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ABSTRACT:

The remote visualization and navigation of 3D data directly inside the web browser is becoming a viable option, due to the recent efforts
in standardizing the components for 3D rendering on the web platform. Nevertheless, handling complex models may be a challenge,
especially when a more generic solution is needed to handle different cases. In particular, archeological and architectural models are
usually hard to handle, since their navigation can be managed in several ways, and a completely free navigation may be misleading and
not realistic. In this paper we present a solution for the remote navigation of these dataset in a WebGL component. The navigation has
two possible modes: the ”bird’s eye” mode, where the user is able to see the model from above, and the ”first person” mode, where the
user can move inside the structure. The two modalities are linked by a point of interest, that helps the user to control the navigation
in an intuitive fashion. Since the terrain may not be flat, and the architecture may be complex, it’s necessary to handle these issues,
possibly without implementing complex mesh-based collision mechanisms. Hence, a complete navigation is obtained by storing the
height and collision information in an image, which provides a very simple source of data. Moreover, the same image-based approach
can be used to store additional information that could enhance the navigation experience. The method has been tested in two complex
test cases, showing that a simple yet powerful interaction can be obtained with limited pre-processing of data.

1. INTRODUCTION

The remote visualization (via Web) of complex geometry has
become feasible only in the last couple of years. The WebGL
framework allowed to overcome the proprietary plugins issue,
and three-dimensional content is slowly becoming a usual type
of content for web pages.
The issues about the visualization of 3D models are related not
only to the necessity to handle complex data, but also to the in-
teraction with them. Navigating 3D environments is not trivial,
due to both the nature of data and the fact that most of the users
are not used to that. This is especially true when dealing with
3D models of complex environment (terrains with buildings and
ruins, often found in the archeological field); even more when
3D models come from sampling technologies (3D scanning or
3D-from-photo), which produce high-resolution, unstructured tri-
angulated models. What is the best way to interact with them?
A completely free navigation may be hard to handle, while ex-
tremely constrained approaches may limit their potentials. While
it is possible to borrow ideas from the entertainment world (i.e.
videogames industry), the best solution would be to find a flex-
ible, lightweight system needing only a small amount of pre-
processing.
This paper presents a method for the navigation of complex arch-
elogical 3D environments, especially tailored for web visualiza-
tion. The main contributions include:

• An intuitive navigation paradigm which includes two pos-
sible modes: the bird’s eye view, where the user can ex-
plore the model from top; and the first person mode, where
the user can walk inside the environment in a walk-through
fashion. The two modes are linked by the presence of a point
of interest, which helps the user in the navigation from top,
and permits an intuitive passage between the two modes.

• An image-based encoding of the constraints for navigation.
Each image channel contains the data needed for realistic
interaction (i.e. height from ground, collision), without the

need of the presence of proxy 3D models or similar. More-
over, the other channels of the image can encode also other
information which can be used for the navigation (i.e. lo-
cation or invisible hotspots). The image can be generated
with a semi-automatic approach starting from the geometry,
or by hand with the usual image processing tools.

The approach is especially suited to archeological environments
made by one or more ”levels”, but it could be adapted to other en-
vironments. It was tested on two cases: an entire insula in Pompei
acquired with terrestrial laser scanners (where location informa-
tion was used to integrate the 3D model with existing documen-
tation, linked through a website) and a medieval village whose
model was acquired with UAV. In both cases, a very intuitive nav-
igation was obtained without the need of complex pre-processing
operations.

2. RELATED WORK

Remote visualization of complex architectural environments deals
with several general issues. The main ones are the integration
of three-dimensional contents on the web, and the navigation of
complex environments. While a comprehensive overview of all
the related approaches goes well beyond the scope of the paper,
we provide an overview of the state of the art in the following
subsections.

2.1 3D and the Web

Three-dimensional data have always been considered part of mul-
timedia content, but their role in the context of web pages hasn’t
been a major one until a few years ago. This was mainly due to
the difficulty to handle complex data, but also to a lack of stan-
dardization. Hence, their visualization and use was supported
through the use of embedded software components, such as Java
applets or ActiveX controls (ACT, n.d.).
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Some research effots were devoted to define a common data for-
mat (Raggett, 1995, Don Brutzmann, 2007), but 3D scene visu-
alization was still delegated to external software components.
Only an initiative by the Khronos Group (Khronos Group, 2009a),
the creation of WebGL standard (Khronos Group, 2009c), was
able to generate a remarkable change. WebGL is a mapping of
OpenGL|ES 2.0 specifications (Khronos Group, 2009b) in Java-
Script. Direct access to the graphics hardware by the web browsers
allows to fully exploit the potentials of rendering (Evans et al.,
2014).
Following this standard, several actions were made to provide a
sort of interface between the low-level OpenGL commands and
the data visualization and navigation. We can see two different
directions of research: the first one is more dedicated to a declar-
ative approach, based on the concept of scenegraph. Two ex-
amples of declarative programming solutions are X3DOM (Behr
et al., 2009) and XML3D (Sons et al., 2010). In alternative to
the declarative approach, several other actions went in the di-
rection of an imperative approach, where a more direct inter-
action is possible. Several libraries have been developed (most
of them based on Javascript as a basic language), ranging from
scene-graph-based interfaces, such as Scene.js (Kay, 2009) and
GLGE (Brunt, 2010), to more programmer-friendly paradigms,
such as SpiderGL (Di Benedetto et al., 2010), WebGLU (DeLillo,
2009), and Three.js (Dirksen, 2013). Several examples of integra-
tion of 3D data on the web are appearing now. Among the prac-
tical issues that have to be solved to provide usable tools, there
are the necessity to integrate the models with other types of data
(Jankowski and Decker, 2012, Callieri et al., 2013), but also the
need for methods to handle the visualization of single complex
objects (Behr et al., 2012, Callieri et al., 2013). The Smithsonian
X3D explorer (http://3d.si.edu) is an alternative example where
3D models are associated to additional content, but the structure
and flexibility of the proposed system are not known.

2.2 Camera control in Computer Graphics

The issue of 3D camera control is well known in the context of
Computer Graphics. Please refer to the work of Christie (Christie
et al., 2008) for a comprehensive overview.
The main solution developed to interactively observe and inspect
a 3D model is the virtual trackball (Chen et al., 1988, Bell, 1988,
Shoemake, 1992, Henriksen et al., 2004), that allows 3D rotations
with just 2 Degrees of Freedom input devices, such as the mouse.
This interaction works very well when the aim is to rotate around
an object, but it tends to fail when the environment is more com-
plex. For example, when the user needs to explore the inside of
an object, or when its shape cannot be approximated to a sphere,
this approach usually fails.
On the other side, a totally free navigation may be difficult to
implement, and it could lead to a lost-in-space effect, where the
user is not able to find the orientation in the context of a scene.
Moreover, there are important object-related issues that should be
taken into account (i.e. in an architectural environment, the user
does not want go below the ground).
Solutions have been proposed to constrain and guide the trackball
paradigm (Fitzmaurice et al., 2008, Hachet et al., 2008), but in the
case of more complex environments (i.e. the architectural ones)
other methods have been implemented. They could be based on a
preliminary analysis of the scene to calculate pre-defined paths
(Andujar et al., 2004), or constraining the camera with force-
fields to avoid collisions (Wan et al., 2001, McCrae et al., 2009).
Another possible solution is to select a set of possible points of
view, and constrain the navigation to these points, which can
be connected by the means of pre-computed paths (Hanson and
Wernert, 1997). The choice of the points of view describing a
complex environment is a very complex task (Scott et al., 2003),

and authoring is usually necessary (Burtnyk et al., 2002, Burtnyk
et al., 2006).
Following this approach, image-based techniques have been used
to remove limitations on scene complexity and rendering quality
for interactive applications. Please refer to the recent work by Di
Benedetto (Di Benedetto et al., 2014) and its bibliography for a
comprehensive overview. Nevertheless, the aim of our work was
to provide a solution supporting the free navigation of the model,
trying to define implicit constrains and taking advantage of the
strong points of different navigation paradigms.

3. EFFICIENT RENDERING

The first problem related to the visualization scheme was to ren-
der effectively the complex 3D model representing the area of
interest. As we stated in the introduction, we are focusing to-
wards the visualization of complex 3D models of archeologi-
cal/historical areas, created by sampling the real environment (by
3D scanning or 3D-from-photos). These models are not a ”sim-
ple” terrain, that can be easily managed using 2.5D methods,
or well known terrain-specific level-of-detail approaches, but re-
quire a full 3D management. Additionally, we have to work with
extremely complex 3D models, made of millions of triangles.

While not the main contribution of this work, it is nevertheless
necessary to present the solution which we have used in order to
stream these dataset over the net and render them inside a web
browser.

3.1 WebGL and SpiderGL

Our visualization framework is based on WebGL (Khronos Group,
2009c), a component of HTML5. Thanks to this, the 3D con-
tent works natively inside the browser, without the need of plug-
ins on most modern browsers (Firefox, Chrome and Internet Ex-
plorer) on all platforms. WebGL provides direct access to the
GPU of the PC, enabling a programmer to write extremely op-
timized low-level code, as one would do in standard software
programming. However, since WebGL is very low-level, its di-
rect use is not really common, and many developers use support
libraries, able to provide higher level functionalities, data struc-
tures and helper functions. To this aim, we decided to use Spi-
derGL (Di Benedetto et al., 2010), a JavaScript support library
oriented to Computer Graphics programming.

Using these components we built a simple, yet flexible frame-
work for the creation of 3D presentation of high-res models on
the web. Using a declarative-like approach, it is possible to de-
fine a simple scene. The framework takes care of asynchronous
data loading, event management, rendering and animation. All
the components of the scene (3D models, trackball, camera) are
configurable and extensible, making it possible to create simple
visualization webpages with ease, but at the same time, when
a more complex visualization is needed, it is possible to fully
exploit the modular/configurable capabilities of the framework.
This is what we have done in this work: by tweaking the behav-
ior of the renderer and of the navigation/interaction components,
we were able to create a specialized visualization webpage.

One of the core modules of this framework is the management of
multiresolution 3D models, a feature that we have used to stream
and display the huge 3D models shown in the examples (Sec-
tion 5.).
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3.2 The Multiresolution engine

Displaying high resolution models on a web browser is not just
a matter of optimizing the rendering speed, but it also involves
considering the loading time and network traffic caused by trans-
ferring a considerable amount of data over the network. Loading
a high-resolution model as a whole through the web requires to
transfer a single chunk of data in the order of tens, if not hun-
dreds, of megabytes: this causes a lot of band usage, and the user
has to wait for the transmission to end before seeing any visual
result.

Multiresolution techniques provide the solution for both render-
ing and data transfer. These schemes generally split the geometry
in smaller chunks; for each chunk, multiple levels of detail are
available. Transmission is on demand, requiring only to load and
render the portions of the model strictly needed for the genera-
tion of the current view. While this approach is key to be able
to render very large models at an interactive frame rate, it is also
helpful to optimize the data transfer over the network, since the
geometry will be divided in small chunks and only transferred
when needed. The model is immediately available for the user
to browse it, even though at a low resolution, and it is constantly
improving its appearance as new data are progressively loaded.
On the other hand, since refinement is driven by view-dependent
criteria (observer position, orientation and distance from the 3D
model sections), only the data really needed for the required nav-
igation are transferred to the remote user.

Figure 1: The multiresoluton Engine. On left: the patches used ,
smaller and more detailed near the camera, larger and at a lower-
resolution farther away. Middle: when rendering, the geometry
appear as a continous surface. On right: the multiresolution eas-
ily manage the whole 27 million triangles model of the Pompeii
Insula.

We implemented one of those multiresolution scheme, Nexus
(Cignoni et al., 2005) (http://vcg.isti.cnr.it/nexus/), on top of the
SpiderGL library (Di Benedetto et al., 2010), obtaining very good
performances. In the two examples shown in this paper, we are
dealing with high-resolution 3D models: the Pompeii insula is
more than 27 millions triangles (Figure 1), while the San Sil-
vestro Hill is around 22 millions (Figure 7). Both datasets are
displayed at interactive rate, with almost immediate startup at
the page loading, and the progressive refinement provides good
visual results even on slower networks. This makes possible a
quick, seamless exploration of the entire dataset, and supports
instant jumping from one part of the area to another.

4. NAVIGATION

As we stated, navigation is the most important component of the
visualization. Our aim was to implement a navigation simple to
use, but able to fully explore mixed ground-buildings 3D dataset
like the Pompeii insula or the San Silvestro Hill.

Instead of trying to implement a single all-purpose navigation
method, which would result in an extremely complex interface,
we decided to implement two different but complementary navi-
gation methods: a ”bird’s eye” view, to explore the dataset from

above, and a ”first-person” view to explore the area in a more im-
mersive way. In this way, each navigation mode is easier to use
and more specialized but, by combining both navigation meth-
ods, it is possible to fully explore the 3D dataset with greater
flexibility.

Figure 2: The visualization webpage interface. On left: the 3D
view, in bird’s eye view mode, with the current point of interest
shown by the 3D locator. On top right: the current area and room
name, tracked using the location channel of the map. On middle
right: the minimap, graphically showing the current position. On
bottom right: the current position of the user, expressed in this
specific case as relative coordinates with respect to a local origin
defined in a GIS tool

4.1 Bird’s eye mode

Bird’s eye view mode mimics flying above the environment or,
with a more precise metaphore, looking from above at a maquette
of the area. The user viewpoint hovers the area, looking down at
specific details (see Figure 2).

This is, however, not a completely unbound navigation (like in
the free-camera paradigm), but is similar to what is available
in applications such as Google Earth. Basically, the camera al-
ways refers to a point of interest, located on the ground of the
environment. The user may move this point, panning across the
map, and change the camera orientation (vertical tilting, orbit-
ing, and zooming). We did not consider the use of a completely
free camera because it is really difficult to be controlled by non-
experts (especially in a web browser environment), without pro-
viding a significative increase of flexibility. Even considering its
constrains, this navigation mode enables the user to easily reach
every portion of the environment. This is especially true in the
Pompeii dataset, but also in most of the archeological sites: since
most of the roofs are missing, it is possible to see almost all of
the walls and details of the structure.

The point of interest is shown on the 3D view with a locator (a
simple 3D model, visible in Figure 2); this helps the user in hav-
ing a clear feedback on its position inside the area. The locator is
nearly human-size, to better understand the scale of the area, and
show at its base the cardinal points (the red arrow points towards
north).

The implementation of bird’s eye view is quite easy. Since we
are dealing with a terrain-like environment, it is simply a mat-
ter of defining an absolute XY positioning on the ground (X axis
aligned with East-West axis and Y axis on the North-South one).
Beside the extents of the dataset area, it is necessary to have a
way to follow the ground geometry when moving across the area.
Most datasets presents irregular, sloped, uneven terrain; and hav-
ing a way to accurately position the point of interest is crucial
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to cope with these irregularities. We will explain this point in
Section 4.4.1. No collision is necessary in this navigation mode,
since it would impose unnecessary constrains in user movement,
making the navigation of the whole area more difficult.

Bird’s eye view is the starting navigation mode of the visualiza-
tion webpage. The user may, at any time, switch to the first-
person view (see next Section). While switching to first person
view, location and orientation are preserved, i.e. the point of in-
terest of the bird’s eye will become the location of the first-person
camera, and the view direction of the bird’s eye will be the same
of the one used by the first-person (see Figure 3). In this way, it
is much easier to go back and forth between views, allowing for
a seamless exploration of the dataset. The same correspondence
will be preserved when switching back from first-person to bird’s
eye.

Figure 3: Switching from bird’s eye to first-person preserves the
user position and orientation, as it is visible in these images.

4.2 First person mode

Even if, in an environment like Pompeii, with most of the ceilings
missing, the bird’s view is more or less sufficient to explore the
entire map, it is sometimes useful/necessary to ”jump into” the
3D model, to explore the environment like it would be done in
person.

The first-person view mode lets the user moves around the en-
vironment at ground level (the camera is at a human-compatible
height). Our implementation follows the same mechanism used
in many similar tools: the first-person lets the user look in all di-
rection (using the mouse) and move around on the ground (using
the mouse or the WASD keys, generally used in videogames).

Similarly to the bird’s eye mode, also in the first-person mode it
is necessary to follow the ground geometry when moving around.
There is, however, an additional constrain often found in sim-
ilar navigation modes: the collision with walls and other ge-
ometries. Implementing these features for a first-person view
is always complex, given the unstructured nature of the kind of
3D models we are using, generated from 3D scanning. In most
videogames or interactive visualization, the 3D model used comes
from manual modeling; it has a lower resolution and, more impor-
tant, it is highly structured (walls and floors are explicitly marked,
and often a collision mesh is also manually created). This helps
a lot the navigation, but it is not easily obtainable when dealing
with this kind of 3D models.

For the terrain-height following, we have used the method de-
scribed in Section 4.4.1 , while in Section 4.4.2 we explain the
method used for managing walls collision.

4.3 Minimap

In order to simplify the exploration, we also added a mini-map
to the visualization page (see Figure 2). The minimap has two
purposes: to give an immediate feedback on the current position,

thus avoiding users to ”get lost” while zooming or when in first-
person view, but also to have a way to instantly jump to another
position.

The position of the point of interest is shown using a crosshair
drawn over the image, dynamically updated at every user move-
ment. Conversely, when the user clicks on a point on the min-
imap, the point of interest is instantly moved to that location.
Both these actions exploit the fact that there is a perfect match
of the area covered by the 3D dataset, the minimap and the one
covered by the data map (see next section). Locations are passed
between these three elements using relative coordinates (0.0-1.0),
to gather independence from image resolution.

4.4 The ”Navigation Image” encoding

As we stated in the previous section, in order to provide a easy-
to-use navigation, it is necessary to implement some mechanism
able to follow the terrain height and to manage collisions. Addi-
tionally, tracking the user position is another need often present
in this kind of visualization. In all cases, it all boils down to
knowing, for a given position in the dataset area, a specific infor-
mation: which is the terrain height in this point? Is there a wall in
this point, or is it free-ground? In which room/zone is this point?.

The idea is to have all these location-dependent information stored
in a single, easy-to-access structure; knowing the location of the
user (the point-of-interest for the bird’s eye, and the viewer po-
sition in first-person), it is easy to retrieve the location-specific
data, and have the visualization page react accordingly. We chose
to store all the data in an image file, where each channel encodes a
specific information. PNG format is used, given its lossless com-
pression. An example of such image is shown in Figure 4. This
”Navigation Image” is read at the page loading; then, it is drawn
on a hidden canvas and read back in memory in an array. At this
point, the pixels are directly addressable by Javascript code. This
structure is accessed using relative coordinates, thus ensuring in-
dependency from the image resolution, and an easier mapping
between coordinates.

4.4.1 Red channel - Terrain Height Most of the 3D datasets
built using sampled data have a high-res non-flat terrain; mov-
ing across this terrain requires then to alter the camera height to
follow the geometry of the ground. This is generally obtained
by creating a low-res collision ground, which is then tested as
the user moves. Given that this lower-res collider is generally
smooth, encoding its height in a map is not a problem, and makes
much easier its use. The red channel of our map is used to store
the base height of the terrain, i.e. a smoothed height-field rep-
resenting the ground without the walls and other occluders. By
using this map, the camera always follows the terrain when mov-
ing in the bird’s eye and first-person view. The height map is
smoothed to avoid useless camera shaking, and the walls and
small colliders are not included, to have the camera follow the
”real” ground level. Its use is straightforward: every time the XY
position of the user changes, its Z coordinate is modified accord-
ing to the value encoded in this map.

4.4.2 Blue channel - Collision Another feature which is of-
ten sought in this kind of visualization is the collision with walls
and other large geometries. This is a non-trivial task, since it re-
quires, in most game engines, the manual creation of collision
meshes (often, with specific geometrical-topological constrains,
to obtain better performances), and a complex management of
the collision check. The blue channel of our map is used to store
the collision/validity map: each pixel encodes if the correspond-
ing area is free, occupied by an occluder (mostly, walls), or im-
passable (the area outside the 3D model, or not suitable for first-
person navigation). The collision map is used mostly when the
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user is in first-person view; every time the user XY position has
to be updated, the map is checked: if the new XY position would
cause a collision, the motion is culled at the wall, preventing the
collision. Bird’s eye view does not use the collision map, since it
may be useful for the user to place its point of interest anywhere
in the map and, beside this, ignoring the walls and unsurmount-
able terrain does allow a quicker exploration of the map. The
collision map is, however, used in bird’s eye view when clicking
on the minimap: if the user has asked do go in an ”impossible”
position, its position is snapped to the closest ”safe” position. The
same mechanism is used when the view mode is switched from
bird’s eye to first-person: if the point of interest is currently in-
side a wall, the user is moved to the closest open ground, to avoid
having the user being trapped.

4.4.3 Green channel - Location A situation often occurring
in this kind of datasets is the need to determine the exact location
of the user, not just in terms of absolute XY coordinates on the
map (which we already have), but in terms of areas, sub-areas,
rooms, or any other semantical subdivision of the map. Again,
this information is easily encoded in an image map. The green
channel of our map is used to determine the position of the user
point of interest. Each pixel simply stores the ID of the area;
the 255 available values are enough to encode the areas for most
datasets.
Every time the user position changes, the ID of the pixel under
the user XY position is fetched and used to access a JSON (Java-
Script Object Notation, an open standard for representing simple
data) structure with all the information on the areas: a globally
accessible variable is updated and a call-back function is called
when the ID changes, in order for the webpage to react accord-
ingly.

Figure 4: The visualization webpage interface. On left: the 3D
view, currently in bird’s eye view mode, with the point of interest
shown by the 3D locator. On top right: the current area and room
name, tracked using the location channel of the map. On middle
right: the minimap, graphically showing the current position. On
bottom right: the current position of the user, expressed in this
specific case as relative coordinates with respect to a local origin
defined in a GIS tool

4.4.4 Other channels and encoding Since we are using PNG,
it is possible to also have an Alpha channel; at the moment, it is
not used. It may contain additional IDs of areas (if more than
255 areas have to be encoded); or could be used in conjunc-
tion with the red height channel, to have more resolution on the
vertical axis, when dealing with a steeper terrain; or to encode
any other location-based data. The assignment of the channels is
completely arbitrary, and may be easily altered to cope with spe-

cific characteristics of the dataset. It is also possible, if running
out of space, to add another image map, adding three/four more
channels.

While there are other ways to encode the same type of informa-
tion, this access strategy exploits already existing and highly op-
timized mechanisms of the browser. Additionally, given the data
contained in the channels, it behave very well when compressed.
The most valid alternative would be to keep all this data in a vec-
torial format; this would surely work, but with a limited impact
on the size of the data (depending, for example, on how complex
the geometry of the walls is), and, more importantly, it would
require a much more complex authoring and editing.

Considering the Pompeii dataset, the PNG image used is only
500kb in size, for a 1142 x 980 resolution, with a physical size of
each pixel around 10cm, more than enough to provide an accu-
rate management for terrain height, walls collision and location
tracking.

4.4.5 Authoring navigation images From the start, we wanted
a method for managing the aforementioned features (ground height,
wall collision, area detection) which was simple both when using
it in realtime and when creating the data needed for its use.

The height channel may be easily created from the 3D model: a
simple color-coded (Z value to red value) orthographic rendering
from above (or below) is enough to generate this channel. Then,
to have a more continuous height, it is possible to smooth the ren-
dered image, it is easier and have better results than starting from
a smoothed geometry. We stated that it is better to not consider, in
the height map, the walls and other non-terrain geometries. These
areas may be manually found and eliminated in the 3D model or
in the rendered image (and then smoothly filled). It is also pos-
sible to use, on the 3D model, some heuristics to automatically
select walls and similar geometries, and then cut them. This au-
tomatic approach is viable and time saving; in the cases where
the detection is not really accurate, a small manual intervention
would help obtaining a good result in a shorter time, with respect
to the completely manual approach.

The collision channel is slightly more complex. While it is an op-
tion to manually mark all the walls and colliders using an image-
editing software, this may be time consuming. The same heuris-
tics mentioned for the height channel may also be applied to find
the walls for the collision channel. Also in this case, the result
of this automatic detection may be further refined with a limited
manual intervention, resulting in a much cleaner result. This is
the procedure used to generate the collision maps shown in Fig-
ure 4 and Figure 5.

Both of these maps (height and collision), can also be created
from GIS raster or vector data: this method is easy and time-
effective, making it possible to exploit existing data.

Unfortunately, for most applications, the ”location” channel will
necessarily should be created manually, since there is not a straight-
forward way to automatically subdivide a 3D model in an archeological-
sensible way. However, creating this image from an existing GIS
vector/raster layer is a viable (and recommended) option.

4.4.6 Page interconnection Especially when dealing with com-
plex archeological environment, it is often possible to have exist-
ing databases or documentation-rich websites. It would be inter-
esting to connect the visualization page with these existing repos-
itories. This would mean having a way, on one hand, to open from
the existing website the 3D visualization page with the point of
interest and view parameters already focusing on a specific area
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and, on the other hand, from the current point of interest, go back
to the existing website, directly accessing the section related to
the current 3D location.

This is indeed possible, thanks to the parametric nature of the
visualization page. In order to open the visualization page, the
Query String mechanism can be used. It is possible to specify
completely the position and view parameters; for example, the
following url query string opens the visualization with the point
of interest located at 36.0 meters East, 12.6 meters North, with
camera looking at 45 degree with respect to north direction, 60
degree azimuthal angle, zoom level 2.0:

http://aaa.com/pompeii3D.html?StartNS

=36.0&StartEW=12.6&StartPhi=45.0&

StartTheta=60.0&StartZoom=2.0

It is also possible to ask the webpage to go to one of the ”ar-
eas” or ”rooms” defined in the JSON structure mentioned in sec-
tion 4.4.3. This structure contains a list of areas/subareas, each
one with an associated ID, name, description, and URL (see next
paragraph) and parameters for setting point of interest and view
direction to frame it. By passing the name of the desired area
to the URL of the 3D visualization webpage, the page will open
by framing the desired area, fetching the appropriate parameters
in this JSON structure. The following url query string opens the
visualization with the point of interest location and camera ori-
entation stored in the JSON entry for the ”house of Torello di
Bronzo”:

http://aaa.com/pompeii3D.html?

StartRoom=1.7_house_torello

Going in the other direction is also easy. Since at all times, the
webpage knows where the user point of interest is located, in ab-
solute coordinates or at area/room level (thanks to the location
map), it is possible to open back the existing website at the de-
sired section. This can be implemented by using the same JSON
structure just mentioned: the URL stored in each area/room is
used for this specific purpose.

5. RESULTS

The proposed rendering and navigation method was applied on
two real datasets, in order to test the usability and the possible
uses of the image map encoding. The first one represented a
nearly planar but slightly sloped, complex architectural structure,
while the second one represented a less planar, irregularly urban-
ized medieval borough on top of an hill.

5.1 The Pompei Insula V.1

The first test case was the model of the Insula V.1 of Pompei.
This wide area (1330 square meters), was acquired in the context
of a project coordinated by the Swedish Archeological School
(Dell Unto et al., 2013) using phase shift laser scanners. The
acquisition campaigns and the subsequent processing generated
several complete models of the insula at different resolutions.
The model (which was composed by 27M triangles, with a res-
olution of around 3cm) was also referenced w.r.t. the reference
system of the archeologists.
The original map of the insula was used as the minimap, while

the height and collision were created in a semi-automatic fash-
ion. The walls were removed from the 3D model, using an auto-
matic selection function of MeshLab, and the collision map was
obtained by producing a snapshot of a blue colored model from
the same point of view as the minimap (see Figure 5,right).

The height map was obtained through filling the missing por-

Figure 5: The height and collision maps for the Pompei example

tions of the geometry via Poisson reconstruction, and encoding
the height from the ground in the red channel using a per-vertex
color function of MeshLab tool (see Figure 5,left). Some exam-
ples of the navigation of the Pompei dataset are shown in Figures
2 and 3. In this case, the green channel of the image map was
used to link the 3D model to an already existing website that con-
tained the documentation (text and images) for each single room
of the Insula. By encoding in the green channel the Id of each
room, it was possible to access directly from the navigation con-
text the corresponding page on the Pompei Project website.
Figure 6 shows an example of the link between the position of the
focus point and the corresponding data sheet on the website. A
possible future extension of this system would be a perfect inte-
gration with the website, where the user could jump in and out of
the two websites in an integrated fashion.

Figure 6: Linking the navigation with a data sheets website.

5.2 San Silvestro village

San Silvestro was a miners medieval village which is currently
part of a minerary park in Tuscany, Italy. The village was the
target of an acquisition campaign using a UAV and Multi-view
stereo matching techniques. Several different flights around the
village allowed to extract more than 400 frames that were used
for obtaining a complete multi-view stereo reconstruction.
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The model of the village can be extremely valuable for several
aspects, and the possibility to freely navigate a three-dimensional
model gives the chance to overcome its peculiar placement on top
of an hill. The final 3D model (with color) was made of 22M tri-
angles, with a resolution of nearly one point every 5 cm.
As in the previous example, the model was scaled to real mea-
sures, and geo-referenced using the documentation provided by
the park authorities. Then, it was processed to be used with multi-
resolution visualization. The mini map (see Figure 4,top-left) for
navigation was obtained through a non photo-realistic rendering
of the model from top. The complete image map can be seen
in Figure 4 with all the channels encoded: the height on the red
channel, the location on the green one, and the collision in the
blue one.

The height channel was obtained in an automatic fashion by

Figure 7: Two snapshots of bird’s eye navigation of San Silvestro
model

encoding the color w.r.t. the height from the ground using a per-
vertex color function of MeshLab tool, and generating a snapshot
from the top view. The collision channel was obtained in a semi
automatic fashion, by first removing the vertical walls from the
geometry, and then modifying by hand the blue colored remain-
ing geometry. In this case, the collision surface was less easy to
define, due to the presence in the model of architectural remains,
rock and vegetation. The location channel was easily produced
by hand starting from the minimap. It defines the different (i.e.
residential, industrial, church) areas of the village.
Figure 7 shows two points of view that can be reached using the
bird’s eye modality: it’s easy to get a view from the top, but
also to explore portions of the village. On the top right of each
snapshot, the peculiar area associated to the focus point is shown.
Moreover, the UTC coordinates are available (bottom right).
Figure 8 shows two points of view that can be reached with first

person navigation: one that can re-create a real visit (the one from
the ground), the other providing a point of view not available to
visitors (it is currently not possible to climb on top of the tower).
The test on this model shows that it is possible to prepare a dataset
where the ground is not planar, with only a minimal intervention
in the creation of the image maps, and providing an extremely
flexible yet intuitive navigation.

Figure 8: Two snapshot of first person navigation of San Silvestro
model. Top: on top of the tower. Bottom: from the industrial area
outside the village.

6. CONCLUSIONS AND FUTURE WORK

This paper presented a solution for the navigation of 3D envi-
ronments on which the usual trackball paradigm for navigation
cannot be applied. The system integrates two different visualiza-
tion modalities (linked by the concept of ”point of interest”), that
could account for different needs in the exploration of a complex
architecture.
Moreover, the important information needed to ensure a realistic
experience are stored in a image map, that could be used also to
store additional information (i.e. the location of the current point
of interest). The image map can be produced with a limited effort
by the user, and it’s easily integrated in the navigation environ-
ment.
The main limitations of the current approach are: the need for
data that are not organized on different levels (although the nav-
igation could ”switch” from one layer to another when needed),
the use of bird’s eye view when the model has roofs (although this
could be overcome by using ad-hoc visualization, like x-ray-like
shaders), and the necessity to produce the image map ”by hand”
(although the procedure is quite straightforward and could be au-
tomatized, for example using a MeshLab script).
Nevertheless, the system could be directly applied to a number of
possible test cases in the field of Cultural Heritage, from arche-
ological excavation to city navigation, or even for the exploration
of artifacts with small detail (like engraving or small decorations).
Regarding future improvements of the system, three possible di-
rections of work can be outlined: the implementation of simple
interaction functionalities (measurement, sections, simple anno-
tation), the creation of authoring tools to help in preparing new
scenes, and a better integration with existing web visualization
systems.
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