Load-sensitive CPU Power Management
for Web Search Engines

Matteo Catena'®, Craig Macdonald?, Nicola Tonellotto®

! Gran Sasso Science Institute, 67100 L'Aquila, Italy
2 University of Glasgow, Glasgow, G12 8QQ, UK
® National Research Council of Italy, 56124 Pisa, Italy

{matteo.catena, nicola.tonellotto}@isti.cnr.it, craig.macdonald@glasgow.ac.uk

ABSTRACT

Web search engine companies require power-hungry data cen-
ters with thousands of servers to efficiently perform searches
on a large scale. This permits the search engines to serve
high arrival rates of user queries with low latency, but poses
economical and environmental concerns due to the power
consumption of the servers. Existing power saving techniques
sacrifice the raw performance of a server for reduced power
absorption, by scaling the frequency of the server's CPU ac-
cording to its utilization. For instance, current Linux kernels
include frequency governors i.e., mechanisms designed to dy-
namically throttle the CPU operational frequency. However,
such general-domain techniques work at the operating system
level and have no knowledge about the querying operations of
the server. In this work, we propose to delegate CPU power
management to search engine-specific governors. These can
leverage knowledge coming from the querying operations,
such as the query server utilization and load. By exploiting
such additional knowledge, we can appropriately throttle
the CPU frequency thereby reducing the query server power
consumption. Experiments are conducted upon the TREC
ClueWeb09 corpus and the query stream from the MSN 2006
query log. Results show that we can reduce up to ~24%

a server power consumption, with only limited drawbacks

in effectiveness w.r.t. a system running at maximum CPU

frequency to promote query processing quality.

Categories and Subject Descriptors: H.3.3 [Informa-
tion Storage & Retrieval]: Information Search & Retrieval
Keywords: Power Consumption, CPU Frequency Scaling,

Search Engines

1. INTRODUCTION

Nowadays search engines are a fundamental part of the
Web, due to its enormous size. In fact, most users turn to
a search engine to look for the information they need, pro-
ducing billions of searches every day. And yet, users want to
quickly receive answers to their questions, and are not willing

to wait long for queries to be served [15]. To achieve low
latencies, user queries are processed in a distributed fashion
by thousands of query servers, which are organized in clusters
and hosted by a data center [1]. This distributed architecture
promotes raw performance but also raises environmental and
economical issues. In fact, data centers have high electricity
consumption due to servers and telecommunications. More-
over, as servers generate heat, data centers need additional
energy for thermal cooling.

Research in Information Retrieval on energy-efficiency
for search engines has only started comparatively recently.
Chowdhury was the first to explicitly write about Green Infor-
mation Retrieval and to propose a research agenda to reduce
power consumption in IR systems [5]. Recently, the research
community has proposed some approaches for improving
the energy efficiency of search engines data centers. These
can involve workload consolidation among multiple query
servers [6], caching mechanisms [8, 12, 14] or query routing
between different data centers [10, 18]. These works focus
on the behavior of either the whole distributed infrastructure
or the single data-centre of a Web search engine. Conversely,
our work focuses on the energy efficiency optimization of a
query server within the data-centre’s cluster.

The power consumption of a typical server is dominated
by its CPU. This is particularly true at low utilization lev-
els, where CPUs consume a fixed amount of power without
performing any demanding computations. For this reason,
Hoelzle and Barroso [9] report the data centers’ need for
energy-proportional computing, i.e., for hardware components
with power consumption proportional to utilization.

Dynamic Frequency Scaling (DFS) technologies sacrifices
CPU performance for lower power consumptions, by throt-
tling processor’s frequency [17]. By doing so, CPUs operating
at low frequencies absorb less power but have lower perfor-
mance than CPUs working at higher frequencies. Operating
system (OS) kernels can exploit DFS to achieve energy sav-
ings, for instance by throttling the server CPU frequency
accordingly to the processor utilization [3]. When the pro-
cessor is under-utilized, a low CPU frequency is selected.
Conversely, a high CPU frequency is picked when the proces-
sor is heavily utilized by the system. However, the OS misses
domain-specific information on the search engine software
and its interactions with the incoming user queries. We ad-
vocate that this information can help improving the energy
proportionality of a search engine, as identified in [9].

We propose search engine-specific frequency governors that
can better adapt to varying query workloads by leveraging
domain-specific information. While DFS states are typically

mailto:craig.macdonald@glasgow.ac.uk

managed by the OS, their functionality can be (partially)
controlled by application-level code [3]. We build upon this
functionality to develop our proposed solution i.e., search
engine-specific frequency governors which control the CPU
frequency from within the query server. Indeed, knowledge
of query server utilization and load facilitate a more refined
control of the processor to achieve power savings.

Recently, Lo et al. propose a centralized feedback-based
DFS controller for search clusters [11]. Their approach
achieves considerable power savings by trading off perfor-
mance, so that latency constraints are barely met for any
workload. However, the authors report several challenges in
deploying their centralized solution on large clusters. On the
other hand, our approach is decentralized as it works at the
single query server level.

The contribution of this paper are as follows: (1) we pro-
pose to exploit query servers’ knowledge (e.g., utilization,
load) to throttle the CPU frequency via search engine-specific
frequency governors (2) we experimentally demonstrate that
our solutions can achieve significant power savings without
markedly damaging the query processing quality w.r.t. stan-
dard frequency governors.

2. PROBLEM STATEMENT

We model a query server as a first-come first-served queue,
where incoming queries wait to be processed upon arrival to
the search engine. As soon as a processing thread is available,
it picks the next query from the queue and starts processing
it, in disjunctive mode. Queries arrive to the system with an
arrival rate A and are processed at a processing rate p (both
expressed in gps, i.e., queries per second). The query arrival
rate can vary over time, due to fluctuations in the query load
[16]. The query processing rate may change as well, because
of the DF'S mechanism: for lower CPU frequencies we expect
lower power consumption but also lower p values, as the
CPU speed is reduced and query processing takes longer.

Search engines users are impatient [15], so we assume
that query servers must process queries within a short time
threshold 7 since their arrival, e.g., 1 second. However,
since a query can spend some time waiting in the queue,
processing threads may actually have less than 7 seconds
to solve certain queries. Additionally, execution times are
variable and some queries may require more time than others
to be processed [4]. If our system cannot complete a query
processing within the time budget, the retrieval phase is
terminated early and results computed so far are returned [10].
This partial processing will likely have a negative impact on
the effectiveness of the returned results; however, they can
benefit from subsequent effectiveness-improving processing
stages, e.g., machine-learned ranking [19]. Conversely, when
a query exceeds T seconds waiting in the queue, the server
just drops it. In this case, the system returns no results.

The power consumed by a query server (measured in Watts)
can be divided into two components: a static part which
is continuously consumed to operate the hosting machine,
and a dynamic (or operational) part which depends on the
CPU usage to perform query processing activities. In this
work, we propose to exploit DFS technology to dynamically
change the query server CPU frequency to reduce the oper-
ational power consumption. Indeed, as shown in Figure 1,
the average operational power consumed by the query server
is directly correlated to the CPU frequency. Of course, the
operational power consumed by the server varies for differ-

30 qps

27 qps
24 qps
10 - - 21 gps
18 qps

15 gps

12 gps

Power (Watt)

20 - _9qps

6 aps
10 - -
//,// 3aps
0.8 1.0 1.2 1.4 1.6 1.8 2021 2.3 2.5 2.7 2.9 3.1 3.3 3.5

CPU Frequency (GHz)

Figure 1: Average operational power (measured in
Watts) consumed by a query server at different CPU
frequencies and different workloads.

ent incoming workloads, since the machine load varies with
the number of queries requiring processing. Clearly, lower
CPU frequencies consume less power but also increases the
number of unanswered and partially processed queries, as
lower frequencies decrease the query processing rate p.

Hence, our goal is to reduce the power consumed by a query
server to process queries, while providing an acceptable query
processing quality.

3. PROPOSED SOLUTION

To achieve our goal, we propose to move CPU power
management from the OS directly to the query server appli-
cation code. The Linux OS leverages DF'S to reduce power
consumption. A CPU exposes a finite set of available opera-
tional frequencies to the OS kernel, which exploits software
modules called frequency governors [3] to dynamically se-
lect the current operational frequency. OS governors vary
the processor frequency according to metrics like the CPU
utilization, i.e., the fraction of time a processor is busy per-
forming computations. For instance, the os-conservative
governor steps up the processor frequency when the CPU
utilization is above a tunable threshold « (e.g., 0.8). Con-
versely, the CPU frequency is scaled down if utilization is
below a tunable threshold 3 (e.g., 0.2). In any case, the OS
governors select the CPU frequency using kernel-level infor-
mation. They do not use application-specific information
from the search engine, which we argue can help to improve
the system energy efficiency. For this reason, we propose
to delegate frequency scaling decisions to application-level
modules, by implementing governors inside the search engine.

We develop two search engine-specific frequency governors,
based on query server knowledge: se-conservative and
se-load. The se-conservative governor is inspired by the
os-conservative module, but it exploits the query server
utilization instead of the raw CPU utilization. By using the
query arrival and processing rates, the query server utilization
p is computed as

A
P:m 1)

where k is the number of threads processing queries [7]. The
idea behind this governor is to maintain an acceptable query
server utilization (e.g., 0.7 [7]) so that incoming queries can
be easily processed without consuming too much power. Peri-
odically, se-conservative computes the query server utiliza-
tion and adjusts the CPU frequency. Frequency throttling is
performed if p is above (resp. below) the tunable threshold
a (resp. B). If an adjustment is required, se-conservative
changes the processor frequency to obtain the desired uti-
lization. The governor assumes that it will receive in the
immediate future the same number of queries received during
the last period. Using Equation (1), it computes the query
processing rate necessary to obtain the target utilization.
Finally, this governor selects the lowest frequency capable of
producing such query processing rate, assuming processing
rate directly proportional to CPU speed.

Our second governor, se-load, bases its frequency scaling
decisions upon the number of queries N populating the query
server, i.e., the queries currently queued or being processed.
Given N, we define the query server load ¢ as:

(=2 2)
Here, the principle is to reduce the query population in the
server as fast as possible, when the query server load is too
high (e.g. £ > 0.7). Periodically, se-load observes the query
server load and accordingly adjust the CPU frequency. If ¢ is
greater than «, the processor is set to its maximum frequency.
When ¢ is below 3, the CPU frequency is stepped down from
its current frequency to the next smaller one.

In the following section, we experiment in order to evaluate
(a) how much power can be saved by using the search engine-
specific frequency governors and (b) the corresponding impact
on query processing quality.

4. EXPERIMENTAL SETUP

Experiments are conducted using the Terrier IR plat-
form [13]. The platform is hosted on a dedicated Ubuntu
14.04 server; Linux kernel version is 3.13.0-45-generic. The
machine is equipped with 32GB RAM and an 8-core Intel
i7-4770K processor, which exposes 16 operational frequencies
ranging from 800 MHz to 3.5 GHz. The ClueWeb(9 (Cat. B)
document collection is indexed to represent the first tier of a
Web search engine. Stopwords are removed and the Porter
stemmer is applied to all terms. The index stores document
identifiers and term frequencies. The index is compressed
with Elias-Fano encoding [20], and is kept in memory, shared
among 8 query processing threads.

Queries are taken from the MSN 2006 query log and are
submitted in real time to our system, while halving their
original interarrival time. Since we use the first day of the
dataset, every experiment take 12 hours to run; the average
query load in 11.28 gps instead of the original 5.14, with a
peak of 44 qps instead of 28.

For each query, we use BM25 to retrieve the top 1000 doc-
uments using WAND [2]. Upon arrival, queries are queued
and have 1 second to be processed’. When this time expires
before processing completion, query processing is early ter-
minated and partial results are returned. If a query spends
all its time in the queue, the system drops the query. The
query is unanswered and an empty result list is returned.

! Approximatively 7% of the queries take at least one second
to be solved.

For each experiment, we measure (a) the % of unanswered
queries (%UQ), (b) the mean recall, relatively to an ideal
system which has infinite time to process every query (RR)
and (c) the power consumed by the query server (P). In
particular, power consumption is measured at the server
power socket by using an Alciom PowerSpy2 wattmeter.
Measurements consider only the dynamic power consumption,
i.e., we remove the power consumed by the server when idle
(~41.8 Watt). Power is measured every 30 milliseconds and
the mean value is reported for each experiment.

Our baselines are given by standard Linux frequency gov-
ernors. In particular, we compare our approach to two
baselines: os-performance which processes every query at
the maximum CPU frequency; and os-conservative which
adjusts the CPU frequency based on the processor utilization.

For os-conservative, frequency throttling decisions are
taken every 0.08 milliseconds (the default value). Instead,
our governors take decisions at every second, since we observe
from the query log that the query arrival rate fluctuates every
~1.2 seconds in average.

While os-performance is parameterless, other governors
are tested under two different configurations. One has relaxed
thresholds (o = 0.8, 8 = 0.2 — as in the os-conservative
default setting), so that the query server is likely to maintain
a certain CPU frequency for longer periods. The other
configuration has tighter thresholds (selected as o = 0.8,
B = 0.6), so that the query server will promptly react to
changes in utilization or load.

We consider our search engine-specific governors success-
ful if they show reduced power consumption (P) than the
baselines, without marked degradation to query processing
quality, as measured by relative recall (RR) and % of unan-
swered queries (%UQ).

S. EXPERIMENTAL ANALYSIS

[Governor | o [B8 [%UQ] RR | P |
os-performance | - - 0.342 | 0.931 | 41.765
os-conservative 0.8 [0.2 | 0.283 | 0.929 | 38.569

0.8 | 0.6 | 0.295 | 0.927 | 35.381

se-conservative 0.8 [0.2 | 0.352 | 0.911 | 36.016
0.8 0.6 | 0.315 | 0.900 | 31.727

se-load 0.8 { 0.2 | 0.312 | 0.913 | 35.455

0.8 [0.6 | 0.292 | 0.912 | 32.888

Table 1: Percentage of unanswered queries (%UQ),
mean relative recall (RR) and mean consumed
power (P, in Watt) for different frequency governors
under various settings of «, S.

Experiments results are reported in Table 1. We observe
that the os-performance baseline consumes the highest op-
erational power (~ 42 Watt) and causes the query server
to drop more than 0.3% of the incoming queries. However,
under this configuration the system shows the best relative re-
call (0.931). Relative recall values are statistically significant
according to paired t-tests (p < 0.01).

The query server using the os-conservative governor
shows reduced power consumption w.r.t. a server equipped
with the os-performance governor. Indeed, os-conservative
can consume from ~8% to ~15% less power than a governor
which always maintains the CPU at the maximum frequency.

Also, os-conservative drops less queries but provides a
slightly worse relative recall.

Our first search engine-specific governor, se-conservative,
leads to reduced power consumption if compared to os-
conservative runs. In fact, our governor saves more than
6% in power consumption when relaxed thresholds are set
(e = 0.8, 8 = 0.2); and more than 10% using tight thresh-
olds (a = 0.8, 8 = 0.6). These power savings come at the
price of small degradation in query processing quality: the
percentage of unanswered queries increases by ~6% while
the relative recall decreases by almost 2%, if we compare
se-conservative to os-conservative with tight thresholds.
Under the relaxed threshold, se-conservative drops ~24%
more queries than os-conservative, while its relative recall
diminishes of ~3% in comparison. When compared to os-
performance, se-conservative can help saving from ~14%
to ~24% in power consumption. Relative recall decreases by
slightly more than 2% when using relaxed thresholds, and by
almost 3% with tight ones. The percentage of unanswered
queries increases of ~3% w.r.t. os-performance when se-
conservative uses relaxed thresholds. However, dropped
queries decrease by ~8% when tight thresholds are set.

Our second governor, namely se-load, obtains power sav-
ings similar to the se-conservative governor, but with
a better query processing quality. Indeed, se-load saves
more than 8% in power consumption when compared to os-
conservative with relaxed thresholds. However, the relative
recall detriment is less than 2% and the unanswered queries
increment by just ~10%. When the governors are configured
with tight thresholds, se-load saves 7% in power consump-
tion w.r.t. os-conservative. At the same time, relative
recall is damaged for less than 2% and no additional queries
are dropped. When compared to os-performance, se-load
saves from ~15% to ~21% in power consumption. Relative re-
call is damaged by ~2% under both threshold configurations.
Instead, the percentage of unanswered queries benefits from
our governor. Under relaxed thresholds, se-1oad drops ~9%
less queries than os-performance and ~15% less queries
remain unanswered by using tight thresholds.

Overall, experiments confirm that our approach is suc-
cessful, as the search engine-specific governors show reduced
power consumption than the two baselines. In particular, se-
conservative provides the highest power saving. Relative
recall (RR) and percentage of unanswered queries (%UQ) are
not markedly damaged, especially when se-load is used.

6. CONCLUSIONS

In this work, we advocate that search engines infrastruc-
tures can save power at query server level, by leveraging
knowledge on the server querying operations. We develop two
search engine-specific frequency governors, se-conservative
and se-load, which perform processor frequency throttling
according to the query server utilization and load. By exten-
sive experimentation, we evaluate the benefits and drawbacks
of our approaches, compared to standard OS-level frequency
governors. We find that se-conservative can help saving
up to ~24% power w.r.t. a system which operates at maxi-
mum CPU frequency to promote query processing quality.
Indeed, se-conservative damages by just ~3% both rel-
ative recall and percentage of unanswered queries. When
compared to systems that use more energy efficient config-
urations, we find that our governors can still save at least
7% in power consumption. This gain costs only a limited

detriment in relative recall (less than 2%) when se-load is
used. Moreover, such power savings are important at data
center-level too. Indeed, reduced CPU frequencies reduces
heat output, and thus reduces thermal cooling expenditure.
Greater power savings can be achieved by accepting more
substantial degradation in query processing quality.

7. REFERENCES

[1] L. A. Barroso, J. Dean, and U. Holzle. Web Search for a
Planet: The Google Cluster Architecture. IEEE Micro,
23(2):22-28, 2003.

[2] A. Z. Broder, D. Carmel, M. Herscovici, A. Soffer, and
J. Zien. Efficient query evaluation using a two-level retrieval
process. In CIKM, 2003, pages 426-434.

[3] D. Brodowski. CPU frequency and voltage scaling code in
the Linux kernel: Linux CPUFreq. https://www.kernel.
org/doc/Documentation/cpu-freq/index.txt, Visited:
2015-02-16.

[4] S. Biittcher, C. L. A. Clarke and G. V. Cormack.
Information retrieval: Implementing and evaluating search
engines, 2010, MIT Press.

[5] G. Chowdhury. An agenda for green information retrieval
research. Information Processing & Management,
48(6):1067-1077, 2012.

[6] A. Freire, C. Macdonald, N. Tonellotto, I. Ounis, and

F. Cacheda. A Self-adapting Latency/Power Tradeoff Model

for Replicated Search Engines. In WSDM, 2014, pages

13-22.

M. Harchol-Balter. Performance Modeling and Design of

Computer Systems: Queueing Theory in Action. Cambridge

University Press, 2013.

N. Hidalgo, E. Rosas, V. Gil-Costa, and M. Marin.

Assessing Energy Efficiency in ISP and Web Search Engine

Collaboration. In WAINA, 2014, pages 299-304.

U. Hoelzle and L. A. Barroso. The Datacenter As a

Computer: An Introduction to the Design of

Warehouse-Scale Machines. Morgan and Claypool

Publishers, 1st edition, 2009.

[10] E. Kayaaslan, B. B. Cambazoglu, R. Blanco, F. P.
Junqueira, and C. Aykanat. Energy-price-driven Query
Processing in Multi-center Web Search Engines. In SIGIR,
2011, pages 983-992.

[11] D. Lo, L. Cheng, R. Govindaraju, L. A. Barroso and C.
Kozyrakis. Towards energy proportionality for large-scale
latency-critical workloads. In ISCA, 2014, pages 301-312.

[12] M. Marin, V. Gil-Costa, and C. Gomez-Pantoja. New
Caching Techniques for Web Search Engines. In HPDC,
2010, pages 215-226.

[13] C. Macdonald, R. McCreadie, R. Santos, and I. Ounis. From
Puppy to Maturity: Experiences in Developing Terrier. In
OSIR Workshop, 2012.

[14] F. B. Sazoglu, B. B. Cambazoglu, R. Ozcan, I. S.
Altingovde, and O. Ulusoy. A Financial Cost Metric for
Result Caching. In SIGIR, 2013, pages 873-876.

[15] E. Schurman and J. Brutlag. Performance related changes
and their user impact. In Proc. Velocity, 2009, page 1.

[16] F. Silvestri. Mining Query Logs: Turning Search Usage
Data into Knowledge. Foundations and Trends in IR, Now
Publishers Inc., 2010.

[17] D. C. Snowdon, S. Ruocco, and G. Heiser. Power
Management and Dynamic Voltage Scaling: Myths and
Facts. In PARC Workshop, 2005.

[18] A. Teymorian, O. Frieder, and M. A. Maloof. Rank-energy
Selective Query Forwarding for Distributed Search Systems.
In CIKM, 2013, pages 389-398.

[19] N. Tonellotto, C. Macdonald, and I. Ounis. Efficient and
effective retrieval using selective pruning. In WSDM, 2013,
pages 63-72.

[20] S. Vigna. Quasi-succinct indices. In WSDM, 2013, pages
83-92.

=

8

[9

