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Abstract—In this work, a local feature based background
modelling for background-foreground feature segmentation is
presented. In local feature based computer vision applications,
a local feature based model presents advantages with respect to
classical pixel-based ones in terms of informativeness, robustness
and segmentation performances. The method discussed in this
paper is a block-wise background modelling where we propose
to store the positions of only most frequent local feature con-
figurations for each block. Incoming local features are classified
as background or foreground depending on their position with
respect to stored configurations. The resulting classification is
refined applying a block-level analysis. Experiments on public
dataset were conducted to compare the presented method to
classical pixel-based background modelling.

I. INTRODUCTION

Many computer vision application dealing with object
detection, tracking, description, and recognition on static video
streams are based on local features (such as SIFT, SURF and
ORB). Those kind of applications usually have to apply a
pixel-wise background subtraction algorithm (such as Mixture
of Gaussian) to restrict the local feature extraction only on
foreground. These background subtraction methods increase
the total computational cost, already high due to local feature
extraction, even without considering the image local features
for the foreground/background segmentation. Moreover, some
features near the foreground boundaries may not be detected
since some neighboring parts around the interest point are cut-
off.

In this work, a block-wise local feature based background
modelling for background subtraction is presented. A local
feature-based model presents advantages with respect to clas-
sical pixel-based ones in terms of informativeness, robust-
ness and segmentation performances. Moreover a feature-
based model of the background is useful to computer vision
applications that would anyway extract local features, saving
resources otherwise reserved to other methods and providing
the already extracted local features for further processing.

The presented foreground detection method has been im-
plemented and tested on the Raspberry Pi platform (equipped
with the Pi Camera module) as first step to perform unsu-
pervised learning to recognize objects in a distributed camera
scenario.

The rest of the paper is organized as follows: Section
2 describes the main features of some studied background

subtraction methods. Section 3 presents our feature based
background subtraction method. Section 4 reports the experi-
ments performed and the metrics used to evaluate our method.
Conclusive remarks are addressed at the end of this paper.

II. RELATED WORK

Background subtraction methods differ in the type of
background model maintained and in the way they evaluate
and update it.

Classical methods maintain a model for each pixel
independently from each other. Wren et al. [1] proposed
to model each pixel with a gaussian probability density
function fitting the last n pixel’s values. A running (or online
cumulative) average is maintained to compute the mean µ and
standard deviation σ of the gaussian pdf at each new pixel
value. Evaluation is done comparing the current pixel value
x to the pixel model: if |x − µ| > kσ, the current pixel is
considered foreground. Cucchiara et al. [2] makes this model
more robust taking µ as a temporal median of the last n
values. Those methods have the advantage of a low memory
footprint and a high speed, particularly useful in embedded
smart camera platforms, but might provide a poor model in
case of an active background since they are based on a single
scalar value.

A more accurate and widely used approach for background
modeling is mixtures of gaussians (MoG) [3]. In this approach,
statistics of each pixel are modeled by a mixture of a variable
number N of gaussians. The probability of observing a pixel
with a certain RGB value x ∈ R3 is the following:

p(x) =

N∑
i=1

wi · n(x;µi,Σi)

where n(x;µi,Σi) is a multidimensional gaussian probability
density with mean vector µi ∈ R3 (representing the mean of
the pixel’s value) and covariance matrix Σi ∈ R3×3 (assumed
diagonal for simplicity):

n(x;µi,Σi) =
1√

(2π)3|Σi|
e−

1
2 (x−µi)

T Σ−1
i (x−µi)

and wi are the weights associated with each gaussian,



Fig. 1: Example of foreground-background missclassification in back-
ground subtraction method based on MoG: half of the remote control
shares color with the background and therefore is misclassified.

defined such that
N∑
i=1

wi = 1.

This kind of model can represent up to N different
“sources” of background in a single pixel. For example, given
a repetitive moving background such as a tree blowing in the
wind, a pixel value could oscillate between green of the leaves
and another color from the background. A gaussian component
of the mixture could represent the green value from the leaves
and another component could represent the underneath color.
If the model is correctly trained, both colors can be correctly
classified as background.

The model training and update requires to change ac-
cordingly the parameters of the mixture, that are the weigths
w1 . . .wN and the parameters of each gaussian (µ1,Σ1)
. . . (µN ,ΣN ), based on incoming frames. A good choice of
those parameters is their maximum-likelihood estimates given
a set of samples (i.e. pixel values). This can be done using
the EM (Expectation-Maximization) algorithm on a sliding
window of pixel values.

This method is more demanding in terms of memory
occupation and computational resources with respect to
simple gaussian model, but it is more accurate in presence
of an active background. However, this method presents
some drawbacks: a) since it is color-based, the background
subtraction does not perform well if a foreground object
we are trying to detect shares colors with the background
(see Figure 1), b) training and updating the model with a
number N > 1 of gaussian components may result in an
unwanted memory effect. For instance consider the following
scenario: a new object appearing in the scene is correctly
detected and after a while, thanks to the online training,
its pixel values becomes part of the background model. If
the object is removed from the scene and then reinserted in
approximately the same position, a gaussian component of
the model previously trained will match with the object pixel
values, marking them as background. This problem is better
visualized in Figure 2.

More complex models exploit spatial correlation of pixels
in the background model, dropping the assumption of indipen-
dent pixels.

Oliver et al. [4] presents a method based on eigen-value de-
composition applied to the whole image. In the learning phase,

the mean µ and the covariance matrix C of n background
images are computed. Principal component analysis (PCA) is
applied to maintain only the M strongest eigenvectors of C,
stored in an eigenvector matrix ΦM . In the evaluation phase,
ΦM is used to project the current frame I to the eigen-space

I ′ = ΦM (I − µ)

and than back project it to the image-space, obtaining

I ′′ = ΦTMI
′ + µ

Since the transformation keeps only background components,
is it possible to identify foreground pixels where |I−I ′′| > T .

Seki et al. [5] exploits block-wise spatial informations
stating that neighboring blocks of pixels belonging to the
background should experience similar variations over time.
For each block of N × N pixels, its image variation (a
N2-component vector) is computed as the average of the
mean-subtracted samples of a block. Applying PCA, the
dimensionality of an image variation is reduced from N2

to K and an eigen-space transformation is found. Blocks
are classified as background if its image variation in the
eigen-space is close to the variations of its neighboring blocks.

III. FEATURE-BASED BACKGROUND MODEL

The presented method, which will be referred to as LF-
BBM+ (Local Feature Based Background Model plus) in this
paper, is an enhanced version of the method presented by
Dehghani and Sutherland [6], which will be referred to as
LFBBM. The main goal of this method is to segment the
local features extracted from the current frame in two sets:
the foreground features, potentially belonging to a foreground
object, and the background ones, which are fixed and not
interesting for our goal.

A. Background Model

In LFBBM, a block-wise background model is built. The
image coming from the camera is divided into blocks of
Wb×Hb pixels. After the position of all local feature keypoints
(KPs) have been detected from the image, they are assigned
to the appropriate block based on their (x, y) position in the
image. In each block, the set of KPs’ positions is called an
event (Figure 3a). In order to facilitate event labeling, the
2D coordinates of the KPs are mapped in a 1D coordinate
by numbering the pixels from 0 at the top left corner of the
block, and then counting along each row from left to right to
Wb ×Hb − 1 at the bottom right corner. The set of those 1D
coordinate forms the event hash (see Figure 3b).

Together with the hash, a counter and a timestamp are
maintained for each event. The counter associated with each
event is incremented every time a particular event (that simul-
taneous observation of that group of KPs) occurs.

The whole background model is made by the sets of the
occurred events (one set for each block) and their associated
counters.
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Fig. 2: Example of unwanted memory effect in background subtraction method based on MoG. Frames (a-e) and extracted foreground masks
(f-j) of a testing video are shown: background is initially trained (a), then an object is inserted and detected (b). After a while it is inserted
in the background model (c). The object is then removed and reinserted in a slightly different position, but its detection is not correct due to
memory effect (d). No problem arises if the object is reinserted in a position not overlapping with the first one (e).

(a)

Event Hash Counter Timestamp
(28,32,64,67,84) 7 143

(b)

Fig. 3: (a) The visualization of an event as simultaneous observation
of interest point positions inside a block. (b) Numerical representation
of the event.

B. Learning Phase

The model is continuously updated at every incoming
frame: each detected KP is associated with the correct block
and becomes part of the current event for that block. Then
for each block the event is inserted in the set of the occurred
events of that block. If the event is already present in the set,
its counter is incremented, otherwise a new counter is created.

In order not to store forever all KPs which occurred at least
once, LFBBM+ has been enhanced with an an aging technique.
A timestamp (frame number) is associated with each event
and updated every time that event occurs: if an event does
not occur again within a fixed number Tage of frames, it is
discarded and removed from the background model. Common
values for Tage are around 50 frames. In this way, possible

memory effects due to intermittent object motion are avoided
and in the long run the model will not increase its memory
occupancy too much.

In LFBBM+, the data structure used to store and retrieve
events of a block is an hash table having event hashes as
key instead of the binary search tree suggested by LFBBM.
In this way, LFBBM+ has better speed performance at the
cost of higher model memory requirements. However, since
in LFBBM+ the size of the model is reduced by the aging
technique, its final memory requirements are comparable to
LFBBM.

An example of background model for a block is reported
in Table I.

C. Classification Phase

In each block, a set B of background KP positions is main-
tained: every time a counter is above a threshold parameter T ,
all the 1D coordinates belonging to the associated event are
inserted in B.

If a position of an incoming KP is present in B, it is
considered as a background KP, otherwise it is considered as
a foreground one.

After this preliminary classification of the incoming KPs,
the following post-processing tasks are executed in order to
decrease the misclassification rate:

1) Background Zone Enlargement: Due to acquisition
noise, the exact positions of the KPs can slightly change
during time. Therefore a background point could be incorrectly
classified as a foreground one when its position is not the same
as the background point present in the B set.

In LFBBM, all the non dominant events hashes (events
that has not reached the minimum threshold to be considered
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Fig. 4: LFBBM+ output: (a) features are partitioned in Foreground
KPs (red circles) and Background KPs (blue circles). (b) The ex-
tracted foreground mask.

Event Hash Counter Timestamp
(16,19,22) 1 187

(10,16,20,23) 2 117
(20) 1 14

(10,23) 1 3
(11) 11 204

(19,23) 29 220
(16,18,20,23) 1 76

(20,22) 5 212
(11,22) 3 215
(18,23) 2 209

(20,22,26) 1 72
(12,23,25) 1 4

(11,16,23,32) 1 151
(23) 11 216

(11,16,23) 6 210
(11,23,48) 2 95
(19,22,32) 1 217

. . . . . . . . .

(a)

B: 11, 16, 19, 20, 22, 23

(b)

TABLE I: (a) Example of background model for an image block
(without post-processing tasks), containing all the events occurred
(background events are bold). In this example, the background events
are obtained applying a threshold T = 5 to the counter column. (b)
The obtained background positions list B used to classify incoming
interest points. It is obtained grouping together the positions of
background events.

background) are compared using a distance function with
all the dominant ones. Non dominant events near enough to
dominant ones are still classified as background. This task
is very computational demanding since the number of non
dominant events in a block can be very high, and therefore
also the comparisons to be computed.

In LFBBM+, in order to limit this effect, the r×r neighbors
pixels of any background KP are considered as background and
are inserted in B. Common values of r are around 3-5. In this
way, the precision of the post-processing is slightly decreased
but the computational cost is affordable.

2) Neighbor Blocks Analisys: The blocks of the image can
be divided in three different types: 1) background blocks, that
contain only background KPs, 2) foreground blocks, containing
only foreground KPs and 3) mixed blocks, that contain both.

1 1 1
1 0 1
1 1 1

TABLE II: The 2D 3 × 3 filter used to compute the number of
foreground neighbors of a block.

Some blocks are spurious and all their KPs can be correctly
reclassified in foreground or background points. For example
a mixed or foreground block with no foreground blocks in its
neighborhood is probably spurious and has to be reclassified
as background block. Similarly a background block with many
foreground blocks in its neighborhood is probably a foreground
one.

To do this, a binary image with one pixel per block is
created: each pixel has value 1 if the correspondent block is
a mixed or foreground one, 0 otherwise. A 2D 3 × 3 filter,
reported in Table II, is applied to compute the number of
foreground neighbors for each block. If the neighbors count is
below a threshold parameter TFG the block and all its KPs are
reclassified as background since it has not enough foreground
neighbors to be considered foreground. If the neighbors count
is above a threshold parameter TBG > TFG, the block is
surrounded by enough foreground blocks to be considered a
foreground one and all its KPs are reclassified as foreground.
Common values for those parameters are TFG = 1 and
TBG = 4.

At the end, the output of this algorithm is the partition
of the initial set of KPs in foreground and background ones,
respectively shown in Figure 4 as blue and red circles.

A foreground mask similar to the ones produced by the
background subtraction algorithms is obtained drawing white
filled circles centered in the foreground KPs’ positions on a
completely black mask. Morphological opening operation is
applied to the mask, in order to discard singular spurious fore-
ground spots and to fill background holes inside a foreground
area. Finally, the convex hull of each isolated white spot is
found and filled (see Figure 4).

The presented method is independent from the interest
point detection algorithm. Among the available detectors,
FAST [7] detection algorithm is suggested for the following
reasons:

• its implementation does not use image pyramids. In
this stage, we are searching for parts of the frame con-
taining detectable features and we are not interested in
finding features robust to scale transformations, hence
image pyramids are unnecessary.

• it does not limit the number of detected points. Since
the background model is based on interest point posi-
tions, detected points should not disappear from a part
of the image because of the insertion of something
which has stronger points.

• it is usually faster than other detectors, which is
relevant in a low resource computing platform.

IV. EXPERIMENTS

For evaluation of the background modelling, we have
performed a foreground-background segmentation of the local



features of some test videos using different methods . Experi-
ments were performed on two public datasets:

A. BMC dataset

The BMC dataset1 [8] is composed by 20 synthetic videos
of two outdoor scenes (see Figure III), divided in “learning
phase” videos and “evaluation phase” videos, and 9 real
videos. Camera acquisition noise, illumination changes and
background movements are artificially added in synthetic
videos, emulating a windy and cloudy environment. Only
“learning phase” videos have been used, since they come with
groundtruth foreground masks for each frame.

B. CDW-2012 dataset

The CDW-2012 dataset2 [9] is composed by different
categories of videos and was designed for evaluation of change
detection algorithms. However, some of the categories are also
suitable for background modelling evaluation, since videos
come with groundtruth annotation of each pixel of evaluation
frames and with already segmented region of interest. Each
video is composed by a first unannotated training part and an
annotated evaluation part.

Four background models are evaluated: static frame (frame
difference with thresholding or FrameDiff), Mixture of Gaus-
sian model (MoG), LFBBM and LFBBM+. Each algorithm
is applied to each video: at each frame FAST keypoints are
extracted and classified as foreground or background keypoint.
For pixel-based methods (FrameDiff and MoG), the classifi-
cation is performed looking to the foreground mask obtained
by the algorithm. The correct classification is given by the
groundtruth foreground masks. For videos of the BMC dataset,
models are continuously trained and evaluation metrics are
computed over the entire video. For CDW-2012 videos, models
are trained only during the training part of the video and
metrics are computed over the evaluation part of the video only.
The parameters of the evaluated methods have been tuned for
each category of video used during tests. A visualization of test
videos and outputs of each method is reported in Figure III.

Measures related to binary classification problems are
extracted for each video and their averages for each video
category are reported in Table IV. Positive and negative classes
represent respectively foreground and background points. The
following measures are extracted:

1) Precision: Prec = TP
TP+FP , where TP is the number of

correctly classified foreground points and FP is the number
of background points incorrectly classified as foreground. This
measure represents the fraction of keypoints classified as
foreground that are really foreground keypoints.

2) Recall: Rec = TP
P , where P is the number of foreground

keypoints. This measure represents the fraction of all fore-
ground keypoints correctly classified as foreground points.

3) F-Score: F1 = 2pr
p+r which is the harmonic mean of

precision and recall. Values reported in Table IV are averaged
for each video category.

1Background Models Challenge: http://bmc.iut-auvergne.com/
2Change Detection Workshop: http://changedetection.net/

BMC “Learning Phase” videos
Method Prec Rec F1 Spec Acc FPS
LFBBM+ 0.81 0.81 0.80 0.99 0.98 37
LFBBM 0.79 0.86 0.81 0.99 0.98 34
MOG 0.72 0.47 0.56 0.89 0.87 24
FrameDiff 0.76 0.73 0.69 0.97 0.95 37

CDW-2012 “baseline” videos
Method Prec Rec F1 Spec Acc FPS
LFBBM+ 0.65 0.89 0.75 0.92 0.92 155
LFBBM 0.57 0.96 0.68 0.84 0.86 130
MOG 0.97 0.18 0.30 1.00 0.89 107
FrameDiff 0.90 0.55 0.67 0.98 0.93 196

CDW-2012 “badWeather” videos
Method Prec Rec F1 Spec Acc FPS
LFBBM+ 0.66 0.40 0.48 0.71 0.54 84
LFBBM 0.76 0.36 0.45 0.84 0.57 71
MOG 0.90 0.04 0.08 0.99 0.44 45
FrameDiff 0.84 0.09 0.16 0.96 0.46 84

CDW-2012 “intermittentObjectMotion” videos
Method Prec Rec F1 Spec Acc FPS
LFBBM+ 0.67 0.85 0.71 0.84 0.84 221
LFBBM 0.68 0.87 0.69 0.82 0.81 193
MOG 0.95 0.10 0.18 1.00 0.71 137
FrameDiff 0.74 0.57 0.62 0.94 0.82 254

CDW-2012 “lowFramerate” videos
Method Prec Rec F1 Spec Acc FPS
LFBBM+ 0.81 0.43 0.53 0.83 0.58 113
LFBBM 0.85 0.48 0.53 0.78 0.57 68
MOG 0.88 0.11 0.19 1.00 0.48 68
FrameDiff 0.91 0.23 0.34 0.95 0.52 133

CDW-2012 “shadow” videos
Method Prec Rec F1 Spec Acc FPS
LFBBM+ 0.48 0.85 0.60 0.85 0.86 192
LFBBM 0.47 0.87 0.57 0.77 0.80 170
MOG 0.98 0.23 0.36 1.00 0.88 120
FrameDiff 0.71 0.52 0.58 0.96 0.89 195

TABLE IV: Evaluation Metrics: the table shows averaged Precision,
Recall, Specificity, F1 Score, Accuracy and FPS obtained by all
algorithms tested for each video category.

4) Specificity: Spec = TN
N , where TN is the number of

correctly classified background points and N is the number
of background keypoints. This measure represents the fraction
of all background keypoints correctly classified as background
points.

5) Accuracy: Acc = TP+TN
P+N , which represents the fraction

of all keypoints correctly classified.

6) FPS: how many frames per second are processed during
tests. For each frame, FAST keypoints are extracted and
classified using one of the evaluated methods.

V. CONCLUSION

LFBBM+ has in general best performances in terms of
accuracy and f-score and it is almost as fast as FrameDiff, a
very simple and fast pixel-based method. The loss of recall
in LFBBM+ with respect to LFBBM is a minor drawback we
have afforded in order to get higher precision and accuracy
values. LFBBM+ is more selective on which keypoints has
to be classified as foreground whereas LFBBM tends more
frequently to classify a keypoint as foreground, increasing the
false positive rate. Although pixel-based methods (FrameDiff
and MoG) are more precise in background subtraction, they
tend to incorrectly classify features on the boundary between
foreground and background, hence having low recall values.
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TABLE III: Test videos used for evaluation: the first two videos (street, rotary) belongs to BMC dataset, the others to CDW-2012. The first and
second columns show the original frame and its groundtruth foreground mask. The remaining columns show the results obtained by LFBBM+,
LFBBM, MoG and FrameDiff. Red and blue circles correspond to foreground and background local features. For LFBBM+ and LFBBM, local
features are superimposed to the groundtruth foreground mask, while for MoG and FrameDiff, the generated foreground mask is shown.
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