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Abstract—Modelling of bike sharing systems as Markov
Renewal Process is examined with the aim of capturing and
assessing various forms of user (dis)satisfaction. A class of models
with minimal assumptions about distributions of bicycle parking
stations and service requests is developed in which rational
commuter behaviour is taken into account. Stochastic time
evolution of these models is studied, using a generalised version
of Gillespie’s exact stochastic integration algorithm that accounts
for non-Markovian inter-event times. The model is shown to
reproduce quite faithfully the trip-duration statistics of smaller
and larger real bike sharing systems, such as those in London
and Pisa, including the algebraic ‘tails’ of these distributions
that are made up of longer cycling trips. The latter are related
to user’s difficulties to find suitable parking places therefore to a
potential source of distress. The model also predicts other salient
features such as a mode at 10 minutes and crossover behaviour
at about 30 minutes. The framework can be extended to include
measures either designed to improve, or anyway to affect, the
user experience with a system, such as incentives for spontaneous
vehicle redistribution. User satisfaction is difficult to assess in real
systems because these naturally collect only data about trips that
actually, and thus successfully, took place giving only partial and
biased insight in user satisfaction.

I. INTRODUCTION

Smart bicycle sharing is a form of public transport that
provides short-term self-service bicycle hiring [1], [2]. It has
evolved a long way from the early ideas dating back to the six-
ties. Recent popularity of bike-sharing gained momentum with
the introduction of information and smart card technologies
allowing vehicle tracking. Today, hundreds of cities worldwide
have such programs, operating up to tens of thousands of
vehicles and thousands of docking stations (e.g. Hangzhou or
Paris1). In those cities, smart bike-sharing has become a reli-
able mode of public transport, welcomed by the general public
for its dependability and bicycle’s environmental, societal,
and health benefits [3]. However, smart bike-sharing programs
raise multiple issues concerning their carbon footprint [4],
integration with other modes of public transport, choosing
proper service features [5], and understanding the effects of
user incentives [6], to mention a few.

In developed urban environments, the question that po-
tential users of any public form of transport will be asking
themselves increasingly often is ‘which’ mode of public trans-
port to rely on rather than ‘if’ they will use public transport.

1Institute for Transportation and Development Policy of China, http://www.
publicbike.net/defaulten.aspx; Vélib’, http://www.velib.paris.fr

This concerns smart bike-sharing too, since the majority of
cycling trips in cities could also be made by a combination
of walking and other modes of public transport (cf. [2, Fig.
4]), or private bike. The successful running of multiple public
transport services may in the long term be determined not
only by proper top-down planning, but also by the cumulative
effects of ‘micro-decisions’ by the public, as the example of
the bike-sharing system in Melbourne [7] suggests. Being able
to evaluate the balance between services and policies could in
the long run determine the success of some programs.

It is notoriously difficult to evaluate user satisfaction from
the available data collected by a system. Typical bike-sharing
data consists of static parameters of stations and fluctuating
numbers of parked vehicles. In many cases, vehicle identifica-
tion numbers are also available, which allow to relate the hiring
and the corresponding returning events, and visualise dominant
spatiotemporal flows [8], [9], [10]. Naturally, this data concerns
only such trips that actually, and thus successfully took place,
and raises the issue of missing information about the users who
chose an alternative service. Moreover, even the successful
trip data concerns only the middle part of the ‘walk-cycle-
walk’ travel cycle. The missing links conceal the trip–objective
relation, which is important to the evaluation of a system from
the service efficiency perspective. Useful additional insights
can be had using alternative approaches such as [11], although
they are prone to similar bias issues.

The main contribution of this paper is to show that a model
based approach, taking into account certain minimal assump-
tions about the user behaviour, can provide complementary
insights into the performance of bike-sharing from a users’
perspective. This is illustrated by showing that the aggregated
cycling time distributions of real bike-sharing systems can
be reproduced to a degree without the parameter fitting of
real systems, or the use of privacy-sensitive user information.
Furthermore, enriching the model in a step-wise manner sug-
gests other generic insights into the multifaceted question of
user satisfaction. We explore the interpretation of cycling trip
durations in a manner akin to that of an ‘actuary’. Statistics
of human life’s duration follow a certain probability law.2 The
subtle features of the probability density function (PDF), espe-
cially in the so-called ‘tail’ of extreme events, are oftentimes
of most interest, since they have important consequences to the
conditional expected life-times, and to the assessment of long

2approximated by, for example, the Gompertz-Makeham model.
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Fig. 1. Cycling duration histograms (Data) in London (right) and Pisa (left), using 831,754 trip records in October 2012, and 242,248 trips, made between June
2013 and May 2015, respectively, and the simulation results for a uniform model (dark lines) and a flow model (light lines). Maintenance trips are excluded.

term risks. In this article we will compare two data-sets, each
consisting of cycling trips (excluding maintenance), made by
users of bike-sharing systems in two cities: London (UK) and
Pisa (Italy). As is evident from Fig. 1 (Data), the cycling time
PDFs share remarkable similarities, such as a mode at about 10
minutes, or an algebraic ‘tail’ beyond 30 minutes (cf. [9, Fig.
3] for analogous PDF from Lyon). The latter part of the PDF
is well approximated by f(t) ∝ t−a, with an exponent a > 0.
Validity of this law spans nearly three decades and appears to
be limited only by the sample size. In both cases, it predicts
cycling trips whose duration exceeds the time necessary to
traverse a corresponding city.

The presence of surprisingly long cycling trips and their
representative algebraic ‘tails’ in the PDFs are found in all
considered cities, and in data on individual pairs of stations.
In this article we provide a theoretical explanation for such
domain independence by rational behaviour. For that, we use
an agent-based model with the following basic assumption:
Bike-sharing users’ ultimate concern is to save travel time
and to arrive at a planned destination with a high probability
just before the planned appointment time. This paradigm is
implemented using a rigorous framework of Markov Renewal
Processes (MRP) [12], [13], that accomodate the necessary be-
havioural complexity due to a possibility to use non-Markovian
renewal PDFs. The model lends itself to both a quantitative and
a qualitative interpretation of the algebraic tails, suggesting the
following explanation for the observed data: agents who are
aiming at arriving on time at their destinations, when they
choose to use bike-sharing, must nevertheless take the risk of,
either, not finding a free slot where to park, or no bicycle
for hiring, at the expected location. These contingencies lead
to unplanned delays. Clearly, if a person cannot predictably
make it to the appointment on time, it is going to reflect on
her satisfaction with the service.

We will consider both single and multiple agent models.
For the latter, varying the agent and station distributions, we
will obtain the ‘uniform’, and the ‘flow’ models (whose PDFs
are also shown in Fig. 1) and relate several differences of
these models to the factors affecting user satisfaction with the
system. The main insight is that a model could be characterised

by some emerging condition, such as the formation of large
clusters with completely full stations.

The outline of the paper is as follows. Section II briefly
recalls the essence of MRPs, provides a description of the
bike-sharing model, including its justification, and describes
the simulation method. The results concerning trip duration
distributions are presented in Section III, whereas models
for Pisa and London are discussed in Section IV. Section V
concludes with some further considerations and open issues.

II. THE BIKE-SHARING MODEL

A. Markov Renewal Processes

The Markov Renewal Process (MRP) is a generalisation
of a Continuous Time Markov Chain (CTMCs) to non-
Markovian events, and non-exponential distributions of inter-
event times [12], [13]. In this section we briefly recall MRPs,
and motivate their use for the modelling of bike-sharing.

Let (X,T ) = {Xi, Ti; i ∈ N} be a stochastic process in
EN × RN+, where E is some countable set, representing the
‘state space’, and R+ = [0,∞) represents the time-line of
evolution. A MRP is a Kolmogorov model such that for each
pair of states i, j ∈ E, the conditional probability is given by

Pr {Xn+1 = j, Tn+1 − Tn ≤ t | Xn = i} = Qij(t) , (1)

where Qij(t) is a right-continuous, non-decreasing and
bounded function, with Qij(∞) ≤ 1, and

∑
j Qij(∞) = 1.

A matrix Q = (Qij(t); i, j ∈ E) with these properties is
called a semi-Markov kernel of (X,T ). A matrix P = (Pij),
whose elements are defined by Pij = Qij(∞), is a stochastic
matrix, and functions Fij(t) = Qij(t)/Pij , for each i, j ∈ E,
are distributions. As a consequence, X = (Xn;n ∈ N) is
a Markov chain (DTMC) with state space E and transition
matrix P , i.e. the conditional jump probabilities are

Pr {Xn+1 = j | Xn = i} = Pij , (2)

and the distribution of sojourn time in a state i, conditional on
a subsequent jump to a state j, is given by Fij(t):

Pr {Tn+1 − Tn < t | Xn = i,Xn+1 = j} = Fij(t). (3)
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Fig. 2. The automata of a bicycle station (top) and a user-agent (bottom).
The state space corresponding to a system of A agents and S stations, is a
Cartesian product E =

∏S
i=1{0, . . . , ci} × {H,R,A,M}A.

Several classes of models of transport (including CTMCs
and M/G/1 queueing systems) can be interpreted as special
cases of MRPs with a suitable choice of Q [12].

B. Motivation for the use of MRP

An MRP generalises a Markov Processes in two aspects:
it provides a mechanism to use arbitrary distributions (and
not only exponential ones), and it allows to use transitions,
conditioned on a current state and on the state to be entered
subsequently. These are the main features used in what follows.

We will assume that bike-sharing users are time-conscious
people whose decision to use bike-sharing is determined by
the concern to save travel time, and to reach their objective
at the expected time with high degree of certainty. If we
accept this premise then we must also accept that the speed
of travel is a major factor in the competitiveness of various
modes of transport. To take the speed of travel into account
in a stochastic model, it is easy to show that transition rates
must be functions of both the current and future states, and
that the probability distributions are not exponential. Let the
state space represent an ‘address book’ of all the stations; we
may take E = {1, . . . , S} where S is the number of stations,
and each index is uniquely associated to some address xi.
For an arbitrary pair of indices i 6= j, consider a trip from
xi to xj along a fixed path, traversed at a constant pace p,
measured in minutes per kilometre. The duration of this trip is
T = p |xi − xj |, where |·| is the length of a path, measured in
kilometres. This result can be given a probability distribution
Fij(t) = 1t>taij , where 1A is an indicator function, equal to
one if A is true and zero otherwise, and taij = p |xi − xj | is the
so-called activation time. Clearly, Fij(t) is not an exponential
distribution for any pair of indices, and its parameter taij is a
function of the current state i, and a possible future state j. This
argument is easily generalised to stochastic travel processes.
Any trip between a pair of distant locations (i, j) will take
a human traveller at least some finite time taij > 0, so that
Fij(t) = 0 if t < taij

3, whereas the exponential distribution is
characterised by taij = 0, allowing arbitrarily fast travelling.

3A bound of taij , obtained by substituting the speed of light for 1/p gives
absolute certainty, but also much larger bounds, assuming much slower speeds,
can be used with near certainty.
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Fig. 3. Spatial (left) and temporal (right) decision criteria of participation.

C. Bike-sharing model

The bike-sharing model is a generalisation of these moti-
vating ideas. It describes a population of agents and bicycle
stations, contained in a two-dimensional rectangle representing
a populated urban area.

1) Population of bicycle stations: A station is represented
by a triple (n, c,x), where n is the number of available
bicycles (the occupation number), c is the capacity, and x
is the geographical coordinate (the address) of a given station.
An automaton of a typical station with capacity c is shown in
Fig. 2. The total number of bikes is N =

∑S
i=1 ni, and the total

capacity is C =
∑S
i=1 ci. Fixed capacity and instantaneous

transaction approximations are assumed throughout.

2) Population of user-agents: An agent combines several
human factors pertaining to travelling and decisions. Each
agent is parameterised by two addresses that specify its origin
and destination locations. The cycling and walking paces, and
corresponding rates, are considered as random numbers sam-
pled from a normal distribution. The typical human speeds of
5 km/h for walking, and 12 km/h for cycling, yield paces of 12
min/km, and 5 min/km, respectively, whereas the mean of both
rates is set to one (min−1). The agent states (see Fig. 2) are de-
noted and interpreted as follows: H= {wants to hire a bike},
R= {wants to return a bike}, A= {wants to arrive}, and M=
{wants to reset}. A single ‘walk-cycle-walk’ travel cycle is
quantified by a sequence of transitions H→R→A→M, with
transition epochs T1, T2, T3, T4. The total duration of a trip
is T4−T1, whereas the duration of its cycling part is T3−T2.
An additional ‘mutation’ transition M→H is added to make
agents’ life cyclic and states recurrent, and allowing continual
regeneration of their objectives.

3) Stochastic dynamics: Agents drive the system by spon-
taneous decisions. There are two types of agent decisions that
result in firing or mutation transitions. Firing transitions are
further distinguished as either ‘take’ or a ‘return’ transitions.
They are synchronised in an obvious manner with two kinds
of state-changes occurring at bicycle stations (see Fig. 2).
The remaining ‘arrive’ and ‘reset’ transitions are mutation
transitions. They are defined by not being synchronised with
any station update. Both re-initialise the agent states, the first
one resulting in the arrival at a destination, the second one in
a complete regeneration of objectives. Agent’s objectives can
be initialised in various ways. In this article, we consider the
so-called spot commuter mutation protocol. A spot commuter
selects a random new pair of locations and the time until
activation, both sampled from appropriate distributions. We
remark that other protocols can be easily designed where, for
example, the arrival time, rather than the departure time, is
a relevant issue. It is important to emphasise that agents can
estimate the expected arrival time using Markovian forecasting
protocol and, consequently, measure the late arrival time as a
difference between the expected and actual arrival epochs.



The model that is used for the travel process is a composi-
tion of a conditional travel process and a station utility model,
addressing two major sources of uncertainty of travel in urban
environments. The conditional travel process addresses the
randomness due to various interactions with the environment. It
states that, conditional to fixed end points and a fixed itinerary,
the travel time is a stochastic variable that corresponds to a
first passage process of a one-dimensional random walk. The
so-called renewal distribution of this process is the inverse
Gaussian distribution [14] which is further approximated by a
delayed exponential distribution F (t) = 1t>ta(1−e−r

a(t−ta)).
Here, ta = pad is the activation time of an agent a, pa
is its travel pace, d is the distance, and ra is as arrival
rate, related to the diffusion property of a random walk.
The station utility model, combined with the assumption of
stochastic dynamics, address the decision process under un-
certainty. Following the von Neumann-Morgernstern axiomatic
approach to the description of such decisions, the existence of
station utility functions with respect to hiring and returning
is posited in the form uij(τ), for i, j ∈ E, with a control
parameter τ , called the decision scale parameter. The latter
is a ‘motivational’ parameter, describing the perceived utility
of a station from an agent’s point of view, and influencing
the agents’ decision to return a bike to a particular station.
A model for station utility perception is proposed in which
the probability of {d > x} for large distances x is given by,
approximately, Pr {d > x} ∼ exp−p

2
fx

2

2τ2 . Thus, agents with a
larger τ value tend to search for suitable stations in a greater
area surrounding their target. However, venturing further away
from the destination increases the walking fraction of the trip,
so that the total trip duration is likely to increase. On the other
hand, smaller values should lead to shorter trips, provided that
a suitable station can actually be found within the search area.

Composition of the two models yields a renewal function
F aij(t) for an agent’s a arrival time T at a station j, given the
current state i, as

Pr {T < t} = F aij(t) = 1t>taij
(
1− e−uij(τ

a)ra(t−taij)
)
. (4)

4) Elective participation and posterior evaluation: Agents
are provided with the capacity to decide whether to accept or
reject bike-sharing as a means of achieving their objective,
and to measure the effectiveness of a trip in the case of
acceptance. They decide whether a bike-sharing trip is a
viable alternative to walking by estimating a kind of triangle
inequality. Assuming that agents know the distance from the
origin (x) to the destination (y) and to the neighbouring
stations (s), and their physical parameters in advance, they
estimate the expected travel time using a station s as τsxs+τ

f
sy,

and compare it against the estimated time of walking directly to
the destination, τsxy (‘s’ and ‘f ’ refer to walking and cycling,
respectively, see Fig. 3). A station is accepted as a candidate
for a trip if it satisfies the triangle inequality

τsxs + τfsy < τsxy . (5)

If at least one station in the network satisfies (5), a bike-sharing
trip is accepted, otherwise it is rejected. Agents estimate the
cycling time from the origin to destination, τfxy. A trip is
accepted only if

τfxy < tc , (6)

-l
n
 x

t1 t2 t3 t4 t5 tn t6

R

Fig. 4. The first half of the stochastic simulation algorithm determines the
sojourn time (tn) and the participating channels in the next transition (Mn).

where tc is the cycling tolerance parameter.

For an acceptable trip, agents estimate the efficiency of a
trip by comparing the actual trip duration ttot = T4 − T1 with
the estimated trip duration, had the agent walked the same
itinerary, i.e. with τs = τs1+τ

s
2+τ

s
3 (where indices 1,2,3 denote

the consecutive parts of the ‘walk-cycle-walk’ travel cycle). To
decide whether using bike-sharing has been a winning strategy,
agents estimate the efficiency ratio

e =
τs

ttot
. (7)

Thus agents can decide, retrospectively, whether bike-sharing
saved time (e > 1) or if it was a waste of time (e < 1).

D. Method of simulation

The bike-sharing model describes a stochastic jump process
in continuous time (see section II-B). CTMCs are oftentimes
simulated using methods that produce statistically exact sample
paths [15], [16]. The basic method requires two random
number generations per step, one for each member of the
pair (X,T ). Thus, a statistically exact ‘first reaction’ of an
M -channel CTMC with rates λ1(Xn), . . . , λM (Xn) at the
nth step could be determined as follows: The sojourn time
tn = Tn+1 − Tn in a current state Xn is drawn from an
exponential distribution 1 − exp (−λ(Xn)t), where λ(Xn) =∑M
i=1 λi(Xn), whereas the next transition channel m is drawn

from a discrete M -point distribution with weights λ̂i(Xn), i =
1, . . . ,M , where λ̂i = λi/λ.4 A practical algorithm consists of
drawing two random numbers x, y ∼ U(0, 1) from a uniform
distribution U , then letting tn = − 1

λ(Xn)
lnx, and letting m

be such that λ̂1 ≤ · · · ≤
∑m
i=1 λ̂i ≤ y ≤

∑m+1
i=1 λ̂i ≤ 1[15],

[16], [17]. Alternative exact methods [18], and other, exact
and approximate variations exist to address specific issues viz.
multiple time-scales (see, e.g. [17] and references therein).

Although the bike-sharing model is non-Markovian, this
CTMC methodology can be adapted to yield a statistically
exact simulation of it. It models each trip as an event with its
own transition channel. Table I provides the estimates of event
frequencies in real systems. Specifically, each agent-station
pair is considered as a possible transition channel (thus M
can be quite large, and vary in time). The total transition rate
in a state X is obtained as a sum of rates from all channels,
the rate for each being raij(t; τ

a) = 1t>taijuij(τ
a)pa. Note

that although a one agent – one station pair distribution is
(a delayed) exponential, a system of many stations or agents

4interpreted as rolling an M -faced ‘loaded die’ with weights (λ̂i).



gives a non-exponential distribution of the form 1 − e−R(t).
The phase, R(t), defined as an integral over the total rate,
R(t) =

∫ t
0

∑
raij(t

′; τa)dt′, is illustrated in Fig. 4. The main
steps of the analogous ‘first reaction’ algorithm are as follows.
A random number x ∼ U(0, 1) is drawn and the sojourn
time tn is solved for from − lnx = R(tn) (see Fig. 4). The
number (Mn) and identities of channels, participating in the
next reaction, are defined as all the channels with the activation
times satisfying taij ≤ tn (Mn = 5 in Fig. 4). The first reaction
channel is then determined, using the second draw of a random
number, and a discrete Mn-point distribution, as before.

III. BASIC PREDICTIONS AND ANALYSIS

A. Metrics

Although the trip duration comprises the primary data that
is directly measured and modelled, there are features that
better describe a system’s functioning than trip durations. We
consider the following three metrics.

1) Trip efficiency metric: The efficiency or gain of a trip
is defined by (7). It is a measure of how useful a particular
trip is to an agent, as compared with the same trip made by
walking: bike-sharing trips with e > 1 save time whereas trips
with e < 1 are a waste of time.

2) Excluded population metric: Agent locations are sam-
pled with the assumption that each agent is interested in using
bike-sharing. However, an agent uses bike-sharing only if the
triangle inequalities (5), and the cycling tolerance inequality
(6), are satisfied. The fraction of all agents who, based on
the union of these inequalities do not, or cannot choose bike-
sharing (because of empty stations), is called the excluded
population metric (EPM).

3) Congestion metric: In a queueing model approach to
bike-sharing, Fricker and Gast [6] identify completely empty or
full stations as problematic because they inhibit one direction
of traffic. To relate their work to ours, we introduce the bicycle
and the slot congestion as follows,

p+t =
1

tS

∫ t

0

S∑
i=1

1{si(t)=ci}, p
−
t =

1

tS

∫ t

0

S∑
i=1

1{si(t)=0} ,

(8)
Since both parameters range from p±t = 0 (no station is ever
full/empty), to p±t = 1 (all stations are always full/empty) they
give an average measure of ‘problematic stations’ in the sense
of [6]. Note that p+t + p−t ≤ 1 for all t.

B. Model parameters

The results in this section concern a single agent model
(except in section III-G where a multi-agent model is used)
with 6×6 stations with ci = 20 and an initial filling degree
N/C ≈ 0.5, placed in a 3×3 km area (similar to Fig. 9), and
random initial configuration of bicycles in stations.

C. Decisions determining travel efficiency

The trip efficiency metric (7) provides insights into the
effectiveness of bike-sharing trips. As shown in Fig. 5, there
exists a compromise value of τ that minimises both the median
of total trip times, and the scatter of their distribution, and
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maximises the median efficiency. The insert shows the median
efficiency for different system sizes and values of N/C.

Additional insights into the trip–efficiency relationship are
provided by Fig. 6, showing the PDFs of efficiency, and median
efficiency as a function of cycling trip duration for three cases:
the near-optimal τ = 2.5 (cf. Fig. 5), and sub-optimal ones:
τ = 1.25, and τ = 6. The sub-optimal PDFs either have a
peak near e = 1 so that a typical trip is either not worth
taking or is marginally so (τ = 6), or have excessive exposure
to anomalous long trips (τ = 1.25). Figure 6 (right) shows that
travel is most efficient in a window of cycling times between
roughly 5 and 15 minutes. The latter time can be explained by
the considered size of the area (3×3 km).

Values of τ below a certain threshold may result in the
perceived utility of all stations becoming negligible. In that
case, the model predicts very long ‘cycling’ trips, even longer
than cycling across the entire city! Curiously, there exists a
real life analogy of the negligible utility setting5. Occasionally,
users abandon their bicycles ‘on the curb’, preferring to leave
them unguarded (paying fees for extended usage, or even a
fine) rather than taking time to park them.

5This was reported to us by the office running the shared bicycle system in
Pisa (M. Bertini, private communication)



D. Risk-taking and conditional expectated travel time

In Fig. 7 the distribution of cycling times is shown for
several values of τ . Note that for smaller values of τ the
longer times are distributed asymptotically as t−a, i.e. the
distribution has ‘an algebraic tail’. Since walking is less
uncertain, the distribution of late arrival times to the destination
has qualitatively similar asymptotic properties as cycling time
distributions. Let us briefly summarise the implications of
distributions having algebraic tails, and how the existence of
such tails in the cycling distributions may suggest quantifying
user dissatisfaction with the system.

Someone interested in the expectation of being late at a
destination, would assume that the arrival time is a random
variable T , with some distribution F (t), i.e. Pr {T ≤ t} =
F (t), and would compute the conditional expectation of arrival
time, given that currently at time t the destination hasn’t been
reached yet: EtT =

∫∞
t
yF (dy)/

∫∞
t
F (dy). Freely adjusting

the reference frame so that the expected arrival time is set to
zero, then if t < 0 one is early, and if t > 0 one is running late.
As a general feature of typical distributions, EtT ≈ 0 if t� 0,
meaning that one is expected to arrive ‘on time’ provided a
long enough headway. However, if t > 0 then the expectation
is at least t (meaning EtT ≥ t), but the precise expression
depends crucially on F . If the distribution is strictly algebraic
‘in the tail’, then EtT = t + 1

a−2 t if a > 2, and EtT = ∞
otherwise. Figure 7 (right) shows how EtT changes with t for
τ = 2.5 leading to on average shorter trips but occasionally
long delays, and τ = 6 (more tolerance), leading to on average
longer trips, but more predictable delays that are closer to
a normal distribution. It is useful to think in terms of the
expected delay δ, defined for t > 0 through EtT = t+ δ. For
comparison, the normal distribution yields δ ≈ σ2/t for large
t, which means that the near-immediate arrival becomes more
certain as the delays accumulate. This is in stark contrast with
algebraic distribution, for which we have δ = t/(a−2). In this
case, because δ ∝ t, the near-immediate arrival becomes less
probable as the delays accumulate. This situation suggests that
relatively long undesired trips can sometimes occur that would
be perceived negatively by the users who, as we stipulated in
the beginning, are time-conscious agents. The exponent a, or
the ratio (a − 1)/(a − 2) can be used to quantify this effect.
A comparison of the curves in Fig. 7 (left) and the histograms
in Fig. 1 (Data) suggest that the actual behaviour is consistent
with moderate risk-taking, exemplified by the optimal τ = 2.5.

E. Rational vs. smart decisions

The model predicts a minor mode at zero minutes’ travel.
This feature is present in some cities (Pisa, see below, and
Lyon, see [9]) but is absent in the London data-set. Borgnat et
al. [9] suggest that mistakenly hired malfunctioning vehicles
are the explanation. In our model, short trips result invariably
from a station of a previous hiring being selected for returning.
Such trips exist in the model because all stations, including
ones that have just been used for hiring, are equally valid
(but not equally probable) options for returning. This is a
consequence of the distance-only dependent utility model.
A typical setting, whose likely outcome is a 0-minute trip,
should have a common nearest station to both the origin and
destination locations, placed roughly in the middle between the
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two objectives. In this setting, it would be ‘rational’ to hire a
bike at the midway station, only to find afterwards that it is
also rational to return it there too, even if an agent would be
better off walking to the destination directly. This feature of the
model is kept because it reproduces the data in Pisa while the
overestimate in the London data-set is moderate, and because
we have no factual data to rule out a possibility of similar
decisions by real users. In the case of a future confirmation of
a plausible hypothesis by Borgnat et al., it could be changed
by a modification to the station utility model.

F. Central mode of the distribution

The most prominent feature of the distributions is a mode,
typically around 10 minutes. We found that its precise location
and the shape of the distribution in the vicinity of the mode is
approximated to a good degree by assuming that the cycling
tolerance parameter tc (see section II-C4) is a random number
from a uniform distribution, tc ∼ U(tmin, tmax). Presence of the
cutoff in the expected cycling time is an important underlying
property leading to the observed distributions, affecting the
characteristic ‘neck’ of these distributions between the mode
and the crossover into the algebraic ‘tails’ Fig. 1. Typically in
real systems, tmax corresponds to the free cycling allowance.

G. Travel efficiency describing the agent’s perspective

In a queueing model approach to bike-sharing, Fricker and
Gast [6] predict that the population of problematic stations



Characteristic PSA LDN Characteristic PSA LDN
Stations 15 742 Approx. area km2 15 90
Approx. fleet size 150 11,500 Average stations km−2 1 8
Approx. capacity 270 19,000 Cycling ≥ 30 min % 6.0 7.7
Average trips h−1 32 1120

TABLE I. PISA (PSA) AND LONDON (LDN) BIKE-SHARING SYSTEMS

increases when a system has many, or few bicycles with respect
to its capacity. They show the existence of an optimal station
filling, whose value is not far from N/C ≈ 1

2 . There is an
apparent disagreement with our model because neither of our
metrics has a similar optimal value as a function of a set
of aggregated system parameters. The apparent disagreement
originates in the interpretation of the term ‘problematic’. It
is useful to make a distinction between user and exploita-
tion issues. For example, the efficiency (and with it user
satisfaction) remains high also for systems with only a few
bikes. As another example, Fig. 8 shows that the excluded
population remains low for a larger value of τ . The latter
would suggest an equally high service level by a network
of any size, provided that agents are willing to search for a
station in a large area. However, as we have seen in Fig. 5,
the efficiency deteriorates markedly with increasing τ . On
the other hand, an empty system leads to high EPM, which
should be troublesome news to an operator, committed to
increasing a system’s usage, and to potential users who would
like to find a bike. Exploring several metrics with our models
we may begin to address issues like (1) ‘Given a certain
density of population presumably interested in bike-sharing
and given a configuration of bicycle stations, what is the
fraction of population that will find it impractical to use it?’,
or (2) ‘Can efficiency of trips be improved by changing the
number of vehicles or station capacities?’ Our model shows
that these objectives are not identical and possibly require a
trade-off. However, they suggest several ways of attacking the
problem such as considering different system configurations or
changing the utility perception by introducing incentives.

IV. BIKE-SHARING IN PISA AND LONDON

The bike-sharing systems in London and Pisa differ in size
by orders of magnitude, as is evident from Table I. And yet,
the cycling time distributions in these cities bear distinctive
similarities, as shown by the filled areas in Fig. 1, shared also
by other cities [9]. It is tempting to consider them as members
of a family of distributions, characterised by a major mode
at about 10 minutes, algebraic tails of the distributions with
exponent a ≈ 3, containing about 7% of trips longer than 30
minutes, and a minor mode close to 0 minutes (the latter is
absent in the London data). It was suggested that at least three
kinds of agents would be required to model similar distribu-
tions [9]. In the following we show that a single type of agent is
sufficient to generate qualitatively correct distributions with all
aforementioned characteristics. This can be achieved without
sophisticated parameter fitting, by using only some qualitative
arguments. We emphasise that the objective of this study is
not a model that copies a real system in question; rather, it is
geared towards a model that incorporates quantitatively correct
features of user behaviour, with the aim of providing insights
into the plausible underlying reasons for the observed data. In
fact, the simple models discussed section III already contain

Fig. 9. The uniform Pisa model. Left panel: The map of stations and a
random snapshot of their filling (circle size ∝ c, shade ∝ n). Middle, right:
distributions of agents’ origin and destination locations, respectively.

Model τ Area + stations Capacity Bikes Trips
(min) (km2) S min/max C N (h−1)

Pisa 3.5 3×3 16 10/25 170 304 35
London 1.8 7×13 722 15/40 19,652 10,000 823

TABLE II. MODEL PARAMETERS

many of the salient features, although they are not sufficiently
accurate for what concerns some quantitative aspects.

The curves for the uniform models, shown in Fig. 1,
correspond to a multi-agent model (see Table II) with uni-
formly distributed agent locations. This setting generates uni-
form demand so that the bicycles are expected to be also
uniformly distributed. As such, it is a statistically optimal
system of redistribution that does not require intervention. The
single necessary additional feature to obtain good quantitative
agreement between collected data and model results such as
those in Fig. 1, are the agent flows. Their introduction leads to
some areas being consistently short of bicycles, and others
running out of available parking slots. Such flows can be
easily constructed using inhomogeneous spatial distributions,
and they may be given an additional temporal dimension, for
example by requiring agents to honour synchronised appoint-
ments. Such temporal ‘tidal flows’ are present in real systems
in the form of morning and afternoon commutes in opposing
directions, often with a clear spatial separation. It was found by
experimentation that temporal features accentuate the effects
of scarce resources and that this effect is quantitatively similar
to the static flows.

The model of Pisa represents a relatively small system with
a 4×4 array of stations (see Table II). Calibration with a single-
agent model, as in Fig. 5, yields τ ≈ 3.5 (min), which is quite
large as a result of sparsely distributed stations. Introduction
of flows to the Pisa model was not necessary to explain the
data6. The model of London covers a larger area with a 19×38
array of stations (see Table II). Calibration as above yields τ ≈
1.8, which is smaller due to a denser network. To introduce
flows, the origin and destination locations were sampled from
a superposition of Gaussian distributions, and some counter-
current flows for the balancing. This setup is shown in Fig. 10,
and the resulting PDF is presented in Fig. 1 (the ‘flow model’).

Note that there are trips lasting longer than 30 minutes.
Since agents use bike sharing with an a-priori expectation that
their trip should be shorter than a certain tmax, with sup tmax
being the aforementioned figure, we know that all trips ‘in
the tail’ were not intended to be so long. This is a first
qualitative indication of possible dissatisfaction on the user
side. Comparing the uniform vs. flow models, the number of

6The discrepancy between these trial and actual distributions visible in Fig. 9
are the result of rejected trips, see sections II-C4 and III-A2



Fig. 10. The flow London model. Left panel: The map of stations and a
random snapshot of their filling (circle size ∝ c, shade ∝ n). Middle, right:
distributions of the origin and destination locations, respectively.

trips in which agents do not find a bike is 10% (Pisa) and
about 1% (London). Trips in the tail are 2% (Pisa) and 2%
vs. 7.7% (London). The number of completely full stations
is 12% (Pisa) and 10% vs. 20% (London). Thus, longer trips
are positively correlated with full stations. This suggests that
full stations are indeed a plausible cause of the occurrence of
(likely) undesired longer trips, and thus a source of concern
for user satisfaction. A comparison between the data and the
corresponding uniform model (optimal in a sense described be-
fore) demonstrates that Pisa is optimal (in that sense), whereas
London is significantly sub-optimal. The slightly better-than-
optimal performance observed in Pisa is explained by the
anticipation of problematic traffic situations using active bike
redistribution. London, which has an 8 times higher density of
stations, appears to be more problematic. The model suggests
that full stations occur in clusters (somewhat like those in
Fig. 10) rather than being more uniformly distributed over the
area. This emerging formation of clusters is most likely the
main cause of the presence of a larger number of long trips.
Reducing their number would likely require a redistribution
strategy aiming at the breaking up of such clusters.

V. CONCLUSION

The inclusion of minimal, but plausible, user behaviour and
flows in a general bike-sharing model based on MRPs is shown
to be sufficient to explain some of the main features of the
distributions of actually observed data. The approach provides
complementary insight into the attractiveness of bike-sharing
from a user’s perspective, including that of potential users not
captured by data sets. In reality, the choice of a suitable mode
of transport is also related to the modal split. The latter is
usually evaluated using demand elasticities, empirical param-
eters that are difficult to model. An agent-based approach that
reproduces realistic distributions encourages to extrapolate: in
future work we plan to estimate the population that did not
find it profitable to use a particular system, and relate it to the
demand elasticity. Moreover the evaluation of the effects of
alternative configurations and the assessment of the effect of
user incentives proposed to stimulate bicycle redistribution by
the users will be addressed. Finally, we plan to compare our
results with approximate mean-field models of bike-sharing
[19].
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