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Abstract The paper presents an efficient and reliable implementation of nu-
merical methods for constrained generalized eigenvalue problems, specialized
for the modal analysis of linear elastic structures in a finite-element setting.
The implementation, which takes into account the sparsity of the stiffness
and mass matrices and the features of master-slave constraints, is based on
open-source packages embedded in the finite-element code NOSA-ITACA. Nu-
merical tests on historical building are performed, with the aims of calculating
their vibration frequencies and mode shape vectors, comparing them to the
results of a general purpose commercial code and assessing the accuracy of the
tool developed.

Keywords Eigenvalues · Finite-element software · Multipoint constraints

1 Introduction

In the absence of dumping, the free vibrations of a linear elastic structure
discretized into finite-elements are governed by the equation

Mü+Ku = 0, (1)

where u is the displacement vector, which belongs to IRn and depends on time t,
ü is the second-derivative of u with respect to t, and K and M ∈ IRn×n are the
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Piazza di Porta S. Donato 5, 40127 Bologna, Italia
Tel.: +39 051 2094423
Fax: +39 051 2094490
E-mail: margherita.porcelli@unibo.it

M. Porcelli · V. Binante · M. Girardi · C. Padovani · G. Pasquinelli
Istituto di Scienza e Tecnologie dell’Informazione Alessandro Faedo
ISTI-CNR, Via G. Moruzzi 1, 56124 Pisa, Italia



2 Margherita Porcelli et al.

stiffness and mass matrices of the finite-element assemblage. K is symmetric
and positive semidefinite; M is symmetric and positive definite; and both are
banded with bandwidth depending on the numbering of the finite-element
nodal points. Displacements ui are also called degrees of freedom; the integer
n is the total number of degrees of freedom of the system and is generally
very large, since it depends on the level of discretization of the problem. By
assuming that

u = φ sin(ωt), (2)

and applying the modal superposition [6], equation (1) is transformed into the
generalized eigenvalue problem

K φ = ω2 M φ. (3)

In (2), φ is a vector of IRn and ω is a real scalar.
Modal analysis of a structure consists of determining the eigenvalues ω2

i

and the eigenvectors φi of (3) that represent the natural frequencies, or eigen-
frequencies (rad/sec) squared, of the structure and the corresponding mode
shape vectors, or eigenmodes, respectively. Together with the natural frequen-
cies, the mode shapes give many qualitative information on the structure de-
formations under dynamic loads. Besides, if a seismic analysis is required, they
allow determining the conventional loads to be applied to the model, in order
to simulate the effects of an earthquake in accordance to regulations [9].

In the field of structural finite-element analysis, constraints enforce certain
relations between degrees of freedom. A simple example of constraints is the
imposition of Dirichlet boundary conditions, which usually consists of setting
certain degrees of freedom to some known value (most commonly zero). This
kind of constraint is referred to as a single-point or fixed constraint and is
expressed in the form

ui = 0, (4)

for some i ranging from 1 to n.
A further degree of complexity involves multipoint constraints which re-

late more than one degree of freedom, including interface element surfaces
and contact conditions. Among linear multipoint constraints, a special role
is played by the so called master-slave constraints [11]. A master-slave con-
straint is a condition imposed such that the displacement of a node (called
the slave) depends linearly on the displacement of another node (called the
master). Master-slave constraints may link the displacements of a slave node
in different directions to different master nodes. Master-slave constraints can
be expressed as follows: there exist subsets

IS ⊂ {1, . . . , n} and IMs ⊂ {1, . . . , n} \ IS (5)

such that

us =
∑

m∈IMs

csmum, s ∈ IS ,m ∈ IMs . (6)
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us is the slave (or tied) degree of freedom whereas um are the master (or guide)
degrees of freedom, and csm are real coefficients. These constraints, also known
as mutual constraints, or tying relations, are crucial, for instance, in modelling
the contact interaction between masonry buildings and reinforcements [15],
[36].

In view of (2), fixed constraints (4) and master-slave relations of type (6)
assigned to displacement u can be expressed in terms of vector φ as follows

Tφ = 0, (7)

with T ∈ IRm×n and m � n. In the considered applications, matrix K turns
out to be positive definite on the null subspace of IRn defined by conditions
(7).

In this paper, we focus on the problem of finding the p � n smallest
eigenpairs of the generalized eigenvalue problem (3) with the constraints (7)
and propose a solution procedure which takes into account both the sparsity
of the matrices and the features of master-slave constraints.

In Section 2 we introduce a null space projection like procedure for solv-
ing generalized eigenvalue problems with linear constraints. In Section 3, the
procedure is adapted to the solution of the eigenvalue problem (3) with con-
straints (7), expressed in terms of fixed and master-slave degrees of freedom,
and the master-slave relations are used to obtain a basis of the null space of
T .

Section 4 deals with implementation of the proposed solution procedure
through the applications of open-source packages embedded in the finite-
element code NOSA-ITACA, which have been developed within the frame-
work of a research project funded by the Region of Tuscany [30]. This wide-
ranging project is aimed at assessing the static safety and seismic vulnerability
of masonry constructions of historical interest, as well as modelling possible
strengthening interventions.

Section 5 is then devoted to numerical tests. In particular, the NOSA-
ITACA code is applied to three historical buildings in order to calculate their
natural mode shapes and frequencies, the results of which are then compared
to the quantities calculated via the commercial code Marc [33].

2 The constrained eigenvalue problem

Consider the following linearly constrained generalized eigenvalue problem

Ax = λB x subject to Cx = 0, (8)

where A and B are positive semidefinite sparse and symmetric matrices be-
longing to IRn×n, C ∈ IRm×n is a sparse full row rank matrix, and A is positive
definite on the null space Null(C) of C. The constraint can be imposed by
suitably transforming this constrained problem into a modified unconstrained
eigenvalue problem and then solving it via a known strategy for unconstrained
problems [12].
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A possible transformation consists of projecting the eigenvalue problem
into the constraint space by explicitly constructing a basis for the null space
of C. Let Z ∈ IRn×(n−m) be a matrix whose columns span the null space of C
and for x ∈ Null(C), let y ∈ IRn−m be such that x = Zy; we thus obtain the
equivalent unconstrained formulation of problem (8) as

(ZTAZ) y = λ (ZTBZ) y, (9)

in the subspace Null(C) (see [16, Section 12.6.1]). Remarkably, the symmetry
and positive definiteness of the problem are preserved, and the dimension of
the problem is reduced from n to the null space dimension (n −m). On the
other hand, forming the matrices (ZTAZ) and (ZTBZ) might compromise
their sparsity.

Computing a basis Z for Null(C) can be accomplished by calculating a
rank-revealing factorization of C, as suggested by the following Proposition
[14, Section 6.8.1].

Proposition 1 Let C ∈ IRm×n be a full row rank matrix and let C = GH be
a rank-revealing factorization, i.e. let G ∈ IRm×m,H ∈ IRm×n with rank(G) =
rank(H) = m. Moreover, let H be partitioned as H = [Hm Hn−m] with Hm ∈
IRm×m non singular and Hn−m ∈ IRm×(n−m). Then, the columns of the matrix
Z ∈ IRn×(n−m) given by

Z =

[
−H−1

m Hn−m

In−m

]
(10)

form a basis for Null(C).

One example of rank-revealing factorization is represented by the LU fac-
torization. Assuming that the LU factorization of C with complete pivoting
has been computed, that is C is factorized as

C = P̃LUPT ,

where P, P̃ are row permutation matrices, and

L =

(
L11

L12

)
, U =

(
U11 U21

)
,

with L11, U11 ∈ IRm×m nonsingular (lower and upper triangular). Then the
matrices G and H of Proposition 1 are given by

G = P̃L, H = UPT ,

which gives the following basis for Null(C)

Z = P

[
−U−1

11 U12

In−m

]
.

A further more stable way to compute an orthonormal basis Z for Null(C)
is by using the rank-revealing factorization C = GH associated with complete
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orthogonal factorization. Starting from the QR factorization of C and using
a strategy based on Householder transformations [14, Section 5.5.4], one can
compute the following complete orthogonal factorization of C

CP = Qm

(
R̄ 0

)
V TPT ,

whereQm ∈ IRm×m corresponds to the firstm columns of the orthogonal factor
Q, R̄ ∈ IRm×m is upper triangle, V ∈ IRn×n and P is a row permutation. Then,
the rank-revealing factors G,H are given by

G = Qm and H =
(
R̄ 0

)
V TPT .

Now, let V̄ = PV ∈ IRn×n, V̄ is orthogonal and satisfies

HV̄ =
(
R̄ 0

)
V̄ T V̄ =

(
R̄ 0

)
,

which shows that the last (n−m) columns of V̄ , denoted by Z are orthogonal
to H and hence form an orthonormal basis for Null(C).

An alternative transformation of problem (8) consists of considering the
associated optimality system, that is, the following augmented eigenproblem[

A CT

C 0

] [
x
µ

]
= λ

[
B 0
0 0

] [
x
µ

]
, (11)

where µ ∈ IRm represents the Lagrange multipliers. In this case the dimension
of the problem increases by m with respect to the original one; the sparsity
pattern of the involved matrices is preserved but in general eigenproblem (11)
is not positive definite [3,4].

In this paper we focus on transformation (9) and will adopt the null space
projection procedure [17], meaning a strategy that first converts the original
problem (8) into the projected problem (9) and then applies a standard method
for symmetric positive definite eigenproblems (see Section 4.1).

3 Solving the generalized eigenvalue problem with master-slave
constraints

In this section we focus on modal analysis of elastic structures discretized with
finite-elements, which involves solving the large-size eigenvalue problem (3)
with constraints (7) expressing the fixed and master-slave relations. In finite-
element structural analysis, the main approach adopted to take master-slave
constraints into account is the master-slave method, consisting of explicitly
eliminating the slave and fixed degrees of freedom and then solving the prob-
lem only for the master and unconstrained displacements. Further approaches
comprise the penalty method and the Lagrange multiplier method (see [3],
[10], [11, Chapter 8] and [27]).
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Here, we adopt the null space projection approach based on Proposition
1 of the previous section. A motivation for the use of this approach is that,
due to the special constraint structure, the computation of a rank-revealing
factorization T = GH of the constraint matrix T does not involve any LU or
QR factorization necessary in the general case and, furthermore, there is no
need of inverting matrices while forming the basis Z in (10) for Null(T ).

In this section, first, we provide a basis for the null space of T whose
construction is strongly dependent on the master-slave relations (7), then we
show that the projected problem obtained using this basis has a very favorable
sparsity structure which is the reason for the implementation choices presented
in Section 4.

Selection of the master and slave degrees of freedom follows some specific
rules and this imparts a special structure to matrix T ∈ IRm×n in (7): if a
degree of freedom is master, it cannot be a slave and vice versa; a master can
guide more than one slave degree of freedom, and a slave degree of freedom
cannot appear in different master-slave relations (see (6)). Moreover, generally,
master or slaves degrees of freedom cannot be a fixed degree of freedom. In the
sporadic cases when a master degree of freedom is fixed, it can be explicitly
eliminated, so that we can assume that T has full row rank.

Let us define the following index sets and the corresponding cardinality:

IF = {i ∈ {1, . . . n} | ui is a fixed degree of freedom}, nF = |IF |
IS = {i ∈ {1, . . . n} | ui is a slave degree of freedom}, nS = |IS |
IM = {i ∈ {1, . . . n} | ui is a master degree of freedom}, nM = |IM |
IU = {i ∈ {1, . . . n} | ui is an unconstrained degree of freedom}, nU = |IU |.

By construction, the four sets are disjoint and their union gives the whole set
of degrees of freedom so that m = nF +nS and n = nF +nS +nM +nU . Note
that IM =

⋃
s∈IS

IMs with IMs in (5).

Assuming that matrix T columns are reordered so that they correspond to
degrees of freedom in the order fixed-slave-master-unconstrained and assuming
that i ≤ j for all i ∈ IF and j ∈ IS , we can express matrix T as

T = [TIF TIS TIM TIU ],

where TIF ∈ IRm×nF , TIS ∈ IRm×ns , TIM ∈ IRm×nM , TIU ∈ IRm×nU and the
first nF rows correspond to fixed constraints.

Due to the definition of fixed (4) and master-slave (6) constraints, matrix
[TIF TIS ] is the identity matrix Im ∈ IRm×m, block TIU is the null block 0m,nU

,
and block TIM takes the form

TIM =

[
0nF ,nM

T̂

]
∈ IRnS×nM ,
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where T̂ contains the nonzero coefficients −csm from (6). Summarizing then,
the constraint matrix has the following sparse block structure

( nF nS nM nU

nF InF
0 0 0

nS 0 InS
T̂ 0

)
.

Due to this special structure, a rank-revealing factorization for T is simply
given by T = GH with G = Im,H = T and submatrices Hm, Hn−m in (10)
are

Hm = [TIF TIS ] and Hn−m = [TIM TIU ].

Consequently, a basis Z of the null space of T is trivially given by

Z =

[
−[TIM 0m,nU

]
In−m

]
. (12)

Clearly the construction of Z in (12) is straightforward and, in addition, it is
generally very sparse. In fact, in the applications the number of master per
slave degrees of freedom varies from 1 to 3 so that block T̂ in TIM itself is also
very sparse.

Note that if only fixed constraints are present (i.e. IS = IM = ∅), then solv-
ing problem (3)-(7) simply requires eliminating the rows and columns (sym-
metrically) corresponding to fixed degrees of freedom in the matrices K and
M .

In the next proposition we prove that if K,M are sparse matrices, then the
projected matrices ZTKZ,ZTMZ, with Z in the form (12) are still sparse.

Proposition 2 Let A ∈ IRn×n be partitioned as

( m (n−m)

m A11 A12

(n−m) A21 A22

)
.

Let Z ∈ IRn×(n−m) be expressed in the form

Z =

[
Z1

In−m

]
with Z1 ∈ IRm×(n−m) s.t. Z1 =

[
W 0

]
, W ∈ IRm×nm .

Then
nnz(ZTAZ) ≤ nnz(A22) + (nm)2 + 2nm(n−m− nm), (13)

where nnz(·) denote the number of nonzeros.

Proof Computing the direct block product ZTAZ we get

ZTAZ =
[
ZT
1 In−m

] [A11 A12

A21 A22

] [
Z1

In−m

]
=

[
ZT
1 A11 +A21 ZT

1 A12 +A22

] [ Z1

In−m

]
=

[
ZT
1 A11Z1 +A21Z1 + ZT

1 A12 +A22

]
.
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Since Z1 =
[
W 0

]
, we have

A21Z1 = A21

[
W 0

]T
=

[
A21W 0

]
and

ZT
1 A12 =

(
AT

12Z1

)T
=

[
AT

12W 0
]
=

[
WTA12

0

]
and

ZT
1 A11Z1 = ZT

1

[
A11W 0

]
=

[
WT

0

] [
A11W 0

]
=

[
WTA11W 0

0 0

]
Then ZTAZ = Q+A22 with Q ∈ IR(n−m)×(n−m) given by

(nm (n−m− nm)

nm ∗ ∗
(n−m− nm) ∗ 0

)
where ′∗′ denotes the possibly nonzero blocks. Thus, nnz(ZTAZ) ≤ nnz(A22)+
n2
m + 2nm(n−m− nm).

ut
Remarkably, the inequality (13) implies that in the projected matrices

ZTKZ, ZTMZ, with Z in the form (12), only at most nM rows and nM

columns might fill-in where nM � n is the number of master degrees of free-
dom.

4 Implementation within the NOSA-ITACA code

In this section we describe the implementation of the procedure for solving
the constrained eigenvalue problem (3)-(7) in the NOSA-ITACA code. NOSA-
ITACA is a freeware code resulting from integration of the Fortran finite-
element code NOSA [29] into the open-source SALOME platform [40]. It has
been developed within the framework of the project “Tools for modelling and
assessing the structural behaviour of ancient constructions: the NOSA-ITACA
code”, funded by the Region of Tuscany in the period 2011-2013 [30]. The main
goal of the project has been to develop a new tool, the NOSA-ITACA code,
for the static and dynamic analysis of masonry buildings of historical interest.
The code models masonry as a nonlinear elastic material with zero tensile
strength and bounded compressive strength [29]. Although the constitutive
equation adopted for masonry is nonlinear, the modal analysis, which is based
on the assumption that the materials constituting the construction are linear
elastic, furnishes important qualitative information on the dynamic behavior of
masonry structures and thereby allows for assessing their seismic vulnerability
in light of Italian and European regulations [9].
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4.1 Iterative eigensolvers

The body of literature on numerical methods for solving large constrained
eigenvalue problems (8) is not very extensive [12],[16, Section 12.6.1], [17,27].
On the other hand, many algorithms have been proposed for unconstrained
eigenvalue problems of the form Ax = λBx yielding to the development in
recent years of robust and computationally efficient schemes [38,43] and cor-
responding software packages [18,35]. The most promising approaches for the
important class of symmetric positive definite matrices include the implicitly
restarted Arnoldi method (equivalent to the Lanczos technique for this type
of matrices) [25,26], the recently proposed Jacobi-Davidson algorithm [8,31,
41] and schemes based on preconditioned conjugate gradient minimization of
the Rayleigh quotient [1,5,13,22,23]. All these methods seem to outperform
the widely used subspace iteration scheme [32].

Regarding the implementation of the main algorithms, an exhaustive sur-
vey of freely available software tools for numerical solution of large-sparse
eigenvalue problems can be found in [18]. The survey includes a list of libraries,
programs or subroutines and brief descriptions of the algorithms. Some recent
papers have moreover compared the different methods/solvers and provided
extensive numerical examples on applicative problems [1,5,24].

One of the most popular eigensolvers, ARPACK, has been chosen here for
solving the reduced problem arising in the null space approach due to its ef-
ficiency and robustness [25,26]. In particular, its reliability has been widely
demonstrated in the solution of real, large problems, for instance in image
reconstruction, molecular dynamics simulations, iterative determination of vi-
brational energy levels, large-scale electromagnetic eigenvalue problems, etc.
[2]. All these features make it well-suited for use in the framework of the
NOSA-ITACA code.

ARPACK provides a Fortran 77 implementation of the Implicitly Restarted
Arnoldi method, for both real and complex arithmetic. It can be used for both
standard and generalized problems and for both symmetric and nonsymmetric
problems. In the symmetric case, Lanczos with full reorthogonalization is used
instead of Arnoldi. The algorithm is based on the classical Arnoldi/Lanczos
factorization combined with spectral techniques to improve the convergence
of basic methods. To overcome intractable storage and computational require-
ments in the standard Arnoldi (or Lanczos) method, restarting techniques
have been developed and Implicit restarting is a variant of such techniques.
The resulting method may thus be viewed as a truncated form of the implic-
itly shifted QR-algorithm that is appropriate for large problems. For detailed
information on the algorithm implemented in ARPACK, we refer the reader
to the users’ guide [26].
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4.2 Implementation issues

We implemented the null-space projection procedure flowcharted in Figure 1
to solve the constrained eigenvalue problem (3)-(7). Firstly the constrained
problem is converted into the unconstrained problem

K̃ y = ω2 M̃ y, (14)

where

K̃ = ZTKZ, M̃ = ZTMZ, (15)

with the basis Z in (12) and y ∈ IRn−m; secondly this reduced problem is
solved using ARPACK; and lastly the eigenvectors are expanded back to the
full space.

Due to the sparsity structure of the stiffness and mass matrices, known in
theory from Proposition 2 and that will be verified in practice in Section 5,
we stored the assembled matrices in a compressed sparse format and we used
the Fortran routines of the SPARSKIT package [39]. SPARSKIT provides
many efficient routines for manipulating and working with sparse matrices.
Specifically, we used the routines for converting data structures and for general
algebraic operations (e.g. matrix-vector products) contained in the BLASSM
module.

Moreover, ARPACK has a reverse communication interface that requires
the user to supply a routine for performing the matrix-vector multiplication
with M̃ and K̃ and a linear system solver. Clearly, its efficiency depends upon
these routines. We used SPARSKIT for the products and chose to solve the
systems by iterative methods imposing a stringent tolerance in order to obtain
accurate eigenvalue, as suggested in [26].

All the packages were run using the default parameters. We moreover se-
lected the Shift-invert mode with null pole σ, for which, ARPACK requires
the action

w ← (K̃ − σM̃)−1M̃v, σ = 0,

to be supplied. Therefore, a sequence of symmetric, positive definite linear
systems of the form

K̃w = bk, k = 1, 2 . . . (16)

in which the coefficient matrix is constant but the right-hand side bk ∈ IRn−m

varies, has to be solved. For solving the sequence (16), we used the Conjugate
Gradient method that is the Krylov subspace method best-suited for solving
large symmetric positive definite systems. Its convergence rate depends on
the condition number of the matrix K̃ and then, it is widely recognized that
preconditioning is a critical ingredient to reduce the condition number, and
hence improve the performance of the iteration [19,21]. We then considered
the ICFS-preconditioner that is based on the well-known Incomplete Cholesky
Factorization with limited memory proposed in [28] for positive definite or in-
definite systems. The ICFS-preconditioner has the favorable property to con-
trol the amount of additional memory and then, there is no need to specify
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Fig. 1 Flowchart of the implemented null-space projection procedure to solve the con-
strained problem (3)-(7).

a drop tolerance. Note that the preconditioner has to be computed only ones
for the matrix K̃ and then is reused for the solution for each kth systems of
the sequence (16).

Concerning the third phase, by taking the connectivity of the mesh and
matrix Z in (12) into account, it is possible to calculate the eigenvectors φ of
(3)-(7) from the eigenvectors y of (14).

5 Test cases and experiments

In this section, the NOSA-ITACA code is used to calculate the frequencies
and mode shapes of three historical Italian buildings: the Clock Tower and
the Church of San Francesco in Lucca, and the Voltone in Livorno, shown in
the Figures 2, 3 and 4, respectively.

The Clock Tower, dating back to the 13th century, is one of the numerous
historical buildings in Lucca. This is Lucca’s highest tower, located on its main
street, and has contained a clock since 1390. In the model, the Clock Tower has
been discretized into 11449 8-node brick and beam elements as presented in
Figure 2; only fixed constraints are considered. The Church of San Francesco,
dating back to the 13th century, is a typical Franciscan masonry building with
one nave, about 70 m long, 16 m wide and 19 m high. A portion of the Church
has been discretized into 15403 8-node brick, beam and thick shell elements
as shown in Figure 3. The roof is modelled with beam elements connected to
the walls via multipoint constraints. The Voltone is a large vaulted masonry
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structure located beneath the Piazza della Repubblica in Livorno; its finite-
element discretization in given in Figure 4. In this case, both beam and thick
shell elements have been used and master-slave constraints imposed to model
the connection between the vault and the longitudinal walls.

The details on discretization and constraint type are summarized in Table
1 for each test case. In particular, p is the number of frequencies sought, m
denotes the number of fixed and slave degrees of freedom, ñ = n −m is the
dimension of the reduced problem (14) and ∆ is the bandwidth of K and M .

Table 1 Details on the discretization of the test cases.

p n nF nS nM m ñ ∆

Clock Tower 10 46164 320 0 0 320 45844 1239
Church of San Francesco 10 61881 2662 54 54 2716 59165 11769
Voltone 30 44370 3864 1932 1932 5796 38574 1050

Let us now consider Figures 5-7. Figure 5 shows a plot of the sparsity
pattern of the projected matrices K̃ and M̃ for the Clock Tower (only fixed
constraints are present). Figures 6 and 7 instead, for the other two test cases,
plot the sparsity pattern of the assembled stiffness matrix K (on the left) and
the corresponding projected matrix K̃ (on the right). The plots show that the
fill-in in the projected matrices is low, that is, the reduced matrices remain
sparse even though the bandwidth may become larger, as stated by Proposition
2. The graphics have been obtained using the spy Matlab command.

The natural mode shapes and frequencies νi = ωi/2π (Hz) of the three
historical buildings have been calculated with NOSA-ITACA. Figures 8, 9,
and 10 show the mode shapes φ1 and φ2 for the Clock Tower and the Church
of San Francesco, and the mode shapes φ4 and φ21 for the Voltone.

Tables 2-4 show a comparison of the frequencies calculated via the NOSA-
ITACA code with those calculated using the general purpose finite-element
code Marc [33] for which we selected the Lanczos type solver. The residuals
reported in the table are the 2-norms of the vectors K̃ zi − λ2

i M̃ zi, with zi
and λi the approximations of the eigenvectors yi and the eigenvalues ωi cal-
culated with NOSA-ITACA. Unfortunately, Marc does not furnish analogous
quantities. The tables show that the values computed by both solvers are very
similar, except for λ9 computed for the Church of San Francesco (see Table 3).
The reasons for this discrepancy are rather puzzling since the residual for this
value computed by NOSA-ITACA is of the same magnitude as those for the
others frequencies (of the order of 10−10) . On the other hand, it is not possi-
ble to retrieve further information on the value computed by Marc, regarding
neither the imposed accuracy nor estimates of the error.

Table 5 reports the CPU times for both NOSA-ITACA and Marc for the
three test cases. The higher CPU times required by NOSA-ITACA (around
a factor 2 if master-slave constraints are present), are probably due to the
fact that, unlike Marc which uses a Cuthill-McKee algorithm [7], the current
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NOSA-ITACA implementation contains no algorithms for profile reduction of
matrices, that is reduction of the sum of the row bandwidths.

6 Conclusions

In this paper we have addressed the problem of finding the few smallest vi-
bration frequencies and corresponding shape mode vectors of linear elastic
structures discretized into finite-elements. We have considered the generalized
eigenvalue problem (3) with the master-slave relations (7) and have surveyed
the existing literature concerning its solution and the available implementa-
tions. We have then proposed a solution procedure which takes into account
both the nonzero pattern of the involved matrices and the structure of the
constraints. The implementation of the procedure is based on open-source
packages and have been embedded into the finite-element code NOSA-ITACA.
Validation tests on three historical buildings located in Tuscany heve been car-
ried out by comparing the NOSA-ITACA results with those obtained via the
commercial code Marc. The results of NOSA-ITACA are fully consistent with
those of Marc, though improvements to the code in terms of CPU times could
be achieved by implementing an optimizer aimed at reducing the profile of
both the assembled matrices K and M and the corresponding projected ones,
see e.g. [42].

The applicative impact of NOSA-ITACA enriched with the new tool for
the modal analysis is significant and the code represents a valid instrument for
private and public bodies operating in the field of the conservation and safe-
guarding of the cultural heritage, with particular application to the protection
of the national architectural heritage subjected to seismic risk. Moreover, some
major advantages of the described implementations, are that they can be eas-
ily employed in general finite-element codes and be included in open-source
packages for the modal analysis of structures [34].
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