
 1

  
Abstract—The ZigBee standard defines a service-oriented 

framework for the implementation of Wireless Sensor 
Networks (WSNs).  In the recent years ZigBee has received the 
attraction of many research studies focused on the design and 
the implementation of network gateways able to access and to 
interact with ZigBee sensors from heterogeneous networks. 

To address the interoperable challenge, this paper presents 
ZB4OSGi, an OSGi-based ZigBee gateway able to export the 
ZigBee network services in the OSGi execution environment 
without requiring any prior knowledge about the ZigBee 
protocol. ZB4OSGi exploits a 3-layered architecture enabling 
the access, abstraction and integration of ZigBee devices to 
different channels like UPnP or SOAP-REST Web Services. 

The paper faces with a concrete implementation of 
ZB4OSGi, by highlighting the features with respect to already 
existing ZigBee gateways. 
 

Index Terms—ZigBee gateway, context-aware services, 
Middleware, Wireless Sensor Networks.   

I. INTRODUCTION 

N the recent past a consortium of major industries, 
interested in Wireless Sensor Networks (WSNs) [1], 

delivered a new industrial standard called ZigBee [2,3]. 
ZigBee is built on the IEEE 802.15.4 stack (which specifies 
physical and MAC layer of low-power WSN) and defines a 
service-oriented framework for the realization of WSN 
applications. ZigBee provides multi-hop communication 
mechanisms and basic strategies for the realization of 
service-oriented WSN applications. Its main application 
fields are home and factory automation, consumer electronic 
and healthcare.  

Interacting with a ZigBee network requires prior 
knowledge about the ZigBee protocol, in particular the 
messages (frames) format, the interaction paradigm, and the 
ZigBee clusters and profiles. The possibility of accessing to 
the ZigBee network without such prior-knowledge and from 
heterogeneous networks, represents a challenging task.  

Such kind of interaction requires to design and to 
implement ZigBee gateways able to ease the access to  the 
ZigBee nodes and simultaneously able to export the ZigBee 
services to different target networks. More generally, the 
design of a ZigBee gateway gives rise to two main aspects 

 
Francesco Furfari, Michele Girolami, Stefano Lenzi, Francesco Potortì 

are  with Istituto di Scienza e Tecnologie dell’Informazione – National 
Research Council, via Moruzzi 1, Pisa, Italy (e-mail: 
francesco.furfari@isti.cnr.it,  michele.girolami@isti.cnr.it, 
stefano.lenzi@isti.cnr.it, francesco.potorti@isti.cnr.it).  

Stefano Chessa is with Istituto di Scienza e Tecnologie 
dell’Informazione – National Research Council, via Moruzzi 1, Pisa, Italy 
and with Department of Computer Science, University of Pisa, Largo 
Pontecorvo 3, Pisa, Italy (e-mail: ste@di.unipi.it). 

 

that should be taken into account: 
1) seamless integration: ZigBee nodes become accessible 

from outside, without any prior knowledge about the 
specific technology (message format, hardware 
features, interaction paradigm, network topology etc.). 

2) Interoperability: services exposed by the ZigBee nodes 
cooperate by adopting a service-oriented model. The 
services can be integrated within existing architectures, 
drawing the so-called mash-up services [24].  

Several ZigBee gateways have been already proposed, but 
some important limitations still are present: (i) most of the 
gateways only rely on specific ZigBee hardware, without 
providing any abstraction layer able to generalize from the 
ZigBee node, (ii) most of the gateways convert the ZigBee 
frames to only one specific target technology and only few 
of them aim at the generalization of the target network, and,. 
finally, (iii) not all the ZigBee gateways recognize ZigBee 
devices adhering to the ZigBee standard profiles or let 
custom ZigBee devices be accessed from the gateway itself. 

This paper presents an OSGi-based ZigBee gateway 
(hereafter called ZB4OSGi), that takes into account the 
previously described aspects and limitations of the existing 
solutions. ZB4OSGi exports the ZigBee network services 
via different channels by exploiting a 3-layered architecture. 
In our approach, the gateway exports an abstract view of the 
ZigBee network, in which only the services provided by the 
ZigBee nodes are mapped into some OSGi services.  In turn, 
exploiting the potentials of the OSGi execution 
environment, such services can be dynamically exported by 
means of different application-level technologies (for 
instance UPnP protocol, SOAP/REST-based services and 
others).  

ZB4OSGi fully integrates ZigBee nodes adhering to the 
standard ZigBee Home Automation Profile, but further 
extensions to the set of profiles can be easily applied. 
Moreover ZB4OSGi implements a hardware abstraction 
layer that lets heterogeneous ZigBee hardware be used as 
network entry-point. 

ZB4OSGi has been released under open source license in 
[22] as project of the AALOA open association [21] and a 
development team currently maintains the project with 
periodical updates, news and bug fixes.   

The rest of the paper is organized as follows. Section II 
introduces the OSGi platform and the ZigBee stack as 
preliminary concepts; section III presents the state-of-the-art 
for the ZigBee gateways with a comparison table among the 
reviewed ZigBee gateways. Section IV introduces the 
ZB4OSGi solution; section V describes every layer of the 
ZB4OSGi architecture. Section VI provides a case study 
description, while section VII draws some conclusions. 

A Service-Oriented ZigBee Gateway Based on 
the OSGi Framework 

Stefano Chessa, Francesco Furfari, Michele Girolami, Stefano Lenzi, Francesco Potortì  

I



 2

II. PRELIMINARY CONCEPTS 

A. OSGi model 

The Open Source Gateway initiative specification (OSGi) 
[9] defines a service oriented, component based platform for 
Java developers, and it offers a standardized way to manage 
the software life cycle. The OSGi implementations are 
containers running on top of a Java virtual machine, in 
which components can be installed, removed, started, and 
stopped at run time. An OSGi component (called bundle) is 
a JAR file that contains Java classes, resources and metadata 
describing the dependencies with other bundles. The main 
features that OSGi offers are: 
1) a service model where every application component can 

be registered as service into a service registry.  
2) An execution environment where multiple applications 

can run on the same virtual machine.  
3) A set of API for the control of the bundles life cycle.  
4) A secure environment where multiple applications can 

coexist without affecting each other.  
5) A cooperative, distributed environment where bundles 

can discover each other independently of their hosting 
platform. 

The bundles wishing to detect the presence of a particular 
service configure a service listener (with appropriate filters) 
and, as soon as the specified service becomes available, the 
OSGi framework notifies all the listeners with a service 
handler instance. 

Although OSGi was initially thought as a platform 
supporting gateways, it became popular also in other fields. 
For example, OSGi also meets the requirements for 
pervasive spaces and smart environments as observed in 
[10]. 

B. ZigBee 

The ZigBee specification defines the network and 
application layer of low-power wireless networks based on 
the IEEE 802.15.4 [2, 3] standard.  

The network layer provides support to star, tree, and peer-
to-peer multi-hop network topologies. At this layer, each 
node (or ZigBee node) is a physical component identified by 
a 16 bits network address. The network layer provides 
services for the initialization of the network, nodes 
addressing, multi-hop routing, packet forwarding and 
management of connections and disconnections of nodes. At 
the network layer the nodes can be either end-devices or 
routers. End-devices do not have any routing capabilities, 
rather, when they join the network they connect to a router 
and rely on it for all their communications. One routeracts as 
network coordinator and takes the address 0. Its role is to 
create the network and to define the address space. In a 
typical configuration, the network has a tree topology rooted 
in the coordinator. An overview of the ZigBee protocol 
stack is shown in Figure 1.  

The application layer provides a framework to support, 
configure and manage distributed applications. The 
application layer comprises the Application Framework, the 
ZigBee Device Object (ZDO) and the Application Support 
Sublayer (APS), which offers functionalities of a transport 
layer. The Application Framework contains a number of 
Application Objects (APO), i.e. user defined application 
modules (also called application-level devices) that 

implement a ZigBee application (or at least sub-component 
of a distributed ZigBee application). The ZDO provides 
services that allow the APOs to organize themselves into a 
distributed application. The APS provides data and 
management services to the APOs and ZDO. 

Each APO is associated to an EndPoint (EP) of the 
Application Framework, and it is univocally identified by 
the network address of the hosting network-level device and 
by the EP number (that ranges from 0 to 240, in particular 
EP 0 is reserved to the ZDO). An application framework can 
host up to 240 APOs.  

To enable interoperability of nodes from different 
manufacturers, the ZigBee alliance defines the concepts of 
clusters and application profiles. A cluster is an application 
message containing one or more attributes. Clusters are 
defined in a separate specification of the ZigBee alliance, 
the ZigBee Cluster Library (ZCL). In general, an APO 
supports a collection of clusters. The application profile is a 
collection of device descriptions that form a cooperative 
application. For example the Heating Application Profile 
provides the description for the Thermostat device and the 
Furnace device. Hereafter we will refer to ZigBee nodes 
only as hardware devices, while we refer to ZigBee devices 
as hardware devices hosting the full ZigBee stack and 
ZigBee applications.  

The ZDO provides to the APOs device and service 
discovery. Device discovery allows an APO to obtain the 
network address of other network nodes. The routers 
respond to the device discovery by returning their addresses 
and the addresses of all their associated end-devices. The 
service discovery exploits cluster descriptors and cluster 
identifiers to determine the capabilities offered by a given 
APO. An APO can inquiry about the capabilities provided 
by a specific APO or use a matching mechanism to detect 
the presence of APOs providing a given capability.  

ZigBee also defines a binding mechanism among APOs. 
By means of the binding, two or more APOs can be 
connected with each-other. In this way whenever an APO 

emits a message with a specific cluster identifier, the 
message is automatically routed to a set of APOs according 
to the binding table.  

The ZDO provides mechanisms for the management of 
the binding table; such mechanisms simplify the way in 
which the devices address themselves and it can be used to 

 
Fig.1.  The ZigBee stack 



 3

enable automatic eventing mechanisms. For example the 
ZCL exploits the binding to implement attribute reporting, 
the notification of alarms and more generally all notification 
capabilities. 

III.  RELATED WORKS 

The initial ZigBee specification did not define any notion 
of gateway for the ZigBee networks, only in late 2010 the 
ZigBee alliance delivered the specification for the ZigBee 
gateway [8]. This specification defines a gateway for the 
interconnection of ZigBee and IP based networks. The 
approach used in this specification is to expose a web 
service (based on SOAP/REST or, alternatively, adopt the 
GRIP protocol), through which applications in the IP 
network can inject queries into the ZigBee network and 
receive responses. In addition, the gateway exposes 
functions to access all the layers and components of the 
Network layer and Application framework (including the 
ZDO and APS) of the ZigBee-side of the gateway. With this 
approach the queries to the ZigBee network are expressed in 
terms of XML schemas, and they are translated into the 
appropriate cluster by the ZigBee gateway. As a 
consequence, the applications wishing to interact with the 
ZigBee devices should be aware of the details of the ZigBee 
protocol (including address of the node, fields of the cluster 
etc.). This approach is rather different from the one we used 
to design ZB4OSGi, since in our proposal the gateway 
exposes refined services for each ZigBee device it discovers. 
Hence, the applications do not have to discover ZigBee 
nodes and consequently they do not need to know the low-
level protocol details.  

Gateways of ZigBee have also been subject of intensive, 
independent studies in the recent past [12-18]. Some of 
these works are mainly addressed to the design and 
implementation of gateways for protocol translation. Fits in 
this case the work presented in [12] where a gateway 
between Konnex (KNX) and ZigBee is presented. This work 
proposes a solution where the gateway translates KNX 
telegrams into ZigBee frames and vice-versa. The 
implementation relies on a multi-component gateway able to 

define such a mapping, but it does not provide any general 
integration solution for the node interaction or the hardware 
abstraction.  

The solutions provided in [13, 14] are both focused on the 
implementation of UPnP and DLNA – ZigBee gateway. In 
[13] is proposed a solution aimed at the integration of 
ZigBee into DLNA networks by means of gateways. One of 
the components of the gateway is responsible for creating 
virtual UPnP devices as soon as it acquires relevant 
information on the ZigBee network. In a similar way, it 
creates virtual ZigBee application objects for every UPnP 
device found. This approach has the limitation that the 
gateway must be the ZigBee network coordinator. 
Furthermore, to our understanding, it does not addresses 
abstraction of ZigBee nodes. Similarly, in [14], the authors 
implement an internetworking gateway between UPnP and 
ZigBee focusing on the discovery mechanisms.  The authors 
present a gateway based on two main components: UPnP - 
ZigBee gateway (UZG) and the ZigBee network topology 
manager. The UZG is made of the Application Object 
Manager, the ZigBee Device Manager (ZDM) and the 
Virtual UPnP Proxy Manager (VUPM). The ZDM controls 
the ZigBee nodes, it reflects all the relevant changes to the 
VUPM. The VUPM is responsible for creating or removing 
Virtual UPnP Proxy (VUP) as soon as some events occur on 
the ZigBee network. The authors provide a mapping 
between the meta-data of the ZigBee devices and the ones of 
VUP. With respect to [13], here it is discussed how the 
ZigBee devices are abstracted by the VUPs, however both 
of the solutions ([13, 14]) strictly rely on specific ZigBee 
hardware without introducing any hardware abstraction 
layer. 

A different approach is adopted in [15], where a gateway 
for protocol translation is described. The author provides a 
mapping for all the 802.15.4/ZigBee protocol layers to the 
corresponding Ethernet ones. Differently than our approach,  
this work does not focus on  ZigBee device abstraction or 
hardware abstraction mechanisms. In fact, this approach 
requires the users to implement their own software 
application in order to exploit the protocol translation and 

TABLE I 
COMPARISON AMONG THE ZIGBEE GATEWAYS 

Criteria [12] [13] [14] [15] [16] [17] [18] 

Gateway 
architecture. 

Component Component Component Component Component Mixed Service 

Integration 
mechanisms 

Knx-ZigBee 
integration 

UPnP 
integration 

UPnP 
integration 

Protocol 
translation 
ZigBee - 
Ethernet 

Web-server  
integration 

Web-server, 
Mobile app 
Web-service 
integration 

OSGi service 
integration 

Hardware 
abstraction. 

The gateway 
relies on 
RadioPulse
® stack. No 
hardware 
abstraction 
provided. 

No specific 
hardware 
adopted. No 
hardware 
abstraction 
provided. 

The gateway 
relies on Texas 
Instruments® 
Evaluation 
board. No 
hardware 
abstraction 
provided. 

The gateway 
relies on 
custom 
hardware. No 
hardware 
abstraction 
provided. 

The gateway 
relies on 
custom 
hardware. No 
hardware 
abstraction 
provided. 

The solution 
relies on 
XBee® nodes. 
No hardware 
abstraction 
provided. 

The solution 
relies on 
custom 
hardware. No 
hardware 
abstraction 
provided. 

Device 
abstraction. 

Support for 
Zigbee HA 
profile  

Support for  
ZigBee HA 
profile 

Support for 
ZigBee HA 
profile 

No ZigBee 
profile 
supported 

No ZigBee 
profile 
supported 

No ZigBee 
profile 
supported 

Support for 
ZigBee HA 
profile 

Extension 
mechanisms 

No support 
for custom 
cluster. 

Support for 
custom 
cluster only 
mentioned as 
future work. 

No support for 
custom cluster. 

No support for 
custom cluster. 

No support for 
custom cluster. 

No support for 
custom cluster. 

Support for 
device 
implementing 
custom cluster.  

 



 4

interact with the ZigBee nodes. A web-oriented solution is 
described in [16]. The paper proposes a web-sensor gateway 
able to let the ZigBee network be accessible by means of a 
standard HTML browser. Similarly to [15], the gateway 
provides a protocol translation from ZigBee to Ethernet. The 
author describes also a web-server able to generate dynamic 
web pages reflecting the ZigBee network. This solution 
requires that the users own a topological perspective of the 
ZigBee network, addressing each individual nodes in the 
sensor network.  

In [17] a vertical solution based on SmartBee is 
presented. The SmartBee specification lets the ZigBee nodes 
be accessible via multi-channel solutions, e.g. by means of 
regular web interface, mobile application or web service 
standard specification. The work presents some notable 
aspects, however the whole solution relies on the SmartBee 
specification build on top of the MAC layer of ZigBe, and 
being adherent to the SmarBee specification represents a 
non-negligible requirement for a general-purpose solution. 
Neither this work addresses on hardware abstraction.  

The approach proposed in [18] caught our attention since 
it goes in the direction of representing ZigBee devices as 
OSGi services. In this work the gateway acts as the ZigBee 
coordinator, and it assumes that the nodes in the network 
periodically announce their presence by sending, to the 
coordinator, their ID and profile. As the ZigBee coordinator 
detects the presence of a new node in the network, it 
downloads a software service for that ZigBee device 
(wrapped within an OSGi bundle) and registers the service 
in OSGi. With respect to this work, our approach makes a 
further step of abstraction for the ZigBee devices. The 
ZB4OSGi gateway exposes the ZigBee devices on one or 
more access technologies available on the OSGi platform. 
Furthermore we remove the assumptions that the gateway 
acts also as the ZigBee coordinator and that the nodes have 
to periodically announce themselves (currently defined as 
optional feature). Finally, with our solution, we produce a 
different level of abstraction of the ZigBee devices. For 
example we can further refine the ZigBee devices with 
OSGi services that aggregate data produced from the 
ZigBee network, compose multiple ZigBee nodes as one 
single virtual node, hide the ZigBee network topology etc.  

The result of the analysis of the state-of-the-art is 
summarized with Table I. The Table reports on the rows a 
list of important features that characterize the reviewed 
solutions. Currently we identify the following features: 
1) Gateway architecture: service-oriented approach where 

the ZigBee devices are modeled in terms of exported 
services, multi-component approach where the ZigBee 
devices are accessed interacting with a specific 
component of the gateway, mixed solutions. 

2) Integration mechanisms: how the ZigBee network can 
be accessed from outside network and which 
technologies can be integrated.  

3) ZigBee hardware abstraction: how the gateway 
abstracts from specific ZigBee hardware. 

4) ZigBee device abstraction: how the gateway manages 
ZigBee devices adhering to the standard ZigBee 
profiles. 

5) Extension mechanisms: how the gateway manages the 
extendibility of the ZigBee clusters for custom 

behavior of the ZigBee Devices. 

IV.  ZB4OSGI GATEWAY 

A. Architecture Guidelines 

The main purpose of the ZB4OSGi gateway is to provide 
a simplified access to the functionalities offered by ZigBee 
devices. We aim at offering intuitive interfaces that link 
between those functionalities and external applications.  

The ZB4OSGi gateway has been designed keeping in 
mind the following guidelines: 

Dynamic discovery of ZigBee nodes: ZB4OSGi exploits 
the discovery mechanisms of ZigBee. As soon as new 
ZigBee nodes join the network, ZB4OSGi reacts to these 
events by registering new OSGi services reflecting the 
implemented APOs.  

Abstraction of ZigBee devices: ZB4OSGi not only 
recognizes ZigBee devices adhering to the ZigBee profiles 
(e.g. On/Off Switch device, Remote Control device, Light 
Sensor device), but it also abstracts them. This allows the 
high-level applications to ignore the notion of cluster and 
message format (deeply connected with ZigBee 
terminology), and to focus only on data gathered from the 
nodes with the adoption of more intuitive APIs. This 
approach is rather different from the solution adopted by the 
ZigBee alliance (see section III), where the gateway 
specification offers an interface that enables to send clusters 
within the ZigBee network. Although such interfaces are 
exposed in terms of web services (SOAP or REST), the 
external applications should be aware of the internal 
protocols of ZigBee and use the clusters accordingly.  

Extension mechanisms for ZigBee devices: the ZigBee 
Cluster Library specification defines an extended set of 
clusters to be used with the ZigBee devices. However, to 
meet additional requirements, it includes also a mechanism 
that enables the development of custom clusters by third 
parties. ZB4OSGi fulfills to this feature by offering a 
mechanism that enables its extension, in order to include 
custom clusters in the abstraction of the ZigBee devices. 

Integration mechanisms: ZB4OSGi maps the ZigBee 
devices with several OSGi services that export the ZigBee 
applications with high-level protocols (in the current 
implementation the UPnP and PERSONA exporters are 
available, see section V-c). The advantage is that external 
applications may access to the ZigBee devices by means of 
the mechanisms offered by high-level protocols, even if they 
differ from those used in the ZigBee network. For example 
the standard Temperature Sensor device only supports the 
pull access method (i.e. the applications should explicitly 
request for the value when they need it), and by means of 
the UPnP exporter such device can be extended with a push 
assess method (i.e. it may provide periodic readings to the 
interested recipients). 

Management of different applications in the same ZigBee 
network: ZB4OSGi has been implemented on top of the 
OSGi platform to exploit its flexible service model. In this 
way ZB4OSGi can represent any APO or any ZigBee device 
(in accordance to the Abstraction Layer) in terms of an 
OSGi service. Such service can be easily controlled by 
exploiting the life cycle primitives provided by OSGi itself. 
In this way APOs from different ZigBee applications can 



 5

cohexist simultaneously within the OSGi execution 
environment. 

B. Architectural Design 

Figure 3 depicts the service-oriented model defined by the 
ZB4OSGi architecture. All of the 3 layers are here 
represented: Access, Abstraction, and Integration layer 
together with the underlying OSGi platform.  

The Access Layer directly communicates with the ZigBee 
network by means of a network adapter (called USB 
dongle), or by RS232 dongles or other kind of adapters. 

According to the OSGi Device Access Specification [5], 
the component implementing the Access Layer is called 
Base Driver (in this work ZigBee Base Driver), while the 
components of the upper layers are called Refinement 
Drivers.  The services registered by the Access Layer are 
gradually refined and further abstracted by means of the 
upper layers. In particular, the Access Layer registers a 
ZigBee service that is cluster neutral: it provides semantic-
free methods that accept as formal parameter a ZigBee 
frame (represented as a sequence of byte) and inject the 
frame into the ZigBee network.  

The Abstraction Layer introduces more semantic to the 
OSGi services, by refining them with new ones. These new 
OSGi services are dynamically registered according to the 
ZigBee profile implemented by the ZigBee devices. For this 
reason the Abstraction Layer registers ZigBee service that is 
profile based.  

Note that, although the Abstraction Layer is designed as a 
generic layer, it should include a specific driver for each 
ZigBee profile in use in the ZigBee network. Since at the 
time of writing this paper, the most established cluster 
library is that of the Home Automation profile, thus the 
current implementation of ZB4OSGi only relies on the such 
profile. However, the development of further driver is also 
planned for other profiles as soon as their specifications will 
become public.  

The Integration Layer, finally, maps the profile-based 
ZigBee services to an application-level protocol (the figure 
only reports the UPnP service). The way the Integration 
Layer reacts to the services registered by the Abstraction 
Layer, follows the standard OSGi event mechanism (see 
section II). This layer runs a set of exporters that detect the 

registration of profile-based ZigBee services. As soon as a 
new event occurs, such exporters will act as protocol 
translator by injecting the ZigBee devices into the 
appropriate network. For example, in a UPnP network the 
ZigBee devices  can appear  as virtual UPnP devices or they 
can appear as brand new SOAP end-point.  

The next section describes in more details the Access 
Layer (namely ZigBee Base Driver), the Abstraction Layer 
and the Integration Layer (by only considering the UPnP 
exporter). 

V. ZB4OSGI LAYERS 

A. Access Layer 

The Access Layer is implemented by means of the 
ZigBee Base Driver (ZBD). Its role is to introduce an initial 
abstraction of the ZigBee hardware by relying on a 
Hardware Abstraction Layer (HAL). The HAL aims at 
integrate heterogeneous ZigBee stack implementations, by 
freeing ZB4OSGi from any industry-driven solution. 
Together with such hardware abstraction, the Access Layer 
also provides a raw OSGi service for each  ZigBee APO.  

 Figure 4 provides an overall view of the Access Layer, 
here the ZBD provides the ZigBee Device API (used by the 
Abstraction Layer) and it uses the Simple Driver API to 
abstract from a specific ZigBee hardware. 

The ZigBee Device API models the notion of ZigBee 
Node in terms of network attributes like IEEE address, 
network address, node type, pan ID etc and the notion of 
End Point in terms of ZigBee attributes like profile ID, input 
cluster ID, output cluster ID, endpoint ID, device category 
etc. Moreover the ZigBee Device API also models the 
notion of ZigBee Cluster described in terms of cluster ID 

and the cluster message. The ZBD instantiates the ZigBee 
Device API as soon as it discovers one EP provided by the 
ZigBee network (the EP discovery mechanism is also 
described along this paragraph).  

For each EP, it creates and registers an OSGi service 
called ZigBeeDevice. The ZigBeeDevice service acts as 
proxy for the EPs. In particular, when an application 
interacts with a ZigBeeDevice service, the ZBD forwards the 
messages to the corresponding EP on the ZigBee network. 
On the other hand, messages coming from the EPs are 
forwarded to the applications waiting for them (in our case 
ZBD forwards the message to the Abstraction Layer that, in 
turns, forwards the message to the high-level application by 
means of the Integration Layer).  

The Simple Driver API (which is also a contribution of 
this work) defines a hardware interface industry-

 
Fig. 4.  The Access Layer 

 
  
Fig.3.  The ZigBee service model 
 



 6

independent that includes most of the common mechanisms 
needed to interact with a ZigBee network. The Simple 
Driver APIs are implemented by the ZigBee network 
Drivers that directly interact with the ZigBee network 
(section VI reports our case study, with some information 
about the CC2480 network driver). The Simple Driver API 
has been designed by taking into account a set of high-level 
primitives for the interaction with the network:  
1) Create/join the network: this includes operations that 

configure the dongle in the ZigBee network by 
specifying the channel to use, the security key and the 
network identifier (pan ID). Moreover it is possible to 
interact with the dongle, to create a new network or to 
join an existing one. 

2) Inspect the ZigBee node: by means of these operations, 
the ZigBee Base Driver obtains the IEEE address of the 
node, the list of EPs available on the node and the 
description of each EP. 

3) Binding to an EP: this enables the ZigBee Base Driver 
to bind the dongle with one or more EPs and vice-versa 
or to bind two remote EPs with each other without the 
enrollment of the dongle. 

4) Receive/send messages from/to an EP: these operations 
enable the ZigBee Base Driver to send messages to an 
EP or to receive messages from the EP (the messages 
are here represented always as array of bytes). The 
communication with an EP may follow a synchronous 
or asynchronous pattern. In the first case the operation 
(either send or receive) is implemented by means of a 
conventional synchronous Java method invocation, 
while in the latter case the communication is part of a 
more complex communication flow implemented by 
means of events and listeners pattern. 

5) Inspect the status of the dongle: these operations 
provide methods to access the configurations of the 
dongle, like the assigned IEEE network address, the 
channel in use etc. Such configurations exploit the 
management and monitoring interface of the ZigBee 
stack. 

Discovery mechanisms 
In order to expose the EPs to the upper layers, the ZBD 

should be able to browse and to monitor the ZigBee 
network. The discovery algorithm used by the ZDB consists 
of two phases. The first phase collects the list of the ZigBee 
nodes available on the network; the second phase inspects 
the available EPs on the ZigBee nodes. Furthermore the 
ZBD should periodically run the first phase, in order to 

consolidate the current network topology. The next two 
subsections describe the first and second phase. 
Discovery of ZigBee nodes 

In ZigBee the mechanisms for browsing and monitoring 
the network are often not proactive (proactive notification 
mechanisms are only optional). For this reason the ZBD can 
discover the ZigBee nodes with two different strategies: 
periodical browsing and continuous browsing. The 
periodical browsing exploits only the ZigBee clusters that 
are mandatory for the ZigBee compliant devices. This 
ensures the compatibility of ZB4OSGi gateway with all 
ZigBee networks. The periodical browsing exploits the 
addressing-tree defined bythe  ZigBee standard. It draws a 
logical tree (see Figure 5a) rooted on the coordinator of the 
network, where the intermediate nodes act as routers and the 
leaves as end-devices or routers. The addressing-tree is 
browsed by means of the IEEE_addr_req and 
IEEE_addr_rsp messages (mandatory in the IEEE standard). 
The former message requests for the IEEE address of a node 
together with the network address list of all the nodes 
“connected” to it. The second message carries the answer. 
The periodical browsing starts form the network coordinator 
(whose address is always 0x0000). The result is a very 
accurate topological perspective of the network, but it 
introduces a non-negligible network overhead. A reasonable 
configuration is to execute the periodic browsing 
unfrequently (for example every hour). 
The continuous browsing uses optional ZigBee clusters 
offering an automatic notification mechanism for the 
connection of new nodes in the network, and for this reason 
it may result more efficient than the periodic browsing.  
Specifically, this method relies on the Device_annce 
message, which  is only optional in the standard. This 
message is broadcasted from a ZigBee node as soon as it 
joins the network.  
Discovery of EPs and ZigBee devices 

When the ZBD detects a new ZigBee node, it further 
inspects it by fetching all the relevant information. ZBD 
exploits two pair of mandatory messages: Active_EP_req, 
Active_EP_rsp and Simple_Desc_req, Simple_Desc_rsp. 
The first pair of messages is used to retrieve the list of 
ZigBee EP available on the node. The second pair of 
messages retrieves the list of the clusters available on a 
specific EP. Once the inspection of a ZigBee node is 
completed, the ZBD registers an OSGi service for every EPs 
found. Figure 5b shows an example in which the ZBD 
browses a ZigBee network made of 6 nodes. Except the 

 
 
Fig. 5a.  Example of addressing tree                                                                    Fig. 5b.  Example of ZigBee device discovery  
 



 7

coordinator, these nodes implement On/Off Light and 
On/Off Switch. Note that the solid lines in the figure define 
the network links among the nodes on the routing tree, while 
the dotted lines represent the sequence in which the ZBD 
queries the nodes. 

B. Abstraction Layer 

The role of the Abstraction Layer is to execute the drivers 
for each ZigBee profile in use in the ZigBee network. The 
Abstraction layer provides two features that distinguish 
ZB4OSGi from the existing solutions described in Table I: 
1) provides an extensible mechanism for the integration of 

standard and custom ZigBee devices. 
2) Reduces the complexity of accessing the ZigBee 

devices by offering easy-to-use APIs to the high-level 
applications. 

Figure 6 depicts an overall view of the Abstraction Layer. 
The HA Profile Driver defines a set of hierarchical Java 
classes modeling the Home Automation devices here called 
Refinement Drivers. Examples of such drivers are: On/Off 
Switch, Remote Control, Door Lock, On/Off Light, Light 
Sensor. The HA drivers inspect all the ZigBeeDevice, 
registered by the Access Layer (more precisely it inspects 
the ProfileID, DeviceID and ClusterID-List of the  
ZigBeeDevice) in order to select the proper Device Factory. 
The role of the Factory is to create an independent 
mechanism for the selection and instantiation of the most 
suitable Refinement Driver for a raw ZigBeeDevice service.  
The Factory further verifies that the ZigBeeDevice 

implements all the mandatory clusters defined by the 
ZigBee profile. These mechanism enable ZB4OSGi to be a 
suitable platform not only for ZigBee devices adhering to a 
set of standard profiles, but also for those devices that 
implement a custom behavior. In fact, third-party developers 
may only provide their own implementation of the Device 
Factory together with the custom Refinement Driver, and 
then they may exploit the internal mechanisms of the 
Abstraction Layer for the dynamic instantiation of the 
proper driver. 

The HA Profile Driver uses the ZCL bundle, that 
implements all the mandatory ZigBee clusters defined by 
the ZigBee profiles. Note that each cluster defines a set of 
attributes and a set of commands to update the value of the 
attributes. The clusters can inherit common commands that 
provide general-purpose operations; such commands have 

been accordingly factorized with the Attribute Interface in 
order to be defined only once and used by all the cluster 
definition. 

 
The design of ZB4OSGi makes easy the interaction with 

the ZigBee devices by hiding the internal details of the 
ZigBee protocol. For this reason, the HA Profile Driver 
bundle also implements glue code that redefines the 
mandatory clusters with simpler versions. For example, let 
us consider a high-level application willing to be notified of 
the status change of the On/Off Light Device. By adopting 
the clusters defined in the ZCL (namely the OnOff cluster), 
the application should be aware and should manage many 
aspects of the ZigBee frames, like the ZigBee frame format 
or know the specific EP to which send the report message. 
All this complexity can be avoided by using a simplified 
version of the cluster where the caller has only to specify a 
listener object: subscribe(OnOffLister listener). As soon as 
the value changes, the listener, specified as parameter, is 
called back. The current implementation of ZB4OSGi offers 
simplified version of clusters for a large number of standard 
ZigBee clusters. 

C. Integration Layer 

The role of the Integration Layer is to export the ZigBee 
devices into different networks. ZB4OSGi provides a 
general-purpose solution, without introducing any specific 
constraint to the target network. This goes beyond the 
existing solutions reported in Table I, where the gateways 
embrace basically one exporting technology  

The OSGi bundles implementing the business logic for 
the exporting procedure are called exporters. Currently, we 
have implemented two different exporters: UPnP exporter 
and PERSONA exporter [7] but other kinds of exporters can 
be easily integrated, e.g. Bluetooth network exporter, 
SOAP/REST exporter or Konnex exporter.  

Since the Integration Layer is designed without 
considering a specific target technology, the rest of this 
section only focuses on the UPnP exporter as meaningful 
example of the integration between the ZigBee and UPnP 
network. 

Figure 7 depicts the UPnP exporter design. It is composed 

 
 
Fig. 6.  The Abstraction Layer 

  
 
Fig. 7.  The Integration Layer 



 8

of two core OSGi bundles: the UPnP Listener and the UPnP 
Base Driver. The UPnP Listener waits for newly registered 
Refinement Drivers and instantiates, for every driver, a 
UPnP Device Service. The UPnP Device Service wraps the 
Refinement Driver with an OSGi service implementing the 
standard UPnP interfaces (refer to org.osgi.service.upnp 
official UPnP APIs). More precisely, the role of the UPnP 
Listener is to map all the commands provided by the 
cluster’s Refinement Driver as UPnP actions and, similarly, 
to map all the ZigBee attributes as UPnP state variables. In 
order to better clarify this mapping, Table II reports the 
association between UPnP state variable and ZigBee 
Attributes, and between UPnP actions and ZigBee 

commands for the standard On/Off Light Device. 
The UPnP Base Driver listens for the UPnP Device 

Services and injects them into the UPnP network. As soon 
the UPnP Base Driver exports a new UPnP device, the 
announce procedure of the UPnP protocol starts. All the 
existing UPnP control points can discover the brand new 
devices and start interacting with them in a standard way.  

VI.  CASE STUDY 

This section describes the experiments that we performed 
to test ZB4OSGi gateway with a real ZigBee application. 
We have adopted Texas Instruments hardware in particular 
the EZ430-RF2480 demonstrator Kit. The kit relies on a 
USB dongle acting as network entry point, more specifically 
the CC2480 System on Chip (SoC). We configured a small, 
star-connected ZigBee network composed by two ZigBee 
nodes and the dongle acting as network coordinator. The 
dongle is connected to the ZB4OSGi stack running on top of 
a 3Ghz Windows XP PC.  

It is important to remark that: 
1) changes to the ZigBee hardware only requires to 

implement a new network driver implementing the 
Simple Driver API, without affecting the design of 
ZB4OSGi. 

2) Adopting ZigBee profiles that differ from the Home 
Automation can be accomplished by implementing a 
new Factory and the Refined Drivers adhering to the 

profile. 
3) The USB dongle can play the role of network 

coordinator or network end-point. 
The ZigBee nodes have been configured in order to run 
ZigBee devices adhering to the Home Automation Profile. 
For this purpose we have compiled the Home Automation 
samples shipped with the ZStack© from Texas Instruments 
(we choose On/Off Light Device and On/Off Light Switch 
devices). By adopting third-party ZigBee devices, this 
experiment certifies the adherence of ZB4OSGi to the 
ZigBee profile definition. 

The ZigBee devices are repeatedly queried by an external 
application (also running on the host PC) by means of the 
ZB4OSGi gateway. The requests issued to the ZigBee 
network vary in order to test different functionalities of the 
ZB4OSGi. The tests also give some results in terms of 
responsiveness of the whole system. From these tests it 
resulted that the system bottleneck is, by far, the EZRF430-
CC2480 dongle. In particular, Figure 8 shows the average 
requests per second that the application of the host receives 
for different frequencies of the queries injection. These 
average refer to a set of tests in which, for each given 
frequency, 100 requests are issued by the application 
according to that frequency. The figure shows clearly that, 
for very low injection frequencies, the number of requests 
served per second scales linearly. However, the system 
reaches soon the saturation.  

This is due to the limits of the dongle that cannot sustain 
even moderate frequencies of messages. In fact, from a more 
detailed analysis, it resulted that the delay in serving a 
request is due only to less than 1% to the ZB4OSGi 
gateway, while the dongle accounts for almost 55% of the 
delay and the remaining part is due to delays introduced in 
the ZigBee network. 

VII.  CONCLUSION 

The ZB4OSGi gateway enables the interconnection of 
ZigBee devices with external applications. Differently than 
the design of other ZigBee gateways, ZB4OSGi makes use 
of abstraction mechanisms that enable the applications to 
interact with the ZigBee network at high level, without any 
prior knowledge of the low level protocols and message 
formats of ZigBee. Furthermore ZB4OSGi has been 
designed considering an efficient extension mechanism for 
those ZigBee devices not adhering to any specific ZigBee 
profile.  

 
 
Fig. 8.  Average number of requests served per second 

TABLE II  -A 
MAPPING BETWEEN UPNP STATE VARIABLES AND ZIGBEE ATTRIBUTES 

 
UPnP State Variable ZigBee Attribute 

Target 
Status 
 

OnOff 
- 

 
TABLE II  -B 

MAPPING BETWEEN UPNP ACTIONS AND ZIGBEE COMMANDS 
 

UPnP Action ZigBee Command 

SetTarget(0) Off 

SetTarget(1) On 

GetTarget Read attribute command 

GetStatus - 



 9

At the current status, ZB4OSGi defines a driver for the 
Home Automation Profile of ZigBee, which is the first 
profile delivered and the most established one, however the 
implementation of drivers for new profiles is planned for the 
future. Further works are also scheduled for the extension of 
the supported ZigBee network drivers, more specifically 
support for the new CC2531 USB dongle and support for 
ember® ZigBee stack. It is intention of the ZB4OSGi team 
to enable the gateway to interact simultaneously with more 
than one single ZigBee dongle.  

The overall architecture of ZB4OSGi demonstrates a 
mature degree of stability, currently it has been adopted 
within the framework of some European projects [19, 20] 
with remarkable results.  

REFERENCES 
[1] P. Baronti, P. Pillai, V. Chook, S. Chessa, A. Gotta, and Y.F. Hu: 

Wireless Sensor Networks: a Survey on the State of the Art and the 
802.15.4 and ZigBee Standards. In: Computer Communications, 30 
(7): 1655-1695 (2007) 

[2] S. Chessa: Sensor Network Standards book chapter in: J. Zheng and 
A. Jamalipour, Wireless Sensor Networks: A Networking 
Perspective, Wiley-IEEE Press, ISBN: 978-0-470-16763-2, 
September 2009, pp.407-431. 

[3]  ZigBee alliance, http://www.zigbee.org  
[4] ZigBee Alliance, ZigBee Cluster Library Specification, 

http://www.zigbee.org, 2010 
[5] The Open Source Gateway Initiative, http://www.osgi.org 
[6]  Universal Plug and Play, http:www.upnp.org 
[7]  The Persona middleware, http://www.persona.org 
[8] ZigBee Alliance, Understanding ZigBee Gateway, 

http://www.zigbee.org, September 2010, pp.1-16.  
[9] OSGi Service Platform Release 4, Version 4.1, May 2007 

(http://www.osgi.org). 
[10] C. Lee, D. Nordstedt, and S. Helal, “Enabling smart spaces with 

OSGi”, IEEE Pervasive Computing 2(3):89-94, 2003. 
[11]  ZigBee Alliance, ZigBee specification,   http://www.zigbee.org, 17   

January 2008. 
[12]  Woo Suk Lee; Seung Ho Hong, “Implementation of a KNX-ZigBee 

gateway for home automation”, IEEE 13th International Symposium 
on Consumer Electronics, pp. 545 – 549 (2009) 

[13]  Kawamoto, R.; Emori, T.; Sakata, S.; Furuhata, K.; Yuasa, K.; Hara, 
S., “DLNA-ZigBee Gateway Architecture and Energy Efficient 
Sensor Control for Home Networks”, 16th IST Mobile and Wireless 
Communications Summit, pp. 1-5 (2007).  

[14]  Seong Hoon Kim; Jeong Seok Kang; Hong Seong Park; Daeyoung 
Kim; Young-joo Kim, “UPnP-ZigBee internetworking architecture 
mirroring a multi-hop ZigBee network topology”,  IEEE 
Transactions on Consumer Electronics, 55 (3): 1286 – 1294 (2009) 

[15]  Guozhen Hu, “Design and implementation of industrial wireless 
gateway based on ZigBee communication”, 9th Int. Conf. on 
Electronic Measurement & Instruments (ICEMI ) 2009, pp. 1-684 – 
1.688 

[16]  Peng Qiu; Ung Heo; Jaeho Choi, “The web-sensor gateway 
architecture for Zigbee”, IEEE 13th Int. Symp. on Consumer 
Electronics (ISCE), pp. 661 – 664 (2009) 

[17]  De Silva, G.S.H.; De Silva, L.W.R.; Ishara, P.W.K.; Kumara, 
M.P.H.; Ginige, T., “SmartBee; Multichannel Access ZigBee 
Gateway with Plug and Play Device Interface for Smart Home/Office 
Automation”, 4th Int. Conf. on Information and Automation for 
Sustainability (ICIAFS) 2008, pp. 251 – 256 

[18]  Young-Guk Ha, “Dynamic integration of zigbee home networks into 
home gateways using OSGI service registry”, IEEE Transactions on 
Consumer Electronics, 55 (2) : 470 – 476 (2009) 

[19]  EU FP7 project PERSONA : Perceptive spaces promoting 
independent aging, http://www.aal-persona.org/, 2006-2009 

[20]  EU FP7 project universAAL: UNVERSal open platform and 
reference architecture Specification for Ambient Assisted Living, 
http://www.universaal.org, 2010-2014  

[21] Ambient Assisted Living Open Association (AALOA), 
http://www.aaloa.org, 2011 

[22]  The ZigBee4OSGi project, http://zb4osgi.aaloa.org/, 2011 
[23]  Marshini Chetty, Ja-Young Sung, and Rebecca E. Grinter. 2007. 

How smart homes learn: the evolution of the networked home and 
household. In Proceedings of the 9th international conference on 

Ubiquitous computing (UbiComp '07), John Krumm, Gregory D. 
Abowd, Aruna Seneviratne, and Thomas Strang (Eds.). Springer-
Verlag, Berlin, Heidelberg, 127-144. 

[24]  Fung, B.; Trojer, T.; Hung, P.; Xiong, L.; Al-Hussaeni, K.; Dssouli, 
R.; , "Service-Oriented Architecture for High-Dimensional Private 
Data Mashup," Services Computing, IEEE Transactions on , vol.PP, 
no.99, pp.1, 0 
doi: 10.1109/TSC.2011.13 


