Low-Quality Training Data in Information Extraction Diego Marcheggiani¹ and Fabrizio Sebastiani²

¹Istituto di Scienza e Tecnologie dell'Informazione, Consiglio Nazionale delle Ricerche, Pisa, Italy ²Qatar Computing Research Institute, Qatar Foundation, Doha, Qatar

Introduction

- Little or no prior work on investigating the effects of the quality of training data on IE accuracy
- Low quality of training data may have different causes:
 - Cost issues may have been more important than quality issues at annotation time;
- The coders entrusted with the work may not have been involved in the design of the concept set;
 The training data may be outdated.
- ▶ Common denominator among the above is that
 ▷ a non-authoritative coder C_β annotated Tr;

Extraction accuracy for the two settings

				LC-CRFs				HM-SVMs			
		$\boldsymbol{\lambda}$	$\kappa(\lambda)$		F_1^{μ}		F_1^M		F_1^{μ}		F_1^M
Ra	Batch1	0	1.000	0.783		0.674		0.820		0.693	
De		100	0.742	0.765	(-2.35%)	0.668	(-0.90%)	0.786	(-4.33%)	0.688	(-0.73%)
De	Batch2	0	1.000	0.808		0.752		0.817		0.754	
De		100	0.742	0.733	(-10.23%)	0.654	(-14.98%)	0.733	(-11.46%)	0.625	(-20.64%)
	Average	0	1.000	0.795		0.713		0.819		0.724	
AV		100	0.742	0.749	(-6.14%)	0.661	(-7.87%)	0.760	(-7.76%)	0.657	(-10.20%)

▷ an authoritative coder C_{α} (defined as the one who annotated Te) would have annotated Trdifferently.

Methodology

Dataset

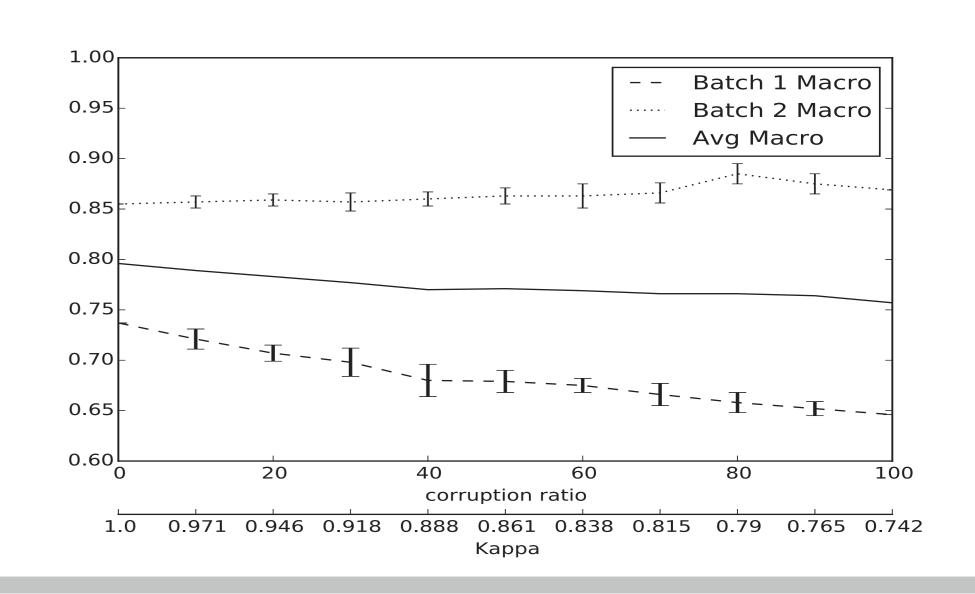
• Goal of our work: measuring how much accuracy suffers when Tr is annotated by C_{β} .

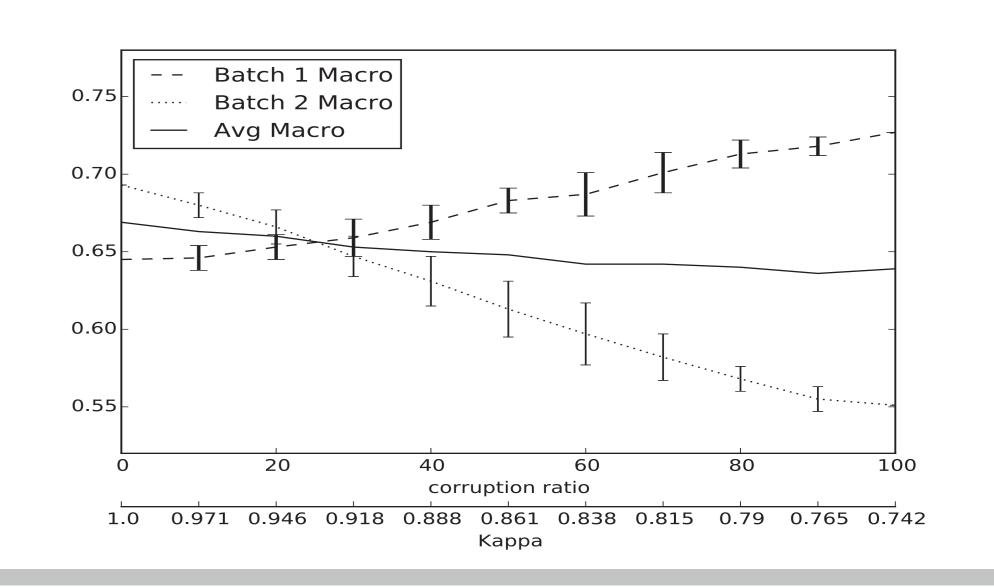
► We do this by comparing:

- ▷ accuracy in an authoritative setting (i.e., both Trand Te annotated by C_{α}).
- ▷ accuracy in a non-authoritative setting (i.e., Te annotated by C_{α} and Tr annotated by C_{β}).
- We use the token-and-separator F₁ measure to evaluate annotation accuracy, and Cohen's kappa (\varkappa) to evaluate intercoder agreement.

Main Findings

- ► F_1 as a function of λ varies much less for Batch1 than for Batch2.
- We conjecture this to be due to the fact that Coder1 is an underannotator and Coder2 an overannotator. As clear from the plots,
- When *Tr* is increasingly annotated by Coder2 (an overannotator), precision suffers somehow (along with more TPs there are also more FPs), but this is compensated by an increase in recall;
 When *Tr* is increasingly annotated by Coder1 (an underannotator), recall drops substantially (due to fewer TPs), and this drop is not compensated by the stability of precision.



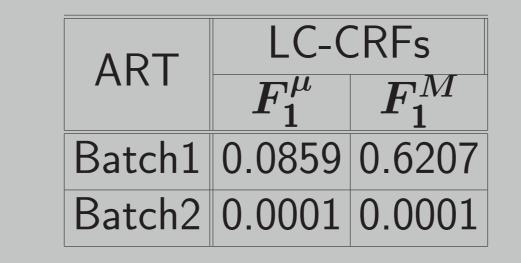


- We perform experiments, using LC-CRFs and HM-SVMs as learners, on Umbertol(RadRep), a clinical IE dataset of 500 mammographic reports written in Italian and annotated according to 9 concepts (e.g., FollowupTherapies, OutcomesOfSurgery, etc.).
- The reports were annotated by 2 equally expert radiologists:
- 191 reports by Coder1 only (1-only)
 190 reports by Coder2 only (2-only)
 119 reports by Coder1 and Coder2 (Both(1) and Both(2))

	Mentions	Tokens
Annotated by Coder1	1,045	18,529
Annotated by Coder2	1,210	24,822

Experimental Protocol

An approximate randomization test (ART) confirms that the drop in F₁ is statistically significant in Batch1 but not in Batch2:



The preliminary indications are thus that low-quality training data are less of a problem if the training data annotator is an overannotator

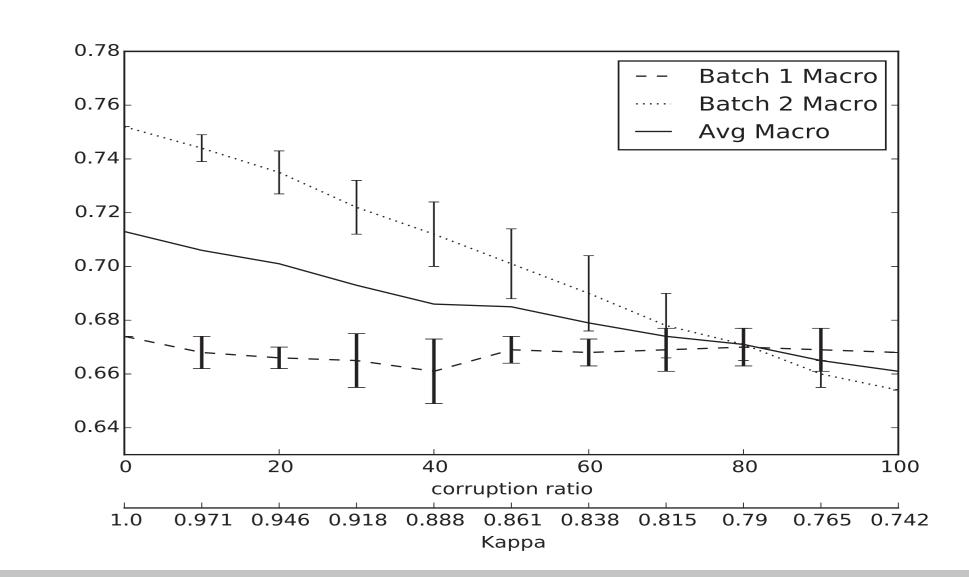


Figure: Macroaveraged precision (top), recall (mid), and F_1 (bottom) as a function of the corruption ratio λ for the LC-CRFs case.

Future work

► More experiments (and more datasets with double annotations) needed to confirm the above results.

► Two batches of experiments:

Batch1: Coder1 is C_{α} , i.e., Te is 1-only. Tr is Both(1) in the authoritative setting and Both(2) in the non-authoritative setting. Batch2: Coder2 is C_{α} , i.e., Te is 2-only. Tr is Both(2) in the authoritative setting and Both(1) in the non-authoritative setting.

• We also test partially authoritative settings, i.e., a randomly chosen $\lambda\%$ of Tr is annotated by C_{β} , and the rest is annotated by C_{α} .

Future experiments also need to test situations characterized by lower levels of intercoder agreement (e.g., junior coders, crowdsourcers, etc.).

More details in ...

D. Marcheggiani and F. Sebastiani. On the Effects of Low-Quality Training Data on Information Extraction from Clinical Reports. arXiv:1502.05472 [cs.LG]

