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Abstract We propose a new algorithm to estimate the 3D configuration of a chro-
matin chain from the contact frequency data provided by HI-C experiments. Since
the data originate from a population of cells, we rather aim at obtaining a set of struc-
tures that are compatible with both the data and our prior knowledge. Our method
overcomes some drawbacks presented by other state-of-the-art methods, including
the problems related to the translation of contact frequencies into Euclidean dis-
tances. Indeed, such a translation always produces a geometrically inconsistent dis-
tance set. Our multiscale chromatin model and our probabilistic solution approach
allow us to partition the problem, thus speeding up the solution, to include suitable
constraints, and to get multiple feasible structures. Moreover, the density function
we use to sample the solution space does not require any translation from contact
frequencies into distances.

1 Introduction

The nuclear DNAis arranged in a 30 nm fiber called chromatin, and in human cells
has a length of about 2 m in total, folded in 46 chromosomes. Its spatial organiza-
tion ensures the continuous accessibility of DNA to translation, replication regulation
and repair machinery. Understanding how DNA is organized will help to discover its
functional features and the epigenetic mechanisms involved. A first important step
in describing the organization of DNA within the nucleus was done with the experi-
ments of fluorescence in situ hybridization (FISH) [1], a technique used to detect and
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localize specific DNA sequences. Recently, high resolution techniques have been de-
veloped, called Chromosome Conformation Capture (3C) [5], which provide contact
frequencies between pairs of DNA fragments in the whole genome. The latest such
technique, called HI-C [3], has a very high genomic resolution, reaching a few kbp,
depending on the enzyme used in the procedure.

From HI-C information, it is possible to formulate hypotheses about the three-
dimensional chromatin configurations. Many approaches have been proposed to ad-
dress this problem. They can be divided into three main categories, each offering
specific advantages and criticalities: constrained optimization, Bayesian inference,
and polymer models. The new reconstruction method we propose in this chapter
was conceived to exploit the benefits of the state-of-the-art methods while avoiding
some of their drawbacks.

All the constrained optimization strategies proposed introduce a model for the
solution, a set of constraints, and a cost function to be optimized against the avail-
able data. As mentioned, the 3C data available are contact frequencies evaluated
over the whole population of cells in the experiment, typically many millions. The
first attempts to translate these data into geometrical information assume that the
chromatin configurations are not very different throughout the population, and that
pairs of fragments often found in contact are closer than pairs with low contact
frequencies. On this basis, most of the existing methods propose some formula to
translate the contact frequencies into Euclidean distances, to be fitted by the re-
constructed structures. Duan et al. [8] propose a three-dimensional model of yeast
genome, in which chromatin is modeled as a bead chain, with partially impenetra-
ble beads, forced to stay in a spherical nucleus of 1 µm. The objective function
to be minimized exploits an inverse proportionality relationship between contacts
and distances. The same deterministic law is also adopted by Fraser et al. [9] and
Dekker et al. [5]. In Sect. 2, we show how this translation leads to severe geometric
inconsistences. Baù et al. [2] translate the contact frequencies into harmonic forces,
calibrating the distances between beads. The constrained optimization approach has
the advantage of introducing geometric and biophysical constraints into the model,
but has two big disadvantages: the high dimensionality of the systems and the ab-
sence of confidence intervals to evaluate the uncertainty of the solutions obtained.

The data are affected by errors and biases and, as mentioned, derive from ex-
periments on millions of cells. This makes necessary the adoption of a probabilistic
approach to sample the space of the feasible solutions. The first probabilistic ap-
proach has been published by Rousseau et al. [16], who use a Markov Chain Monte
Carlo sampling on a Gaussian likelihood, built through an inverse-quadratic law be-
tween contacts and distances (MCMC5C). Hu et al. [10] use the same relationship,
proposing an algorithm called BACH (Bayesian 3D Constructor for HI-C data), to
build consensus 3D structures. The novelty of the cited Bayesian approaches is the
possibility to introduce biases into the data model (as in BACH). Another important
advantage is the possibility of sampling the solution space: this aspect is essential,
since it is more meaningful to search for sets of possible solutions rather than a
single consensus. The major drawbacks of BACH are its computational complexity,
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due to the large number of parameters to be estimated, and the absence of suitable
topological constraints.

Another interesting approach is the integration of polymer physics into the 3D
chromatin structure model. This has the advantage of not requiring the translation
from frequencies into distances, and permits the adoption of iterative adaptive meth-
ods. Meluzzi et al. [14] propose a coarse-grained bead-chain polymer model ap-
proximating the physical behavior of a 30 nm chromatin fiber; the system evolves
adjusting iteratively the model parameters, until a match with contact frequency data
is reached. This approach is highly reliable but very expensive computationally. For
this reason, it cannot yet be applied to experimental data: a validation has only been
performed against reference data sets obtained from simulations of systems with up
to 45 beads.

An analysis of the different solutions mentioned above reveals a number of draw-
backs that must be overcome to obtain more reliable results. Our main point is
the questionable adequacy of the translation of contact frequencies into Euclidean
distances. In Sect. 2, we show that this strategy produces a set of distances often
severely incompatible with the Euclidean geometry. Then, in Sect. 3, we briefly
describe our solution model, our cost function, which does not include an explicit
contact-to-distance relationship, and the stochastic algorithm we used to sample the
solution space. Sect. 4 concludes the chapter, with some reference to our first exper-
imental results.

2 Geometrical Consistency of the Frequency-Distance
Translation

The problem of the geometrical inconsistencies derived from translating contact
frequencies into Euclidean distances has been overlooked by almost all groups that
have worked with contact frequency data. An exception is the work of Duggal et
al. [7], who propose a filtering technique to select subsets of interactions obeying
to metric constraints. This method is very interesting, but has a high computational
cost.

It is important to exert some caution with the extraction of topological informa-
tion (measurements, distances) from interaction data, because contacts are discrete
events (sums of dichotomous events) with causal and random components, whereas
spatial distances are continuous quantities forced to undergo precise geometric laws.
It is necessary to check whether the distances meet the basic geometrical consistency
conditions, e.g. the triangular inequality. The non-violation of these conditions is a
necessary but not sufficient condition for geometric consistency. If geometric con-
sistency conditions are severely violated, the set of distances cannot be used as a
target to achieve sensible geometric conformations of chromatin. However, the fact
that these inequalities are not violated, or are violated slightly, does not ensure the
geometrical consistency of the system. For example, if we have a set of equal dis-
tances (e.g. all equal to 1), the triangular inequalities would never be violated, but no
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structure in the 3D Euclidean space can show such a distance set, unless it is made
of no more than 4 points.

Let us consider a chromatin chain made of N elements, and any subsequence
S of it, with M elements, identified by the index set I = {1,2, ...,M}. Let us now
consider a partition P of S, that is, any set of L ≤ M consecutive segments that
sum up to S, identified by the set of index pairs K = {(1,k2),(k2,k3), ...,(kL,M)},
with 1 < k2 < k3 < ... < kL < M. A necessary condition for the Euclidean distances
between all the possible pairs in S to be consistent with the 3D Euclidean geometry
is that, for any possible K:

d1,M ≤ ∑
(i, j)∈K

di, j (1)

where di, j is the distance between the i-th and the j-th elements of S.
In our preliminary study, we considered two sets of experimental data made

available in the literature, from the entire human genome in GM06690 [13] and
GSE18199 cells [17], both with genomic resolution of 1 Mbp. Then, for both data
sets, for any possible subsequence of all the chromosomes, and for 13 different
frequency-to-distance relationships, we evaluated the number and the extent of the
violations to condition (1). The results of this analysis are summarized in Table 1,
whereas the contributions of each individual chromosome are plotted in Figs. 1 and
2. The number of violations and their weights rapidly decrease by applying the laws
1/ n
√

x, with n ∈ {1,2, ..,5}. This does not mean that these laws are suitable to build
a good target function, since they actually tend to produce a set of nearly equal
distances, which normally lead to impossible structures.

Also considered from another viewpoint, the inversion process from contact fre-
quencies into distances presents a heuristic gap, because the measured contact fre-
quencies do not depend exclusively on geometric properties, but also on other fac-
tors, such as the presence of topological barriers, energy conditions, and random
events. In summary, we think that assuming that pairs with many contacts are likely
to be close to each other can be justified, whereas pairs with a few contacts are
not warranted to be distant from each other. Our analysis demonstrates that exper-
imental frequency data very often lead to distances that are more or less severely
incompatible with real configurations in the 3D Euclidean space. For this reason,
such distances cannot be used as rigid targets for structure estimation. Actually, any
fixed distance system identifies a well defined structure in space, but our data do
not come from a single structure, so a distance system obtained through whatever
relationship is very likely to be geometrically inconsistent.

3 Our Approach

Each of the studies that proposed methods for 3D chromatin reconstruction from
contact data presents problems and advantages, summarized in Table 2. As a con-
tribution to the field, we propose a new algorithm that includes a list of desirable
features:
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Fig. 1 Percent contributions of the different chromosomes to the total number of geometric viola-
tions, for the 13 transformation laws considered. Left: data from [13]. Right: data from [17]. For
each column, the contributions of the chromosomes have always the same order: from chromosome
1 at the bottom to chromosomes 22 and X at the top of the column.

Fig. 2 Percent contributions of the different chromosomes to the average extent of the geomet-
ric violations, for the 13 transformation laws considered. Left: data from [13]. Right: data from
[17]. For each column, the contributions of the chromosomes have always the same order: from
chromosome 1 at the bottom to chromosomes 22 and X at the top of the column.

i) Possibility to enforce geometrical constraints on the solutions.
ii) Computational efficiency, including partitioning and parallel processing capa-

bilities.
iii) No deterministic translation from contact frequencies to distances.
iv) Possibility to get multiple configurations compatible with the data.

To obtain features i) and ii), we rely on our chromatin model. If we model the
chromatin fiber as a bead chain, we can first impose that it must remain connected,
that is, that the beads must maintain their genomic locations, and then introduce con-
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Table 1 Frequency-distance conversion laws for dataset available in [13, 17]. In the formulas x
represents the contact frequency and d the Euclidean distance.

Lieberman-Aiden et al. [13] Yaffe and Tanay [17]

Transformation laws Number of
violationsa

Average
percentage
violation

Transformation lawsb Number of
violationsa

Average
percentage
violation

x−→ d = 1
x3 28003.8 3458.5 x−→ d = 1

x3 2464.6 4 ·108

x−→ d = 1
x2 [10, 16] 26502.8 424 x−→ d = 1

x2 1439.6 6 ·105

x−→ d = 1
x [5, 8, 9] 8954,1 42.4 x−→ d = 1

x 766.7 1501.8
x−→ d = 1√

x 72,3 8.6 x−→ d = 1√
x 604.9 99.4

x−→ d = 1
3√x 2.7 1.5 x−→ d = 1

3√x 287.9 32
x−→ d = 1

4√x 0 0 x−→ d = 1
4√x 55.9 16.3

x−→ d = 1
5√x 0 0 x−→ d = 1

5√x 9.1 4.6
x−→ d = 1

log2(x)
65.4 8.7 x−→ d = log2(x) 1143 1095.5

x−→ d = 1
log(x) 0.3 0.3 x−→ d = |log(x)| 566.7 72.8

x−→ d = 1√
log(x)

0 0 x−→ d =
√
|log(x)| 34 28

x−→ d = 1
3
√

log(x)
0 0 x−→ d = 3

√
|log(x)| 7.1 18.5

x−→ d = 1
4
√

log(x)
0 0 x−→ d = 4

√
|log(x)| 2.2 8.5

x−→ d = 1
5
√

log(x)
0 0 x−→ d = 5

√
|log(x)| 0.7 5.2

a Averaged on chromosomes.
b Contact frequency values normalized to 1.

straints on the distances between adjacent beads and on the angles formed by any
two consecutive bead pairs. This amounts to constrain the length of any subchain
and its maximum curvature. Of course, the appropriate values for these constraints
must be decided on the basis of the relevant biological knowledge. Partitioning the
problem can enable us to speed up the estimation process. We reach this goal by tak-
ing into account the existence of chromatin segments, called topological domains
[6], that have no important interactions with other genomic regions, and exploiting
the multiscale capabilities of our chromatin model. The structure of each topologi-
cal domain can be estimated from the data coming exclusively from the fragments
belonging to it. The resulting structure is then considered as a bead in a lower resolu-
tion chain, whose contact frequencies are evaluated along with possible higher-level
isolated domains. The structures of these new topological domains are reconstructed
by the same strategy described above. This process can continue recursively, un-
til a data set with a single domain is found. The full-resolution structure is then
reconstructed by substituting, recursively, the lower-resolution beads with the sub-
chains reconstructed at finer resolutions. Except for the finest resolution available,
our beads are not spheres, but are equipped with the macroscopic properties of the
subchains they represent, each being a non-deformable triplet identified by the cen-
troid of the related subchain and its endpoints. Fig. 3 depicts an example of this
model for two consecutive scales.
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Requirement iii) is reached through our cost function. We first observe that, as
mentioned in Sect. 2, fragment pairs characterized by high contact frequencies can
reliably be considered in close proximity, but the converse does not need to be true:
pairs with low contact frequencies do not need to be far apart. We thus avoid to con-
sider the lowest frequencies in our cost function, which, anyway, can sufficiently
determine the problem by exploiting the geometrical constraints. The resulting ex-
pression is:

Φ(C ) = ∑
i, j∈L

ni, j ·di, j (2)

where C is the configuration of the subchain being estimated, L is the set of bead
pairs that are likely to be close to each other, and ni, j is the contact frequency char-
acterizing the (i, j)-th pair. Thus, no target distance is included in the formula: the
contact frequency data are directly used to weight the contributions of the individ-
ual pairs in the summation. It is apparent that an unconstrained optimization of this
cost function would find global minima in each configuration with di, j = 0 for all
(i, j) ∈L . The constraints, however, make these solutions unfeasible.

Table 2 Chart of problems and advantages in the previous state of the art.

Problems Advantages

Constrained
Optimization

Dekker et al. [5]
Fraser et al. [9]
Duan et al. [8]
Baù et al. [2]

Very high dimensionality.

No confidence intervals
can be computed to measure
the uncertainty of the structure
obtained.

First attempt of conversion of a
set of noisy contact frequencies
measurements into more inter-
pretable data.

Introduction of constraints
based on the structure of the
chromatin fiber.

Bayesian
Inference

Russeau et al. [16]
(MCMC5C)
Hu et al. [10]
(BACH)

Any evaluation of structural
variations of chromatin at
different resolution scales.

No geometrical constraints.

Geometrical inconsistencies
given by translation of contact
frequencies into distances.

Bayesian approach to sample
the whole space of solutions.

Introduction of systematic
biases into the data model
(BACH).

Polymer
Models

Nagano et al. [15]
Meluzzi et al. [14]

Complexity of the system. Conversion from frequencies
into distances not required.

Integration of polymer physics
into the 3D chromatin structure
model.

Finally, requirement iv) is satisfied by our estimation algorithm. Although the
configurations that are not compatible with the constraints are not feasible solu-
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tions, it is expected that the cost function reaches minimum values for many dif-
ferent feasible configurations. To be able to sample the solution space, we treat the
objective function as a negative log-density, and use a Monte Carlo approach to
find high-probability configurations. In practice, we use a classical simulated an-
nealing procedure [12], where the model updates are proposed through quaternion
operators [11]. This choice allows us to maintain automatically the coherence of the
reconstructed chain at each update, thus avoiding to check the fit to most of the con-
straints before continuing with the iteration. Indeed, the compatibility of the current
solution with the constraints must only be checked against possible spatial interfer-
ences between pairs of beads. Since so many configurations fit well the data and the
constraints, different runs of this stochastic procedure will produce different highly
reliable results, whose structures should reproduce the variety of the configurations
assumed by the chromatin chain in the experimental cell population. Our multiscale
approach can also be exploited to generate different configurations of the subchains
at any resolution, and then combine them to produce, recursively, different configu-
rations of the overall chain.

Fig. 3 a-d) Consecutive frag-
ments of the chromatin fiber,
represented as bead sequences
(red balls linked by yellow
segments), and as centroid-
endpoints triples (blue balls
linked by blue segments). The
larger spheres represent the
assumed sizes for the beads
at the lower resolution. e)
Lower-resolution chain com-
posed by the fragments in
a-d).



A Statistical Approach to infer 3D Chromatin Structure 9

4 Conclusions

In this chapter, we propose a new approach for the estimation of chromatin config-
urations starting from HI-C contact frequency data. The main characteristics of our
approach are:

– The data-fit function does not require the translation of frequencies into Eu-
clidean distances.

– The multiscale bead-chain model can be equipped with biophysical constraints;
any prior information available must be translated into geometrical constraints.

– The probabilistic procedure samples the solution space so that multiple config-
urations compatible with both the data and the constraints can be found.

– The model evolution during the iterations is obtained through quaternion oper-
ators.

Thanks to these features, our procedure avoids some of the drawbacks in the
algorithms proposed so far in the literature. Also, our algorithm is conceptually
simple, and amenable to be speeded up by exploiting several levels of parallelism.
As a proof of principle, we have performed some tests on real HI-C data from human
cells [4]. In these tests, we obtained a number of different structures characterized
by similar values of the cost function but showing a few distinct spatial behaviors
(two examples are shown in Fig. 4, from data related to the long arm of the human
chromosome 1 [13]). The macroscopic appearance of these structures is compatible

Fig. 4 Two typical configurations resulting from our experiments (measurements in nm).

with the expected shape of a portion of chromosome.
In conclusion, we have generated an algorithm that can substantially contribute

to the elucidation of chromosomal structure, by producing families of structures
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compatible with biological information. Our procedure is also innovative in the use
of quaternions to evolve the model during the estimation process.
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