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Abstract.

Ambient Assisted Living applications are deployed in smart environments that provide some basic services, a typical example
being user localization. AAL applications generally have low accuracy requirements for indoor localization; this opens the
opportunity for parasitizing the existing smart environment infrastructure without adding dedicated positioning sensors.

In this scenario, one can exploit simple binary sensors that are usually present in the smart environment, such as light and
appliance switches or intrusion detection sensors, to obtain a rough estimate of the position of the user. This application is
device-free, meaning that the user is not required to carry any device in order to be localized.

In this paper we present CEO, a software-only system which we evaluate along the technical guidelines of the EvAAL
competition. While the localization performance of CEO is lower with respect to most EvAAL competitors of past editions, it
has the benefit of being non-intrusive, easy to install and perfectly compatible with other software systems: these characteristics
would made it a potentially significant EvAAL competitor. While developing CEO, we only exploited the definition of the
EvAAL competition environment as it was presented to competitors. The only inputs to CEO are the context events generated
during the competition, which in 2012 and 2013 were limited to pressing light switches and using a stationary bicycle. We
compare the performance of CEO against the results of those editions of EvAAL and show how it can be used to easily improve
the performance of any EvAAL competitor.
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1. Introduction

The main goal of a smart environment is to provide
services to its occupants, thanks to the use of a usually
rich set of sensors and devices.

In this context, an Ambient Assisted Living (AAL)
environment is one that is aimed at providing assis-
tance with activities of daily living to the inhabitants,
empowering them with the possibility of an indepen-
dent life style despite minor disabilities. A typical sce-
nario involves elderly people living alone at home [1].
AAL environments have gained increasing interest re-
cently because of the growing number of elderly citi-
zens in developed countries, and have been the object
of significant funding in European research projects in
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the last several years, first under the AAL 1 umbrella
and more recently under the European Innovation Part-
nership on Active and Healthy Ageing 2 (EIP-AHA)
umbrella.

Any AAL system needs some method of locating
the user, and indoor localization is an open research
area which has produced much literature [2]. Gener-
ally speaking, an indoor localization system requires
devices scattered through the environment for sensing
the presence of people.

In this paper we analyze the possibility of exploiting
the information provided by a basic domotic environ-
ment where light switches, anti intrusion systems and
home appliances are able to communicate their activa-

1http://www.aal-europe.eu/
2http://ec.europa.eu/health/ageing/innovation/
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tion over a home network, without any additional ded-
icated sensors or devices, in order to give an estimate
of the position of a single inhabitant.

The idea is to use a software-only method, so no
additional hardware is needed besides the devices that
are already installed in the domotic environment; the
software reads the events generated on the home net-
work and implements a trivial movement model. Pos-
sible ways of improving the system, alone or in con-
junction with other sources of position information, are
suggested.

While many research projects have targeted sensor-
rich real AAL environments [3,4,5], we are aware of
none that openly provides sensor event traces coupled
with an accurate ground truth of the movements of
the inhabitants. Conversely, researchers that have fo-
cused on logging precise traces of people movements
in indoor movements (typically using cameras) [6,7,8]
have not concentrated on real AAL environments and
thus we are not aware of available data sets of indoor
positioning data that include extensive event traces
from sensors triggered by residents in their activities of
daily living. In this context, as a way to test and evalu-
ate our proposed concept in a controllable and realistic
way, we make reference to the EvAAL 3 framework.
EvAAL is a yearly competition [9] aimed at defining
benchmarks for the evaluation of AAL systems. It was
born in 2011 as an offspring of the universAAL FP7
project, financed by the European Union [10] for cre-
ating a FLOSS software platform for AAL systems.
EvAAL is a project hosted by the AALOA4 open as-
sociation, which is devoted to:

Bring together the resources, tools and people in-

volved in AAL in a single forum that makes it much

easier to reach conclusions on provisions needed

to achieve AAL progress [11].

Defining comprehensive benchmarks for AAL sys-
tems is a daunting task, and during its first three edi-
tions, EvAAL has concentrated on evaluating AAL
subsystems, with the long-term goal of gradually ex-
panding the evaluation procedure to groups of subsys-
tems and, eventually, to complete AAL systems.

There have been two subsystems considered so far
in EvAAL, specifically: localization of single per-
sons in a domestic environment and low-level activ-
ity recognition. To be consistent with the mission of

3http://evaal.aaloa.org/
4http://www.aaloa.org/

the competition, the evaluation procedures defined for
both has kept into account several criteria, some of
which relative to the performance of the subsystems,
others relative to how well the competing systems
could integrate within an AAL environment. All in all
the final score awarded to a competing system is com-
posed by summing five different scores, of which the
one relative to accuracy accounts for 35% of the to-
tal, while the others relate to reliability or delay of

the measures, installation complexity, user acceptance

and interoperability with AAL systems. The purpose
of considering so many different criteria is to set a bal-
ance among the quality of the main output of the sys-
tem, that is the accuracy, and all the other qualities
that make the localization or activity recognition sub-
system a “good citizen” of a complex AAL system.
A brief discussion on how this balance is achieved is
done below, here it suffices to say that we believe that
the balance is well chosen, and we build our work on
this assumption.

In this paper we concentrate on the localization
competition as defined by the EvAAL rules set for the
2012 and 2013 editions. In those editions, the com-
petitors were provided with some simple context infor-
mation, namely events corresponding to light switches
activations and the use of a stationary bicycle. These
events were meant to ease the work of the competing
localization systems and increase their accuracy. How-
ever, few of the competitors have used that informa-
tion, probably because doing so would have required
changes to their systems that were deemed too expen-
sive. This observation leads to some questions: is that
simple context information really useful? how much
would a competing system be advantaged by using it
rather than ignoring it? and, more radically: is it pos-
sible to build a viable localization system that only
uses that context information, and how well would it
perform in comparison to the other competing sys-
tems? This paper is meant to answer these questions.
The source code of the proposed algorithm is available
in [12] together with the used datasets.

In the literature the concept of using context infor-
mation in an AAL system is well established. Two ex-
amples are [13], where motion sensors and appliance
switches are used to monitor the patterns of activity
of a person at home and [14], where light and ap-
pliance switches and bed and chair usage sensors are
used to detect abnormal behavior of a person at home.
We believe that the importance of using context in-
formation from already-installed devices is bound to
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keep growing. Specifically, information parasitically
obtained from light switches, appliance switches and
intrusion detection switches can be very precious in
any smart home environment and a good starting point
for localizing the user at home.

We think that investigating the above questions is
in fact significant to further the state of the art in in-
door localization meant for AAL systems, that is with
a required accuracy not smaller than a person’s body
footprint and not bigger than the size of a room. One
important reason is that we think that real-life systems
will necessarily gather input from different sources
and fuse them to obtain the location estimate. In fact,
many of the most successful systems that competed in
EvAAL have used some sort of data fusion from differ-
ent sources. Data fusion is particularly appealing be-
cause it is robust with respect to varying availability
and quality of data sources, and can take advantage of
low-quality data, such as the context information pro-
vided during the EvAAL competition. The winner of
the localization track in 2013 has been RealTrac, a sys-
tem that relies heavily on data fusion using a particle
filter [15]. Data fusion applied to indoor localization
for AAL is recently receiving more and more attention
[16,17,18].

Next sections provide a literature analysis of ex-
isting indoor localization systems outside and inside
AAL in section 2; an overview of the characteristics
and the performance of EvAAL competitors in 2012
and 2013 is given in section 3; a description of CEO,
the simple program we used to obtain a location esti-
mate based only on context information (light switches
activation and stationary bicycle usage) is provided in
section 4; and finally, in section 5, a summary of the
performance of CEO with respect to competitors and
an evaluation of the improvements that a simple fusion
algorithm would have brought to the results of EvAAL
competitors. The conclusions contain a discussion on
the usefulness of the information gathered through this
analysis and directions for future work.

2. Related work

Many researchers have faced the challenge of indoor
localization by proposing systems based on ad hoc so-
lutions [19,20,21]. These indoor localization systems
can be classified based on the signal types and tech-
nologies used (infrared, ultrasound, ultra wideband,
radio frequency identification, packet radio), signal

metrics (angle of arrival AoA, time of arrival ToA,
time difference of arrival TDoA, and received sig-
nal strength RSS), and the metric processing methods
(range-based and range-free algorithms).

Among the most successful commercial and re-
search systems we find: Active Badge [22] that uses
infrared sensors, Active Bat [23] that uses ultrasonic
sensors, Easy Living [24] based on vision sensors,
MotionStar [25] that uses a dc magnetic tracker,
RADAR [26] that uses a wireless local area network,
SmartFloor [27] based on pressure sensors to mea-
sure proximity to a known set of points, WhereNet 5

that employs radio frequency identification technol-
ogy, and other research projects based on inertial meth-
ods [28,29] and passive infrared sensors [30,31] to lo-
calize and trace the resident.

Each solution has advantages and shortcomings,
which in most cases can be summarized as a trade-off
between several metrics, such as accuracy, user accep-
tance, installation complexity, and cost. When we con-
sider the Ambient Assisted Living scenario, the user
acceptance becomes critically important. Many AAL
scenarios require continuous monitoring of the user
position, e.g. in emergency situations like falls, in as-
sisting the elderly in house navigation and mobility
tasks, or in the long term monitoring of user rooms
occupancy to control his mobility behavior. In these
cases the localization system must be easily accepted
by the user and, possibly, requiring few or no worn de-
vices [32].

In device-free localization systems people do not
need to carry devices or tags. This is important, as peo-
ple are generally unwilling to wear extra devices, es-
pecially at home [33], or they can forget to put the de-
vice on. Furthermore, mobile positioning devices use
batteries and require regular monitoring and chang-
ing. Some device-free localization systems use cam-
eras [34,24], but they raise privacy concerns as most
people are unwilling to install any system that they per-
ceive as intrusive in their homes [35,36].

The main technologies that can be used in device-
free localization are based on pressure sensors [37],
sound source localization [38], ultrasound [39], and ra-
dio frequency (RF) [40,41,42]. The main drawback of
these methods is the large number of devices that must
be deployed in the environment, their deployment, and
their cost that is usually high.

5http://www.wherenet.com/
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Fig. 1. Map of the UPM living lab, including the location of switches
(black dots) and the stationary bicycle. The rectangles represent the
areas of interest (AoI N).

A solution to this problem is using infrastructure-
mediated sensing techniques which exploit existing
devices in a building for positioning purpose. They in-
clude air conditioning channels [43], electrical wires
and switches [44], and water pipes and plumbing [45].
This is the approach adopted by CEO, which has the
advantage of not requiring the installation of new sens-
ing infrastructure in a home. Hence, it is easy to in-
stall and maintain since it is based on a software-only
component exploiting usually inexpensive and aesthet-
ically pleasing devices already deployed in the house.
However, the accuracy of the proposed localization
technique, like all this kind of systems, is low com-
pared to other ad hoc positioning systems outside the
AAL scenario.

3. The EvAAL competitions in 2012 and 2013

In the 2012 and 2013 editions, the EvAAL track
dedicated to localization was held at the living lab fa-
cilities of Universidad Politécnica de Madrid (UPM),
in Madrid, Spain. The setting and the rules were the
same, but the specific paths walked by the actor were
different in the two editions. However, the paths were
set using the same criteria, so we believe that the re-
sults obtained by the competitors in these two editions
are comparable.

3.1. Localization competition setting

Figure 1 is the map of the setting of the local-
ization competition. The area is composed of an in-
door open space, a bathroom and an outdoor patio.
The bathroom is corresponding to the green rectan-
gle marked AoI 4, the patio to the purple rectangle
marked AoI 5. Kitchen furniture including a stove
and a fridge is on the left side, a stationary bicycle is
depicted on the right. The main entrance is the door de-
picted on the right. Two wide sliding doors connect the
indoor space to the patio. Some furniture is present: a
dining table with four chairs, two armchairs in front of
a TV set on a small table, a double bed and two bedside
tables.

The colored rectangles marked with AoI N are Ar-

eas of Interest, used for computing the accuracy score
as detailed below.

Light switches in the living lab are instrumented and
connected to the living lab network; when a switch is
pressed, it generates an event (message) that is made
available to the competing systems through the con-
nection they use for sending their real-time location es-
timates. The position of a switch is shown as a circle
in figure 5. The stationary bicycle generates an event
when it is being used.

3.2. Paths and AoIs

The EvAAL competition computes accuracy in two
different scenarios. The first one is based on paths,
which are predefined routes marked on the floor of the
living lab, which are walked by an actor at a given step
rate, marked by a chime. For this scenario, the distance
between the actor’s position and the estimated position
is evaluated, as detailed below. The second scenario is
based on areas of interest (AoI), which are predefined
rectangles marked on the living lab’s area. For this sce-
nario, the evaluation consists in verifying that the es-
timated AoI is the one where the actor is. In this pa-
per we only consider the path scenario, for simplicity
and consistency of comparison. Paths and AoIs are de-
picted in figure 2.

3.3. Scoring criteria

Scoring is based on different criteria, which are de-
tailed on the EvAAL technical annex for the localiza-
tion competition [46]. The final score is the sum of five
parts, illustrated in table 1.
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Fig. 2. The 2012 and 2013 paths and AoIs.

Table 1

Scoring criteria for the 2013 localization competition

Criterion Quote Type

Accuracy 0.35 hard, automated

Availability 0.20 hard, automated

Installation complexity 0.10 hard, manual

User acceptance 0.20 soft, interview

Interoperability with AAL systems 0.15 soft, interview

Accuracy and availability are hard measures, that is
numbers obtained from an objective procedure, and are
both relative to the real-time output of the competitor
system. Accuracy describes how well the location es-
timate approximates the real position [9], while avail-
ability depends on how regularly the system generates
real-time position estimates at the required rate of two
per second. Both measures only depend on the samples
sent by the competing system and can be measured in
an automated way.

The accuracy score is the average between two val-
ues: the AoI score and the paths score. The AoI score
is the ratio of correct AoI estimates to the total AoI es-
timates, where an estimate is N-valued and indicates
either one of the AoIs or “outside of any AoI”.

In order to define the paths score, we define the er-

ror as the Euclidean distance between the position of
the actor and the (x, y) estimate given by the compet-
ing system. For each estimate given by the competing
system, the error is computed and the third quartile of
the errors is considered. The rationale for the choice of
the third quartile is described in [9].

To the third quartile of the error T the following
function is applied:

score =



















0 if T > 4 m

10 if T ≤ 0.5 m

4*(0.5-T)+10 if 0.5 < T ≤ 2 m

2*(4-T) if 2 < T ≤ 4 m
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Fig. 3. Accuracy score as function of the third quartile of error.

The above function is depicted in figure 3. As de-
scribed in [9], the flat maximum ensures that the score
is not impaired by inaccuracies smaller than 50 cm; the
long tail up to 4 m is intended to discriminate among
competing systems that give a completely wrong or
random output and those that, while inaccurate, are
able to give an idea of the area where the actor is.

Installation complexity is still a hard measure, but
needs human intervention, as it is based on the number
of people who perform the system installation and the
length of time needed to complete the installation.

User acceptance and interoperability with AAL sys-

tems are soft measures: they are both based on answers
given to a predefined interview. While the interviews
are designed to allow as an objective an answer as pos-
sible, there is still some room for expert judgment on
the part of the interviewing pool.

The balance between the weights of these measures
is given in table 1. It reflects the relative importance
of various factors to be considered when evaluating a
localization system to be included in a generally com-
plex AAL environment [9].

We think that the balance adopted by the EvAAL
competition is basically correct, and consequently it
makes sense to think about a system that is built to
maximize the EvAAL’s score as shown in table 1. Our
basic idea is that a software-only system has the po-
tential of obtaining a high score, provided it is writ-
ten with attention to standards and is distributed as free
software [47], because such system would be able to
easily obtain the maximum score in all criteria from
the second one on.

In fact, real localization systems may have a prob-
lem with availability because of their real-time nature
and the difficulty of managing several sources of con-
tinuous data and possibly complex computations while
communicating with the base system, usually in wire-

less mode. Examples are systems that use data fusion
based on particle filtering, which is particularly com-
puting intensive, or those reading data streams from
cameras, which generate a lot of data. Also wireless
communication can cause problems, one specific case
was LOCOSmotion, which had a perfect availability

score in 2012 yet, due to a problem with wireless com-
munications in an Android library, got a low score in
2013. In every case mentioned, tuning the system can
solve the issue. Anyway, all these issues are nonexis-
tent as far as CEO is concerned: computation is very
simple, to the point of being insignificant; input data
are reduced to a minimum, as only context events from
user interaction with the environment are considered;
and communication need not be wireless, and does not
even require a network, as CEO can run side-by-side
with the system that consumes the real-time location
estimates.

CEO does not require any installation, as it needs
no hardware devices other than those that are already
present in the environment. On the other side, every
localization system that is not purely software requires
some sort of installation, and the time required is the
base for the installation complexity score.

The user acceptance score is based on how well the
system integrates with the furniture, how annoying is
to wear it and how much maintenance it requires, but
nothing of this is relevant for CEO: the first two are
not an issue for software, and maintenance is not to be
considered because CEO can run on the same hard-
ware as the system that consumes the real-time loca-
tion estimates.

Finally, the interoperability with AAL systems score
is based on criteria such as standards conformance,
availability of documentation and licensing of source
code, all of which are completely satisfied by the
present paper.

The only remaining problem is the first and foremost
scoring criterion: accuracy.

So the question is: is it possible to exploit the lit-
tle context information given by the EvAAL environ-
ment to obtain a non-negligible accuracy score? It is
not easy to give a significant answer in a general fash-
ion, but the environment we decided to consider gives
us a reference not only for the scoring criteria, but also
for the evaluation. In the rest of the paper, we are go-
ing to use the scoring criteria used by EvAAL for the
accuracy, the paths used in the 2012 and 2013 editions
and the results of the competitors of those editions for
a comparison.
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Table 2

Competitors of the 2012 and 2013 localization track

Year Competitor Accuracy

score

Total

score

Method Device

free

Fusion Using

context

info

2012 CAR 7.57 7.70 RFID trilateration and PDR no x -

2012 CPS Group @ Utah 6.98 7.45 ZigBee radio tomography yes - -

2012 iLocPlus 3.64 4.86 ultrasound trilateration no - -

2012 LOCOSmotion 0.64 5.23 WiFi RSS FP and PDR no x -

2012 OwlPS 0.78 6.29 WiFi RSS FP and trilateration no - -

2012 Smart-Condo 2.81 5.41 PIR and tracking yes - x

2012 TAIS 0.67 4.22 ZigBee RSS FP no - -

2013 AALocation 4.20 2.15 ZigBee RSS with sector antennas and
PIR

no x -

2013 AmbiTrack 2.46 6.18 3D videocamera processing yes - -

2013 IPNlas 1.12 6.18 WiFi RSS FP with Kalman filter no - -

2013 LOCOSmotion 3.47 6.02 WiFi RSS FP and PDR no x x

2013 Magsys 1.55 5.66 resonant magnetic fields no - -

2013 RealTrac 4.14 7.21 UWB ToF and RSS ranging, PDR no x -

2013 SHMPS 0.52 5.25 WiFi RSS FP, trilateration and marker
detection

no x -

Abbreviations: FP → fingerprinting, PIR → presence infrared sensors, PDR → pedestrian dead reckoning, RF → radio frequency,
RFID → RFID tags, RSS → received signal strength, UWB → ultra wide band

3.4. Competitors

A total of 14 competitors have participated to the
localization track of EvAAL in 2012 and 2013. They
are listed in table 2.

Most competing systems use some sort of radio fre-
quency (RF) measurement as the base data. Of the
fourteen competing systems, only four do not use radio
waves as a measurement system, but use instead pres-
ence infrared sensors (PIR), videocameras, ultrasound,
resonant magnetic fields. Of these four, two are in the
top 50% of accuracy score results, thus giving no indi-
cation as to whether the more popular RF technology
should be seen as more successful.

Two systems in 2012 and four systems in 2013 use
some sort of data fusion, i.e. they have internal meth-
ods for making good use of localization data coming
from different sources. Of the four systems (two in
2012 and two in 2013) having reasonably good ac-
curacy performance, that is, an accuracy score higher
than 4, three have used some sort of data fusion.

Systems using data fusion have most of the logic
in place for exploiting the switches and static bicycle
events generated by the living lab infrastructure. And
yet, only one system in 2012 and one system in 2013

exploited that context data6. The systems that used the
context info did not fare particularly well, but neither
had too bad an accuracy score: the values were 2.81
and 3.47.

But it is interesting to notice that, both in 2012 and
in 2013, systems in the first three places not necessar-
ily had a good accuracy score. In both years, the third
overall place was held by systems having an embar-
rassingly low accuracy score, with values of 0.78 and
1.12.

Two lessons here: first, while we believe that overall
the scoring method of EvAAL is “good”, systems with
bad localization performance can obtain high over-
all scores, which means that a software-only system
that relies only on context information may have some
hope of getting a good placement, because it will ob-
tain the maximum score in all metrics but accuracy.

Second, systems using the context information had
not-so-bad accuracy performance, which is a hint that
the other systems may have benefited from using con-
text information as well. If, as we believe, future prac-
tical systems are going to rely more and more heav-

6AmbiTrack implemented a fusion algorithm which accounted for
context info, but the implementation was faulty and could not be
used during the competition.
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ily on fusion of possibly low-quality data coming from
diverse sources, context information provided by light
switches can be effortlessly integrated.

4. The CEO localization technique

We are now describing a very simple method for ob-
taining a position estimate from context data only, us-
ing the little information that was provided to competi-
tors of the 2012 and 2013 EvAAL competitions. The
method is thought to be as simple as possible, so no
knowledge of the map is introduced, apart from the
perimeter (a rectangle in EvAAL’s case). We call it
CEO, for “context event only”.

We start by dividing the competition area into
Voronoi cells, where the seeds of the tessellation are
the event generators, that is the light switches and the
static bicycle, as shown in figure 5. When an event is
produced by a given generator, the estimated position

is set to that generator. It remains to be decided how to
deal with what happens before any event is generated
and after each event is generated, keeping in mind that
the algorithm should work in real time, so it needs to
be causal (no future knowledge of events).

As far as the starting point is concerned, we consider
the centroids of the Voronoi cells, which are marked
with red squares in figure 5. Then we consider the cen-
troid of the convex hull of the cell centroids, which
is marked with a black diamond in figure 5; we call
centre this point. The centre is the starting point, that
is the estimated position when no event has been re-
ceived yet. When an event is received, the estimation
is set to the event generator position; from then on, it
moves linearly so that it gets to the event cell centroid
in 7.5 s; from then on, it moves linearly so that it gets
to the centre in 7.5 s more. From that moment on,
it stands still. The estimate jumps immediately to the



F. Potortì, F. Palumbo / Indoor Localization from Contextual Binary Sensing 9

0 2 4 6 8 10 12

0.25

0.50

0.75

1

e [m]

F
(e

)

(a) Cumulative function distribution for CEO,
EvAAL 2012.

0 2 4 6 8 10 12

0.25

0.50

0.75

1

e [m]

F
(e

)

(b) Cumulative function distribution for CEO,
EvAAL 2013.

0 2 4 6 8 10 12

0.25

0.50

0.75

1

e [m]

F
(e

)

(c) Cumulative distribution for a random posi-
tion estimator (uniform distribution of estimates
over the entire area.

Fig. 4. Comparing CEO with a “blind” system.

v0start v
i

1
v
i

2
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event generator position as soon as a further event is
received.

Figure 6 shows the finite state machine (FSM) de-
scribing the steps performed by the CEO algorithm.
Each state, called v0, vi

1
, and v

i

2
, represents the veloc-

ities at which the estimate changes its position on the
map. Specifically, v0 has a null speed and it is used

to indicate that the estimate is still on the centre posi-
tion. This is the initial state that is kept if no event is
received (ēi) during the time t. When an event is re-
ceived (ei), the estimate is set to the event generator
position and t is set to zero. In this case, the FSM goes
into the state v

i

1
where the velocity is directed from

the event generator position to the centroid ci of the
relative Voronoi cell and has speed:

vi
1
=

|position(ei)− position(ci)|

τ1
(1)

where τ1 is set to 7.5 s. In this state the estimate moves
towards the cell’s centroid ci with speed vi

1
until t ≤ τ1

or a new event is received. In the latter case, the FSM
remains in the current state, but the estimate is moved
to the new event generator position and t is reset to
zero. If on the other hand no event is received and t >
τ1, the FSM changes its state to v

i

2
, indicating that the

estimate will move from ci to the centre position with
speed:

vi
2
=

|position(ci)− position(centre)|

τ2 − τ1
(2)

where τ2 is set to 15 s. The FSM remains in this state
until t ≤ τ2, when it returns to the initial state v0, or
until a new event is received, in which case it returns
to the state v

i

1
.

This almost trivial algorithm can be easily extended
and improved, first of all by adding some knowledge
of the map, such as the positions of doors, internal
walls and furniture. Additionally, instead of using sim-
ple Voronoi cells, supervised algorithms where one
can draw the cells by hand or semi-supervised al-
gorithms based on meta-information and artificial in-
telligence can be used, trying to guess what are the
places where someone would typically go after press-
ing a light switch. Some memory of the past history
of switching sequences may be retained, so that it can
be used to forecast future movements of the actor. All
these improvements would only need additional soft-
ware, and would not consequently change the nature
of the proposed method.

4.1. Accuracy performance of CEO

The performance of CEO in terms of accuracy that
is illustrated here cannot be directly compared with the
performance of systems in table 2, because it would
unduly advantage CEO. In fact, we only consider sce-
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narios without a “disturber”, that is a second actor
moving in the same scenario as the first one and gen-
erating switch events in addition to the actor to be lo-
calized. The reason is that CEO is simply not sophis-
ticated enough to give significant results in such sit-
uations. The exclusion of the paths including a “dis-
turber” allows a comparison on an equal basis, which
is the object of the next section.

Figures 4a and 4b illustrate the performance in the
2012 and 2013 scenarios, as far as the error distribu-
tion is concerned, that is, not accounting for the AoI
paths. As expected, the results are not particularly ap-
pealing, with a median error of 2.5 M and 2.8 m in the
two years, and a third quartile of 4.4 m and 4.0 m re-
spectively. These numbers are significantly better than
those that would be obtained by a “blind” system, one
which generates a random estimate with uniform dis-
tribution over the whole map, shown in figure 4c. This
is all that is needed to tell that CEO is able to add infor-
mation to an existing localization system by means of
data fusion, or even to provide a really cheap and non-
intrusive low-quality estimate in the absence of other
information.

In the next section we see how much this informa-
tion is significant with respect to the systems compet-
ing in EvAAL.

5. Results

At the end of the section 3 we mentioned about two
lessons learned. We are going to verify that they are
indeed valid.

First, we verify that the performance of CEO is
comparable to those of the competitors. Second, we
verify that a trivial fusion of CEO’s output with the
competitor’s output brings an improvement at very lit-
tle cost.

It is important to note that all the comparisons made
in the section are made only on the EvAAL paths not
including a “disturber”, as already mentioned.

5.1. Direct comparison of CEO with competing

systems

Figure 7 provides a direct comparison among all the
cumulative function distributions (CDF) of errors for
all the competitors in 2012 and 2013, together with the
same results from CEO. The results from CEO are the
same as those shown in figure 4, where they are com-
pared with a “blind” system.

We observe that CEO is definitely not the worst
system. This is true in 2012 and even more in 2013,
when the overall quality of the competing systems was
lower, as far as only the accuracy scoring is consid-
ered. Remembering that the EvAAL score is composed
for 65% by the criteria mentioned in section 3.3, all
of which would be at the maximum for CEO, we see
that CEO would have mounted the podium both in the
2012 and 2013 editions, in both cases without “cheat-
ing”, that is, while obtaining a respectable accuracy
performance.

5.2. Improving the competing systems through CEO

Here we try to improve the performance of the com-
peting systems by adopting a simple fusion mechanism
with CEO. In a real implementation, localization sys-
tems that already include some sort of fusion should
probably use that to include data provided by CEO.

The fusion method we adopted consists in defining
a circle around CEO’s estimate, whose radius depends
on the reliability of the estimate, which we set at 1 as
soon as the context event is produced and then decays
with time. The radius of the circle is null at maxi-
mum reliability and increases with decreasing reliabil-
ity. If the competing system’s estimate falls outside of
the circle, it is simply substituted by CEO’s estimate.
This unsophisticated method may in principle worsen
the overall performance, especially when the compet-
ing system has good performance right from the start.
In practice, the application of this method almost al-
ways produces an improvement.

The way the radius of the circle grows is defined as
follows. Every time a context event is received by the
system, an exponentially decaying function represent-
ing reliability is started:

reliability = exp(−
τ

decay
) (3)

where decay is set to 10 seconds and τ is the time
elapsed from the last event. The radius is then com-
puted as

radius = maxradius(1− reliability) (4)

where maxradius is set to 10 meters. Note that
maxradius is the size of the location setting, and that
maxradius/decay is about the maximum speed one
can expect in an AAL environment. The box in figure 8
illustrates pseudo-code that produces a fused estimate



F. Potortì, F. Palumbo / Indoor Localization from Contextual Binary Sensing 11

0 1 2 3 4 5 6 7

0.25

0.50

0.75

1

e [m]

F
(e

)

(a) CEO

0 1 2 3 4 5 6 7

0.25

0.50

0.75

1

e [m]

F
(e

)

(b) CAR

0 1 2 3 4 5 6 7

0.25

0.50

0.75

1

e [m]

F
(e

)

(c) CPS Group @ Utah

0 1 2 3 4 5 6 7

0.25

0.50

0.75

1

e [m]

F
(e

)

(d) iLocPlus

0 1 2 3 4 5 6 7

0.25

0.50

0.75

1

e [m]

F
(e

)

(e) LOCOSmotion

0 1 2 3 4 5 6 7

0.25

0.50

0.75

1

e [m]

F
(e

)

(f) OwlPS

0 1 2 3 4 5 6 7

0.25

0.50

0.75

1

e [m]

F
(e

)

(g) Smart-Condo

0 1 2 3 4 5 6 7

0.25

0.50

0.75

1

e [m]

F
(e

)
(h) Tais

0 1 2 3 4 5 6 7

0.25

0.50

0.75

1

e [m]

F
(e

)

(i) CEO

0 1 2 3 4 5 6 7

0.25

0.50

0.75

1

e [m]

F
(e

)

(j) AALocation

0 1 2 3 4 5 6 7

0.25

0.50

0.75

1

e [m]

F
(e

)

(k) AmbiTrack

0 1 2 3 4 5 6 7

0.25

0.50

0.75

1

e [m]

F
(e

)

(l) SHMPS

0 1 2 3 4 5 6 7

0.25

0.50

0.75

1

e [m]

F
(e

)

(m) IPNLas

0 1 2 3 4 5 6 7

0.25

0.50

0.75

1

e [m]

F
(e

)

(n) LOCOSmotion

0 1 2 3 4 5 6 7

0.25

0.50

0.75

1

e [m]

F
(e

)

(o) Magsys

0 1 2 3 4 5 6 7

0.25

0.50

0.75

1

e [m]

F
(e

)

(p) RealTrac

Fig. 7. CDFs comparison of systems accuracy in EvAAL editions 2012 and 2013.
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function fused_estimate (competitor_estimate, CEO_estimate, tau)

reliability = exp(-tau/decay)

radius = maxradius * (1 - reliability)

if (Euclid_dist(competitor_estimate, CEO_estimate)) < radius)

return competitor_estimate

else

return CEO_estimate

Fig. 8. Algorithm for fusing CEO results with another system’s results.

Table 3

Third quartile error of competing systems and its variation after fusion with CEO – negative variations indicate improved performance.

Year Competitor Overall Path 1 Path 2 Path 3

2012 CAR 0.95 -0.02 0.77 +0.00 1.00 -0.01

2012 CPS Group @ Utah 0.73 -0.01 0.75 -0.02 0.71 -0.01

2012 iLocPlus 1.88 -0.23 2.03 -0.04 1.75 -0.16

2012 LOCOSmotion 5.20 -0.61 4.71 -1.19 5.43 -0.30

2012 OwlPS 4.25 -0.40 4.62 -0.42 4.21 -0.84

2012 Smart-Condo 2.54 -0.07 2.32 -0.02 2.65 -0.14

2012 TAIS 4.10 -0.40 3.99 -0.59 4.25 -0.38

2012 CEO 4.02 4.07 3.94

2013 AALocation 5.73 -0.18 3.68 -0.03 4.65 -1.98 5.92 -0.00

2013 AmbiTrack 3.22 -0.24 2.43 +0.00 2.82 +0.00 4.47 -1.17

2013 SHMPS 6.42 -0.99 3.80 +0.00 4.78 -0.55 7.20 -0.53

2013 IPNlas 3.86 -0.36 3.81 -0.05 5.34 -1.31 3.17 -0.03

2013 LOCOSmotion 2.62 -0.07 2.21 -0.06 2.89 -0.15 2.61 -0.03

2013 Magsys 3.71 -0.21 3.84 +0.00 3.11 -0.10 3.95 -0.65

2013 RealTrac 2.35 -0.00 3.06 -0.08 2.07 +0.08 1.83 +0.00

2012 CEO 4.40 4.93 3.21 4.71

starting from a competing system’s estimate and the
CEO estimate.

Figures 9 and 10 depict the cumulative distribution
functions of errors for all competing systems before
(red thick line) and after (blue thin line) application of
fusion with CEO.

In table 3 the 75◦percentile of estimation error is
shown for each competing system, for each path and
overall. Next to the error is the variation obtained af-
ter fusing the competitor’s trace with CEO: most vari-
ations are negative or null, indicating an improved per-
formance, while positive variation are always less than
ten centimeters.

As it should be expected, the best performing sys-
tems show no or very little improvements after fusion
with CEO: CAR and CPS Group in 2012, RealTrac in
2013, show no visible improvement. Systems that used

the context info, that is Smart-Condo in 2012 and LO-
COSmotion in 2013, also exhibit little improvement.

On the other hand, the worst-performing systems
as far as accuracy is concerned show the highest im-
provements after fusing with CEO. Improvements are
sometimes significant, with values greater than 35 cm
in three cases in 2012 and two cases in 2013. In par-
ticular, LOCOSmotion in 2012 and SHMPS in 2013,
which internally have used some form of data fusion,
could have significantly benefited from the context
info at very little cost, yet disregarded this possibility.

6. Conclusions

We have shown that using low-cost, low-quality
context information for obtaining or improving an esti-
mate of a user position in an indoor AAL environment
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Fig. 9. Error distribution for all competitors in 2012 with and without fusion with CEO.
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Fig. 10. Error distribution for all competitors in 2013 with and without fusion with CEO.
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is a real possibility. We have considered the EvAAL
competition as an example, a controlled yet realistic
situation where an actor moves in a living lab, along
a completely instrumented path, with a movement pat-
tern compatible with an AAL scenario. A number of
real-time localization systems installed in the environ-
ment and on the user, all using different technologies
implemented independently, were evaluated and com-
pared.

The performance of the competing systems was put
side by side with CEO, and the results appear compa-
rable, at least for the scenarios that included a single
person moving in the AAL environment.

In addition, CEO was coupled with each system
in a straightforward way to demonstrate how a small
software-only addition can improve the performance
of heterogeneous systems by data fusion with low-
quality, binary-only context information.

We should conclude that even little information such
as that provided by light switches, intrusion detection
systems or possibly by non-intrusive load monitoring
(NILM) systems [48,49,50] can be precious, as it is
provided for free and can be exploited by a software-
only system that can be embedded in the AAL infras-
tructure.

Moreover, if a dedicated localization system is in
place, it can generally benefit with little effort from
the added information provided by the devices already
present in the environment. If the localization system
internally uses any sort of information fusion, as it is
often the case and as it will more and more often in
the future, the effort of integrating the context infor-
mation is very low, while providing an improvement
of performance in most cases.

Future work should be oriented at implementing a
system based on the presented concepts, starting with
the simple case of a basic domotic environment where
light switches, intrusion detection system and possibly
home appliances generate events on a domotic home
network. One possibility is to test the concept on more
extensive real data gathered from real test sites pro-
vided by the EU FP7 GiraffPlus project [51] and other
living labs from EU FP7 DOREMI project 7, when
they become available.

As a final remark, we propose that, in the next
EvAAL competitions, the value of localization accu-
racy provided by the CEO algorithm is considered as

7http://doremi-fp7.eu/

the minimum acceptable value to be provided by com-
peting systems.
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