ω
∂L̄1

∂θ
+ ε

∂L̄1

∂T
− L̄2

)
= −ε

(
2µ̄ω

∂U

∂θ
− ¯̄p

)
∂U

∂θ
(69)

which is equivalent to (66).
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By taking the expressions

U =
∞∑
n=0

εn U (n), (70)

L̄ =
∞∑
n=0

εn L̄(U (n), ωU
(n)
θ ) =

∞∑
n=0

εn L̄(n), (71)

equation (67) can be expanded into the set

∂

∂θ
(ωL̄

(0)
1

∂U

∂θ

(0)

− L̄(0)) = 0, (72)

∂

∂θ
(ωL̄

(1)
1

∂U

∂θ

(1)

− L̄(1)) = − ∂

∂T
(L̄

(0)
1

∂U

∂θ

(0)

)− 2µω

(
∂U

∂θ

(0)
)2

+ ¯̄p
∂U (0)

∂θ
,

(73)

where, again, we have neglected terms of the ε2 order.
Equation (72) yields

ωL̄
(0)
1

∂U

∂θ

(0)

− L̄(0) = a(T ), (74)

where a(T ) is a slowly varying parameter related to the energy of the system.
By virtue of (14), equation (74) can be expressed as

1

2
ω2

(
∂U (0)

∂θ

)2

+ V (U (0)) = a(T ). (75)

Remembering that U , Uθ are periodic functions with period 2π, the sec-
ular condition on U can be imposed on (73) to arrive at

1

2π

∫ 2π

0

∂

∂T
(L̄

(0)
1

∂U

∂θ

(0)

) dθ = D + P, (76)

with

D =
1

2π

∫ 2π

0

−2µω

(
∂U

∂θ

(0)
)2

dθ =

∮
−ζω

π

√
2(a− V ) dU (0) (77)
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and

P =
1

2π

∫ 2π

0

¯̄p dU (0). (78)

Equations (72) and (76) furnish the approximate solution we are looking
for: equation (72) provides the form of the solution, while (76) gives us the
modulation.

Let us now consider the variational principle

δ

∫
1

2π

∫ 2π

0

L̄(U, ω
∂U

∂θ
+ ε

∂U

∂T
) dθ dT = 0 (79)

where the assumptions (61) and (62) have been introduced in the Lagrangian
(13). The explicit separation of θ from T provided by (61) allows us to
consider a and ω constant with respect to θ, when performing integration.

In absence of damping and forcing terms variations δU give [6], [19]

ω
∂

∂θ
L̄1 + ε

∂

∂T
L̄1 − L̄2 = 0, (80)

while variations δΘ (involved through ω = ΘT ) furnish

∂2L

∂T∂ω
= 0 (81)

with L the averaged Lagrangian given by (16).
We can generalize these results by the extended Hamilton principle [15],

[16]. Equation (80) becomes then

ω
∂

∂θ
L̄1 + ε

∂

∂T
L̄1 − L̄2 = −ε

(
2µ̄ω

∂U

∂θ
− ¯̄p

)
(82)

whose right member represents the component along U of the vector of the
generalized forces (damping and external forces) acting upon the system.
Equation (80) is equivalent to equation (66), which we have obtained by
direct manipulation of the motion equation. Instead, equation (81) becomes

∂2L

∂T∂ω
= − 1

2π

∫ 2π

0

2µ̄ω

(
∂U

∂θ

)2

dθ +
1

2π

∫ 2π

0

¯̄p
∂U

∂θ
dθ (83)

where this time the right member is the component along Θ = ε θ of the
vector of the averaged generalized forces. By introducing expressions (70)
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and (71) into (80) and (81) and neglecting terms of order higher than ϵ2 we
obtain

∂

∂θ
(ωL̄

(0)
1

∂U

∂θ

(0)

− L̄(0)) = 0, (84)

1

2π

∫ 2π

0

∂

∂T
(L̄

(0)
1

∂U

∂θ

(0)

) dθ = D + P. (85)

Equations (84) and (85) are indeed the same as (72) and (76).
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