
See	discussions,	stats,	and	author	profiles	for	this	publication	at:	http://www.researchgate.net/publication/283008024

Final	version	of	sensors	and	GiraffPlus	platform	report

TECHNICAL	REPORT	·	JANUARY	2015
DOI:	10.13140/RG.2.1.1087.3044

READS

3

12	AUTHORS,	INCLUDING:

Paolo	Barsocchi

Italian	National	Research	Council

65	PUBLICATIONS			365	CITATIONS			

SEE	PROFILE

Cipriano	Galindo

University	of	Malaga

95	PUBLICATIONS			637	CITATIONS			

SEE	PROFILE

Stephen	Von	Rump

Giraff	Technologies	AB

6	PUBLICATIONS			44	CITATIONS			

SEE	PROFILE

Giulio	Bernardi

Italian	National	Research	Council

6	PUBLICATIONS			5	CITATIONS			

SEE	PROFILE

Available	from:	Filippo	Palumbo

Retrieved	on:	11	December	2015

D2.4 Final version of sensors and GiraffPlus platform report

WP related to the Deliverable: 2
Nature: P
Dissemination Level: PU
Version: 0.5
Author(s): Filippo Palumbo (CNR-ISTI), Davide La Rosa

(CNR-ISTI), Erina Ferro (CNR-ISTI), Francesco
Potortì (CNR-ISTI), Paolo Barsocchi (CNR-ISTI),
Michele Girolami (CNR-ISTI), Cipriano Galindo
(UMA), Mats Björkman (MDH), Maria Lindén
(MDH), Stephen Von Rump (Giraff), Amedeo
Cesta (CNR-ISTC), Giulio Bernardi (CNR-ISTC)

Project Participant(s) Contributing: CNR-ISTI, UMA, XLAB, MDH, Giraff, CNR-ISTC
Contractual Date of Delivery: 01/01/2015
Actual Date of Delivery: 11/01/2015

Project Acronym: GiraffPlus
Project Title: Combining social interaction and long
term monitoring for promoting independent living
Grant agreement no.: 288173
Starting date: 1st January 2012
Ending date: 31st December 2014

GiraffPlus D2.4

Version 1.1 11th January 2015 2

Document History

Version Date Type of editing Editorial
0.0 28/11/14 Table of Content and Initial Draft CNR-ISTI
0.1 10/12/14 Section 2 completed CNR-ISTI
0.2 12/12/14 Table of Content modified (MDH input) CNR-ISTI
0.3 19/12/14 MDH contribution (Section 3 and Appendix) CNR-ISTI
0.4 24/12/14 UMA contribution to Section 4 CNR-ISTI
0.5 04/01/15 Complete version before internal review CNR-ISTI
1.0 06/01/15 Stable version after internal review CNR-ISTI
1.1 11/01/15 Additional contributions integrated CNR-ISTI

Disclaimer:

No confidential material is included therein.

Deliverable Summary

This document reports on the final version of the sensor network and the GiraffPlus integrated system.

The final version delivered at month 36 incorporates the input from the last evaluation phase leading to a
refined system.

The final version of the middleware infrastructure integrates a more complete set of sensors and
functionalities. Indeed, the control bus functionality has been implemented and tested with new sensors
and actuators, a new wearable technology capable of continuous heart rate monitoring has been analyzed,
and a new web monitoring tool for checking the status of the test sites has been deployed. The final version
of the Giraff platform is also described, addressing safety issues and general improvements requests
coming from the last evaluation phase.

In addition, final considerations on the assessment of security and safety in the GiraffPlus system are also
presented as an appendix.

GiraffPlus D2.4

Version 1.1 11th January 2015 3

Table of Content

1 INTRODUCTION .. 5

1.1 SCOPE OF THE DOCUMENT .. 5
1.2 DELIVERABLE STRUCTURE ... 5
1.3 DEVIATIONS WITH RESPECT TO THE PLAN ... 6

2 FINAL VERSION OF THE MIDDLEWARE .. 8

2.1 CONTROL BUS: IMPLEMENTATION AND TESTING OF ACTUATORS ... 8
2.2 DESKTOP AND MOBILE IMPLEMENTATION ENHANCEMENTS ... 11
2.3 REAL-TIME WEB MONITORING TOOL ... 12

3 FINAL SENSOR SELECTION AND INTEGRATION ..14

3.1 ANDROID-BASED PHYSIOLOGICAL AND INERTIAL SENSOR ... 14
3.2 Z-WAVE ENVIRONMENTAL SENSOR NETWORK .. 16
3.3 WEARABLE SENSORS ... 19

3.3.1 Android wear platform ... 19
3.3.2 Heart rate monitor and accuracy testing ... 20

4 FINAL VERSION OF THE GIRAFF PLATFORM ...24

4.1 IMPROVEMENT OF THE GIRAFF MOBILITY ... 24
4.1.1 Robotic platform safety issues ... 27
4.1.2 General improvements based on the reviewers’ evaluation .. 29
4.1.3 Automatic docking based on laser sensor .. 30

4.2 THE NEW FEATURES OF THE GIRAFF HARDWARE AND SOFTWARE .. 34
4.3 THE DVPIS@HOME PLUGIN .. 35

4.3.1 Software architecture .. 36
4.3.2 Implementation details .. 37

5 CONCLUSION ...39

APPENDIX 1 - ASSESSMENT OF SECURITY AND SAFETY IN THE FINAL VERSION OF THE GIRAFFPLUS SYSTEM 40

REFERENCES ..42

GiraffPlus D2.4

Version 1.1 11th January 2015 4

List of Figures

Figure 1 Final middleware architecture... 8
Figure 2 Class diagram with the new parts highlighted in red .. 9
Figure 3 Invocation of a command from a user application ... 10
Figure 4 Invocation of a command on the receiving side ... 11
Figure 5 The web page showing the homes status ... 12
Figure 6 The web page showing the tablets status ... 13
Figure 7 Additional Intellicare devices (the thermometer on the left and the spirometer on the right) 16
Figure 8 An example of Z-Wave sensors mesh network ... 17
Figure 9 The handheld sends a message to the wearable using the sendMessage method. On the receiving
side, a WearableListenerService monitors the data layer and invokes the onMessageReceived callback
when a message arrives .. 19
Figure 10 The PutDataMapRequest helper class simplifies the process of creating the DataMap, DataItem,
and PutDataRequest objects that are needed for sending data. On the receiving side a WearableListener
Service receives changed data and returns a buffer of DataEvents containing DataItem to be converted into
DataMapItem containing the original handheld data ... 20
Figure 11 The Samsung Gear Live smartwatch ... 21
Figure 12 Heartbeat and accelerometer data while sleeping and walking ... 21
Figure 13 Heart rate data from the Samsung Gear Live and the Garmin Premium heart rate monitor
compared (upper graph) while moving the wrist (bottom graph showing accelerometer data) when securely
tightened ... 22
Figure 14 No heart rate obtained when moving the wrist while the smartwatch is not perfectly tightened 22
Figure 15 Erroneous heart rate (~20 heartbeats error) obtained when moving the wrist while the
smartwatch is not perfectly tightened .. 23
Figure 16 Result of an autonomous navigation experiment carried out in a controlled environment: the
Mapir Laboratory ... 25
Figure 17 Overview of the D2.4 prototype and its features.. 26
Figure 18 Taxonomy of failures. Engineering errors, human mistakes and environment conditions are the
sources of system failures ... 28
Figure 19 Signals exchanged between different systems involved in telepresence platform 29
Figure 20 Simplified flow chart of the Auto-Docking module ... 31
Figure 21 Detailed views of the laser scans when detecting the pattern used for the auto-docking module.
(a) Raw laser scan where the three sticks composing the pattern can be visually appreciated. (b-c) Colored
pattern within the laser scans pointing the location and distance from the robot .. 32
Figure 22 Description of the robot movements when approaching the pattern. In phase 1 the robot will
perpendicularly align to the pattern, while in phase 2 the robot will slowly advance straight 33
Figure 23 Schematic view of the pattern used in the auto-docking module .. 33
Figure 24 Auto-docking pattern implementation made of cardboard .. 34
Figure 25 DVPIS@Home architecture ... 37

GiraffPlus D2.4

Version 1.1 11th January 2015 5

1 Introduction

1.1 Scope of the document

The document is a progress report with respect of the D2.3 and describes the final version of
middleware, sensors, Giraff robot, and the GiraffPlus integrated system. The refined version of the
middleware infrastructure is provided together with final version of the Giraff platform.

There have been improvements on all the parts of the system and additional features have been
developed in order to reflect the results of the evaluation of the system in the test sites. In
particular, the middleware has been refined in its desktop and mobile adaptation, allowing the
actuation of command by devices and services, a better management of the local backup of data,
and the real-time monitoring of the status of all the middleware instances installed in the homes
via a web monitoring tool. A new environmental sensory technology, based on a well-known
standard, has also been integrated in order to guarantee flexibility in the GiraffPlus system when
dealing with replacement or finding new suitable sensors for specific needs (e.g. monitor energy
consumption [1]). This kind of sensors has been proved useful when exploited for indoor user
localization purpose. Tests were made on this application scenario and results were published in
an international conference [2] and a journal [3].

The use of a new wearable device embedding the new Android Wear operating system has also
been investigated and its integration is presented in this deliverable. The device comes with a
heart rate meter together with an inertial system like the previously analyzed devices (D2.3).
Accuracy and robustness testing has been performed and the results are presented. This new
technology, released on the market on July 2014, has been chosen in order to enable the
GiraffPlus system of new possible future services, like fatigue detection or energy expenditure, by
means of a continuously monitoring of the primary user’s heart rate.

The Giraff platform in its improvements is presented addressing safety issues coming from the
evaluation phase in the test sites, allowing a better mobility and featuring an automatic docking
feature. These results are also described in an international journal [4].

Finally, an appendix describes the assessment of how the final GiraffPlus system fulfills the
requirements of safe and secure communication as defined in D1.3. A considerable effort has been
spent during this period on providing stability and robustness of the system. The document
describes also the results of the tests performed.

1.2 Deliverable structure

The document starts with an outline of what has been achieved and how it matches the DoW. In
section 2 the final version of the middleware is described, section 3 focuses on the final sensor
selection with an insight on the possibilities offered by new wearable devices available on the
market, while section 4 is dedicated to the final version of the Giraff platform and to
improvements of its mobility capabilities. Finally, appendix 1 describes the assessment of how the
final GiraffPlus system fulfills the requirements of safe and secure communication as defined in
D1.3. Each section presents the effort made in terms of new features, tests, and bug fixing.

GiraffPlus D2.4

Version 1.1 11th January 2015 6

1.3 Deviations with respect to the plan

The project proceeded according to the plan outlined in the DoW with no deviations. In particular,
Table 1 shows how the requirements of the DoW are matched to what has been achieved by
month 36 in the project.

Table 1 Matching requirements from DoW with results achieved at M36

Required from the DoW Achieved at month 36

Task 2.2 Middleware design and
implementation:
The final version of the middleware is
refined

Section 2

The refined version of the middleware is
described in its desktop and mobile
adaptation. The mobile version of the
middleware has been published on an
international conference.

The new features regarding the
implementation of the control bus are
presented in section 2.1, the
enhancements made to the desktop and
mobile version are described in section 2.2,
while the new tool for real-time monitoring
of the middleware instances status is
detailed in section 2.3

Task 2.3 Development of Giraff robot
platform:
The final version of the platform
incorporating the input from the last
evaluation phase is ready

Section 4

The new Giraff avatar (version 4.1), the
version 3.0 of the visitor “Pilot” and Giraff
avatar software, and the sentry
management system enhancements
(version 2.0) are presented.

The new features of the Giraff hardware
and software are described in section 4.2.

Task 2.4 Additional sensor selection and
design:
The final version of the sensor system
incorporating the input from the last
evaluation phase is ready

Section 3

The Android-based physiological and
inertial sensor already deployed in the test
sites has been revised in order to address
the results of the last evaluation phase and
described in section 3.1.

The Z-Wave technology has been also
integrated in the system and devices able

GiraffPlus D2.4

Version 1.1 11th January 2015 7

to perform actuation have been selected
and presented in section 3.2 in order to
show the potentialities of the control bus
feature of the middleware.

Also a new device embedding the Android
wear operating system has been analyzed
in its heart rate monitor capabilities in
section 3.3 focusing on robustness and
accuracy of the sensor.

Task 2.5 Enabling safe and secure
communication:
Final version is ready

Appendix 1

The assessment of how the final GiraffPlus
system fulfills the requirements of safe and
secure communication defined in D1.3 is
presented in appendix 1.

Task 2.6 Improvement of Giraff mobility:
The final version of the platform
incorporating the input from the last
evaluation phase is ready

Section 4

The final prototype of the Giraff robot
featuring the semiautonomy abilities
detailed in the DOW and developed along
the project is described in section 4.1.

Section 4.1 describes the improvement of
Giraff mobility according to the last
evaluation phase. In particular, safety
issues have been addressed (section 4.1.1),
general improvements based on the last
evaluation period are presented in 4.1.2,
and the new automatic docking feature
based on laser data is described.

GiraffPlus D2.4

Version 1.1 11th January 2015 8

2 Final version of the middleware

The final version of the middleware includes both the additional implementation of features and
the consolidation of the already developed parts in order to have a fully working software
infrastructure. In the following sections the improvements with respect to the previous deliverable
D2.3 will be presented in detail, highlighting the aspects and the functionalities of the additional
components.

2.1 Control bus: implementation and testing of actuators

The main enhancement to the middleware is the implementation of the capability to send remote
commands to devices that act as actuator, for instance to switch on/off lights and plugs or to set
light levels, etc.

The commands, properly encoded in a JSON format, are sent on the control bus, which was
previously used to convey the heartbeat signal from the active homes (D2.3 Section 3.2.2). A
separate sub-topic is used to distinguish the heartbeat messages from the actuator operations.

Figure 1 Final middleware architecture

A final view of the logical architecture is shown in Figure 1. The control bus is currently organized
as follows:

• Heartbeat messages are sent on <location>/controlBus/heartbeat/<instance>
• Command messages are sent on <location>/controlBus/command/<sensor>

In order to allow a sensor to announce its actuators capabilities, the ServiceDescriptor class has
been extended with the additional controlBusTopic and commands properties. Commands are
described through a CommandDescriptor containing the name and the parameter definitions
(name and type) of the offered operation.

A class diagram showing the main middleware components with the added parts is shown in
Figure 2.

GiraffPlus D2.4

Version 1.1 11th January 2015 9

Figure 2 Class diagram with the new parts highlighted in red

GiraffPlus D2.4

Version 1.1 11th January 2015 10

The Middleware interface has been extended and some additional classes have been defined. The
new Middleware methods are:

• public void executeCommand (String location, String topic, Command command,
ErrorHandler handler)
This method is used by a controller entity to invoke a command on a given device
identified by its topic and placed at a remote location.

• public void registerCommandListener (String location, String topic,
CommandListener listener, ErrorHandler handler)
This method is used by an actuator entity to register a listener that will react to a command
request directed to a sensor identified by its topic on a given location.

• public void unregisterCommandListener (String location, String topic,
CommandListener listener, ErrorHandler handler)
This method is complementary of the previous one and is used to remove a previously
registered command listener.

When a client finds a remote sensor that can act as an actuator and wants to send a command to
it, it calls the executeCommand() method passing an instance of the Command class loaded with
the proper name and parameter values as defined in the relative descriptor (Figure 3). The
middleware, after validating the command against the descriptor, translates the object into a JSON
plain text message and sends it on the control bus.

Figure 3 Invocation of a command from a user application

On the receiving side, the middleware assembles a new Command object from the received JSON
file, and calls the listener registered for the target sensor through the interface CommandListener
(Figure 4).

GiraffPlus D2.4

Version 1.1 11th January 2015 11

Figure 4 Invocation of a command on the receiving side

2.2 Desktop and mobile implementation enhancements

Since the last deliverable released at month 30, several enhancements have been implemented in
the last six months in order to increase the robustness of the system, addressing the requests
raised by other developers and internal continuous testing through the Mantis bug tracker tool
(see D6.3 for details on the tool).

The desktop version is now able to notify user applications about connection problems to
GiraffPlus external services. This is achieved by registering a listener MiddlewareListener that is
notified whenever the connection drops or is re-established.

The callback executions are now run in separate threads with relative exception management. In
this way, potential faulty user code cannot compromise the stability of the main modules.

A rare situation in which messages could be lost (if queued in the interval between a connection
failure and the consequent notification to the middleware) has been discovered and fixed by
strengthening the error handling procedures.

The local backup mechanism, described in D2.3, has also been improved: when the remote
connection is re-established, messages published and buffered on the serviceBus are sent to the
broker, while those regarding the contextBus are directly sent and stored on the remote database.

The mobile version of the middleware underwent a constant maintenance and, as an outcome,
improvements were made:

GiraffPlus D2.4

Version 1.1 11th January 2015 12

• The binding/unbinding procedure between the middleware and the MQTT communication
connector has been reinforced to increase the reliability of the apps update process.

• The WiFi module is automatically reset if the connection to the GiraffPlus server is not
possible. This, to recover from issues related to the radio interface of the device.

2.3 Real-time web monitoring tool

In order to increase the system reliability and recovery capabilities, a continuous 24/7 service for
monitoring the running test sites status has been implemented.

The service collects the live on-site heartbeat sent every 60 seconds by both the tablets and the
home gateways and, in case of more than 6 hours without any signal (an interval chosen to filter
out temporary or short network outages, considering only the serious ones), it sends an email to
all the registered engineers who are involved on the particular test site prompting for an urgent
check.

The service also runs a compact open source HTTP webserver based on Jetty1 that provides a web
page currently hosted on the CNR servers in Pisa showing the real-time condition of the homes
(Figure 5) and the tablets (Figure 6). The webpages are available at

http://gpwebmonitor.isti.cnr.it:8000

Figure 5 The web page showing the homes status

1 http://eclipse.org/jetty/

http://gpwebmonitor.isti.cnr.it:8000/

GiraffPlus D2.4

Version 1.1 11th January 2015 13

Figure 6 The web page showing the tablets status

Together with the location names, other useful information is shown:

• current status
• last received heartbeat
• local IP and MAC address of the remote machine
• software versions
• local backup database status

For the tablet, the uptime is shown together with the battery level, while the IMEI code (an unique
device identifier) replaces the MAC and IP addresses.

GiraffPlus D2.4

Version 1.1 11th January 2015 14

3 Final sensor selection and integration

In this section the final version of the sensor system incorporating the input from the evaluation
phase in the test sites is described. In particular, the android-based physiological and inertial
sensor already deployed in the test sites has been further tested and enhanced fulfilling the
request of having additional control functionalities, including wireless network availability, average
activity check and “switch on/off status” notifications. These requests have been reported by
secondary users on the Mantis bug tracker and taken into account in the development.

The Z-Wave technology has also been integrated in the system and devices able to perform
actuation have been selected and presented. The devices have been chosen in order to show the
potentialities of the control bus feature of the middleware.

Also a new device embedding the Android wear operating system has been analyzed in its heart
rate monitor capabilities. Tests focusing on robustness and accuracy of the sensor have been
performed and presented in the next subsections.

3.1 Android-based physiological and inertial sensor

A pulse oximeter sensor and an acceleration sensor combined into a monitoring system based on
a smart-phone android device are available in the apartment for the user evaluation. The system
publishes data via an android interface and using the GiraffPlus middleware store the data in the
GiraffPlus database where they are accessible to the rest of the system.

Several simultaneous tasks were performed in the direction of integrating android-based sensor
system into the GiraffPlus environment:

• Evaluating fall detection algorithm
• Testing connection to the GiraffPlus database
• Updating the system with the latest version of the android middleware
• Developing reasoning architecture for context integration

Before integrating into the system, evaluation of the fall detection algorithm was performed,
resulted in the conference publication entitled “Evaluation of the android-based fall detection
system for elderly people”. On the next stage the android version of the middleware was installed
and the communication between the system and GiraffPlus database has been established.

After preliminary discussion concerning the on-going context recognition development, it was
decided to provide the system with the following parameters:

• Current level of users’ activity
• Users presence in the apartment
• Fall emergency alarm

Eventually, these parameters have been substituted with a high-level reasoning algorithm
combining context information and acceleration-based fall detection into a more reliable joint

GiraffPlus D2.4

Version 1.1 11th January 2015 15

system. As a simple example we can describe one of the following scenarios based on this
approach: context recognition will be calculating the fall risk probability during the monitoring
process, based on the symbolic representation of the contextual data. Once the fall alarm is
triggered on the phone, a simple check is performed to see if the current user’s activity represents
a high risk of fall. In this way, we confirm the android-based algorithm and increase reliability of
the system. More scenarios and data fusion options are currently being investigated.

A new android version of the middleware was successfully installed into the mobile phone. As the
next step, the Android-based sensor platform was integrated into the GiraffPlus platform. As a
result, MDHPulseOximeter and MDHFallDetector were added to the system (via Engineering GUI)
as complementary sensors. Additional control functionalities were introduced, including wireless
network availability, average activity check and “switch on/off status” notifications.

A separate application has been developed to perform activity monitoring and fall detection with
alarm notification functionally based on Pushover2 and GiraffPlus middleware. The user is invited
to choose the communication option depending on monitoring circumstances.

Subsequently, a number of real-life tests were initiated to perform continuous monitoring of
physiological parameters and to assess both entities in terms of user acceptance, data collection
and communication reliability. The application has been tested and integrated into the monitoring
process.

With latest improvements, complementary sensors are able to communicate with caregivers
directly in case fall alarm has been triggered. Subsequently, a number of real-life tests were
initiated to perform continuous monitoring of physiological parameters and to assess both entities
in terms of user acceptance, data collection and communication reliability. Both sensor
functionalities were involved into the current research towards context aware fall risk assessment,
resulting in a journal publication [5].

Various modifications of the android based monitoring system were developed during the latest
phase of the GiraffPlus project. The standard modifications implied integration the mobile-based
system into the global system monitoring through the special middleware application developed
especially for android devices. All the measurements (pulse rate, oxygen saturation, body
movement, fall event) were extracted on a continuous basis, automatically synced with the system
and become available to all type of users on-line via DVPIS.

Special requirements were discussed while working with different test groups in Italy and Spain.
Based on several requests a new modification of the system was developed in order to split pulse
rate monitoring and fall event monitoring into two parallel processes. A special focus was made on
simplification of the user interface to make the monitoring system available for elderly users.

Unlike the first version of the program, the latest application is not integrated via GiraffPlus
middleware into the global database, but generates direct notifications to the secondary users in
case of abnormal situation or fall event detected during the monitoring. The latest version of the
system was successfully tested at one of the test sites in Sweden in collaboration with a local

2 https://pushover.net/

GiraffPlus D2.4

Version 1.1 11th January 2015 16

homecare facility. Both modifications can be run simultaneously on the same device if required
and be a part of the global monitoring system.

In addition to the above solution, Intellicare selected and integrated new sensors: thermometer
and spirometer (shown in Figure 7). Both devices were chosen after a careful selection process
where multiple technical and business parameters were evaluated. The key selection criteria were
if the devices were fit for purpose, protocol availability and unit cost, both for prototypes and
large scale deployment.

Figure 7 Additional Intellicare devices (the thermometer on the left and the spirometer on the right)

The thermometer selected, shown in, is supplied by HUAYI, Shenzhen Huayi Instrument
Technology Co. Ltd. It’s a general purpose infrared thermometer with Bluetooth connectivity with
CE certification. The protocol was made available by the supplier.

The spirometer is used in monitoring of chronic obstructive pulmonary disease (COPD). The device
used is supplied by Vitalograph, again after as careful selection process using the same
parameters. The key difference to the thermometer is that Vitalograph supplied an SKD to
facilitate data acquisition.

3.2 Z-Wave environmental sensor network

An essential characteristic of the GiraffPlus system is the ability to integrate different types of
sensor like environmental, physiological and android-based ones. Next to the already deployed
Tunstall environmental sensors, the Z-wave sensors have been investigated and integrated in the
GiraffPlus system. These sensors have to comply with the Z-Wave protocol that defines the
communication technology, device capabilities and network available operations. The integration
of other sensor technologies relying on standards such as Z-wave is important for enabling
flexibility in the GiraffPlus system and to allow for specific needs of users to be accounted for if not
all sensors can be provided by the same manufacturer.

A consortium of more than 250 manufacturers called Z-Wave Alliance was founded, grouping all
the companies who agreed to product home control devices complying with the Z-Wave standard.
This ensures a high availability of the devices while guaranteeing their interoperability. The Z-

GiraffPlus D2.4

Version 1.1 11th January 2015 17

Wave wireless protocol is designed for home automation and remote control applications mainly
targeted to residential environments. It uses low-power radiofrequency devices operating in the
sub-gigahertz frequency spectrum (868 MHz in Europe) with a bandwidth of 9.6, 40 or 100 Kbit/s
and a maximum range of 100 meters (between two devices).

The protocol uses a mesh network architecture (Figure 8), allowing the nodes to communicate
even if they are not directly visible to each other, through some nodes acting as “repeaters”,
usually being the mains powered devices like the wall plugs. This relay system greatly extends the
network range, allowing covering large apartments as well. A Z-Wave network requires at least
one controller, which can be a dedicated gateway, a USB pluggable key or even a hand-held
controller. Every device, prior to be used, has to be included in the network by manually
associating it with the controller. This operation has to be done just once, during the sensors
installation and is not required again unless some changes in the network happen.

Figure 8 An example of Z-Wave sensors mesh network

During the association process, at every device is assigned a unique node ID by the controller and
that ID is used by the GiraffPlus system to recognize events received from a device or commands
sent to a device. This ID, together with the data fields provided by the device, has to be configured
in the Engineering UI during the sensors configuration phase. The implemented GiraffPlus driver
that interfaces with the Z-Wave controller takes care of loading the configuration from the
database, connecting with the Z-Wave controller, announcing the sensors/actuators and
dispatching the messages to/from the sensor network.

Some of the Z-Wave device selected to be used with the GiraffPlus system are the following:

This USB Z-Wave controller from Aeon Labs can be
plugged into any PC and interfaced with the open
source openzwave library
(http://www.openzwave.com/), removing the need
for a dedicated gateway

http://www.openzwave.com/

GiraffPlus D2.4

Version 1.1 11th January 2015 18

This 4 in 1 multisensing device from Aeon Labs
provides the temperature, humidity, light intensity
and movement detection

This wall plug from Aeon Labs provides real-time
power consumption, voltage and current values. It
can also act as a remote controllable switch to turn
on/off the connected appliances

This power meter from Aeon Labs uses clamps to
detect the current absorbed on the electric line
without the need to cut the wires

This light bulb socket from Everspring can be
remotely controlled to turn on/off a light bulb up to
100W

This remote controller from BeNext has three
buttons whose can be associated to custom
functions, for instance triggering alarms whenever
the user requests help

This door sensor from Zipato detects whenever a
door/window is opened or closed as well as the
temperature and the light intensity

All the Z-Wave battery powered devices are able to go in a sleep state characterized by very low
power consumption, waking up only if they have new data to send or at given intervals to check if
there is any command directed to them. This allows reaching usually from one up to three years of
operation before replacing the battery. When the battery is low, the devices also send a warning
message to notify the system about the situation.

GiraffPlus D2.4

Version 1.1 11th January 2015 19

3.3 Wearable sensors

In addition to the wearable sensors already integrated in the system (see D2.3 Section 2.3), in the
last period, an additional wearable sensors selection has been performed. The analysis has been
conducted taking into account the new emerging devices available on the market and the new
trends in health and activity monitoring [6]. For this reason, the Android wear platform has been
integrated in the system focusing on the heart rate monitoring capabilities of smartwatches. In
order to better understand the potentiality of such devices, a comparative analysis between the
integrated device and a standard heart rate chest strap sensor has been conducted highlighting
accuracy and possible limit of the proposed solution.

3.3.1 Android wear platform
Android Wear is a version of Google's Android operating system designed for smartwatches and
other wearables3. By pairing with mobile phones running Android version 4.3+, Android Wear
integrates Google Now4 technology and mobile notifications into a smartwatch form factor.

An application that runs on a wearable device usually utilizes some of the capabilities of a paired
handheld device. This means that two separate Android apps, one that runs on the wearable and
another that runs on the handheld, are needed. These two apps communicate with one another
over the Bluetooth link that connects the two devices. A Wearable Message API provides access to
the data layer of a data communications link between the two devices and messages move down
the protocol stack on the sending side, across the Bluetooth link, then up the stack on the receive
side. The diagram in Figure 9 shows how a simple message flows through the wearable
communications link.

Figure 9 The handheld sends a message to the wearable using the sendMessage method. On the receiving side, a
WearableListenerService monitors the data layer and invokes the onMessageReceived callback when a message

arrives

3 http://developer.android.com/wear/index.html
4 http://www.google.com/landing/now/

GiraffPlus D2.4

Version 1.1 11th January 2015 20

The wearable data layer can sync either messages or data. A message contains a single text string
while data is typically wrapped in a DataMap object. A DataMap contains a collection of one or
more of data types, stored as key/value pairs. Figure 10 shows how DataMaps are managed by the
wearable data layer. Using the Android version of the GiraffPlus middleware, different
smartwatches running Android wear OS can be integrated in the system. As a result, the Samsung
Gear Live smartwatch has been integrated in order to test its robustness and accuracy when used
as a continuous heart rate monitor.

Figure 10 The PutDataMapRequest helper class simplifies the process of creating the DataMap, DataItem, and

PutDataRequest objects that are needed for sending data. On the receiving side a WearableListener Service
receives changed data and returns a buffer of DataEvents containing DataItem to be converted into DataMapItem

containing the original handheld data

3.3.2 Heart rate monitor and accuracy testing
The presence of an Android OS on smartwatches eases the integration process in the GiraffPlus
system of new sensors by means of the developed mobile middleware [7]. The Samsung Gear Live
(Figure 11) has been chosen for a first experimental analysis in order to evaluate the possibility of
using such a device in the GiraffPlus homes. The smartwatch comes with different sensors:

• Optical heart rate meter
• Accelerometer and gyroscope
• Compass
• Step counter

The most important sensing capability that has been identified in the device is the optical heart
rate meter since it opens new health monitoring scenarios that do not involve an active
interaction of the primary user with the device. Unfortunately, the heart rate monitor embedded
in the smartwatch cannot be used continuously out-of-the-box since a still position of the user is
required to be precise and it must be manually activated by the user via a tap on the screen. For
these reasons, a wear application has been developed on the smartwatch that continuously

GiraffPlus D2.4

Version 1.1 11th January 2015 21

retrieves data from the heart rate sensor and sends them to the tablet5 according to the GiraffPlus
data format.

Figure 11 The Samsung Gear Live smartwatch

The developed application can collect data at different sampling frequencies in order to test how a
continuous monitoring impacts on the battery life of the smartwatch. The results obtained show
that it is possible to record up to 8 hours at 1Hz reaching a maximum of 4 hours at 10Hz. It must
be noted that also accelerometer data were collected simultaneously to be able to replace the
already integrated (see D2.3 for details) wearable inertial system with only one device.

Figure 12 shows the heartbeat and movements profiles while sleeping and during daily activities.
Some “holes” in the data can be seen when walking due to a not perfect position of the device on
the wrist. This is an important issue on this kind of devices since it can lead to incorrect readings or
no readings at all. For this reason we tested the device under different positions and compared
the heart rate data with the ones coming from a Garmin cardio chest strap (Garmin Premium
heart rate monitor6) commonly used in fitness applications.

Figure 12 Heartbeat and accelerometer data while sleeping and walking

Figure 13 shows the tests made with the smartwatch well positioned and securely tightened to the
wrist. In the upper graph the heart rate coming from both the devices is plot, while in the bottom

5 http://marctan.com/blog/2014/07/08/reading-heart-rate-data-from-samsung-gear-live/
6 https://buy.garmin.com/en-US/US/shop-by-accessories/fitness-sensors/soft-strap-premium-heart-rate-
monitor/prod15490_010-10997-07.html

GiraffPlus D2.4

Version 1.1 11th January 2015 22

graph the three accelerometer’s components are plotted. In these conditions, a good accuracy is
obtained even in presence of sudden movements of the wrist.

Figure 13 Heart rate data from the Samsung Gear Live and the Garmin Premium heart rate monitor compared
(upper graph) while moving the wrist (bottom graph showing accelerometer data) when securely tightened

When the smartwatch is not securely tightened to the wrist it can easily give no output (Figure 14)
or erroneous measurements (Figure 15). Overall, the tests show that, even in the case of a not
perfectly tightened position, the measurement presents an error of ~20 heartbeats when a
measure is obtained.

Figure 14 No heart rate obtained when moving the wrist while the smartwatch is not perfectly tightened

GiraffPlus D2.4

Version 1.1 11th January 2015 23

Figure 15 Erroneous heart rate (~20 heartbeats error) obtained when moving the wrist while the smartwatch is not
perfectly tightened

When used in the GiraffPlus ecosystem, these results can be considered acceptable since the main
focus of their usage is on long term monitoring for new possible services (e.g. providing fatigue
detection or calories consumption over long periods). In this scenario, periods of missing data or
with an error of 20 heartbeats over small periods can be tolerated or filtered [8].

GiraffPlus D2.4

Version 1.1 11th January 2015 24

4 Final version of the Giraff platform

In this section the final prototype of the Giraff robot featuring the semiautonomy abilities detailed
in the DOW and developed along the project is described. In particular, the improvement of Giraff
mobility according to the last evaluation phase addressing the safety issues emerged from the
second intermediate evaluation is presented.

General improvements on the hardware robotic platform and software components are described
together with the new automatic docking feature based on laser data.

4.1 Improvement of the Giraff mobility

The final prototype of the Giraff robot is featured with the semiautonomy abilities detailed in the
DOW and developed along the project. Concretely, the final prototype of the robot includes:

• Safe, reactive navigation to predefined locations within the house, avoiding static and
dynamic obstacles.

• Self-localization, providing the user with the estimated pose depicted in an illustrative
map.

• Collaborative control that enables the user to drive the robot in a protected-mode, in
which user commands that could end in a collision are override by the system.

• Automatic docking operation.

This version of the semiautonomous telepresence platform has been extensively tested in a
controlled environment: the Mapir laboratory (Figure 16), at the University of Malaga, and in the
test site ES1 where every experiment ran under the supervision of a GiraffPlus Engineer (physically
present in the primary user environment). These tests showed up that some additional
improvements were needed in order to increase the usability and ensure a higher level of security.
More specifically, the final evaluation revealed the need to provide the platform with:

• Higher level of security when the secondary user delegates the robot control to the
autonomy system.

• Assistance to the secondary user while driving the robot in environments with areas of
poor lighting or low visibility.

• Response to the loss of communication between the different systems involved in the
GiraffPlus telepresence service.

GiraffPlus D2.4

Version 1.1 11th January 2015 25

Figure 16 Result of an autonomous navigation experiment carried out in a controlled environment: the Mapir
Laboratory

Therefore, in this period the final prototype has been enhanced with the following additional
features and improvements:

• Communications status monitoring.
• Robotic platform internal status monitoring.
• Limitation of the Giraff motors’ input range.
• Improvements in the collaborative control.
• Automatic docking based on laser data.

Figure 17 summarizes the systems involved in the telepresence service (remote interface, servers,
and robot), the subsystems contained in them to fulfill the desired functioning of the service, and
the final set of available features.

GiraffPlus D2.4

Version 1.1 11th January 2015 26

Figure 17 Overview of the D2.4 prototype and its features

Safe navigation and usability are essential to bring the robotic telepresence into households. In
fact, security and usability are closely related to each other. In cases where the robotic platform
has the ability to perform tasks autonomously, security becomes even more valuable.

The semiautonomous algorithms developed are a powerful tool to gaining in usability.
Additionally, usability increases the safety of the system by reducing user errors, which prevents
undesired states in the robot and avoids its consequences. As a result, a safe and usable robot
navigation system makes driving easier given that remote users do not need to worry about
possible collisions, and they can perform complicated maneuvers or even visit specific locations in
the house without continuously guiding the robot.

The following subsections present the security mechanisms that are included in the final version of
robotic platform and describe a key improvement for usability: an automatic parking based on
laser data.

GiraffPlus D2.4

Version 1.1 11th January 2015 27

4.1.1 Robotic platform safety issues
Any failure occurred in the robotic platform may cause an unsafe situation. A failure in the
platform means: “The inability of the robot or the equipment used with the robot to function
normally” [9].

In order to analyze and improve the safety of a robotic platform designed for interaction with
humans it is necessary to identify a) what is the greatest danger that can occur, b) who is the user
or objects which are at risk c) which are the consequences of possible failure, and d) what are the
most influential factors for safety.

Three different levels can be established when focusing on the dangerous situations that the
system may reach, ranging from level 3, i.e., incidence of maximum danger that can lead to a
collision, to level 1 in which incidents can cause the autonomous system to produce errors but still
allowing remote user teleoperation (Level 1). Examples of the consequences of a failure are:

• Physical contact between the robot and the user or delicate objects that can be damaged.
(Risk level 3).

• The robot becomes an obstacle, it clutters the environment, bothers the primary user and
forces him/her to either move it manually, or to ask the help of a third person to carry the
robot to its parking area (level 2).

• The autonomy system stops working and it all depends on the driving skills of the
secondary user (level 1).

According to [10] the causes of incidents in a robotic platform can be classified into three groups:
engineering errors, human mistakes and inadequate environmental conditions. Among the
engineering errors, there are mechanical, electronic or controllers errors. Losses of connection
between different parts of the system, programming errors or failures in the design of algorithms
are examples of such problems. These failures are unpredictable for secondary users and, hence it
is necessary to have mechanisms that anticipate or detect these faults to prevent an incident
occurs. The other main source of failures are human errors, most come from inattention, little
expertise in driving, or conducting inadequate procedures while using the robot. In these cases,
the usability of the system plays a very important role. The environment is the other main factor
affecting the safety of the robot. Among others, lighting conditions, obstacles that are not
detectable by the perception system or cluttered spaces are the main causes of mobile robot
failures.

GiraffPlus D2.4

Version 1.1 11th January 2015 28

Figure 18 shows the classification of the incidents described [11].

Figure 18 Taxonomy of failures. Engineering errors, human mistakes and environment conditions are the sources of
system failures

Following this classification of failures and taking into account the specific characteristics of the
GiraffPlus robotic system, in this period, security solutions have been designed and incorporated
into the platform in order to address problems in each of the systems involved in telepresence
(remote user, server and robot). Since the security risk occurs in the environment of the primary
user and the agent that generates the danger is the robot, these solutions have been focused in
the subsystems that compound the robot (perception, actuation, controllers and semiautonomy).
The main security measures are:

1. Detection of an atypical behavior of the robot.
2. Detection of atypical performances in the integration layer of semiautonomy and

controller software (Giraff AB teleoperation software).
3. Detection of an atypical operation of the actuators.
4. Improve usability of robotics platform to reduce secondary user errors.
5. Check the connections between remote user, server, and robot to respond to any

unforeseen incidents.

Fulfilling the premise that the robot can only be in motion if a remote user supervises the
navigation, the actions taken by the security mechanisms are only stopping the robot or limiting
speeds if any anomaly is detected.

GiraffPlus D2.4

Version 1.1 11th January 2015 29

4.1.2 General improvements based on the reviewers’ evaluation
This section covers the mechanisms implemented and integrated into the robotic platform to gain
in security. Safe behavior of the robot is essential when performing in home environments, as it
was highlighted in the second intermediate review meeting. Therefore, in the last ten months, an
intense work has been done on improving the different software pieces and internal
communications.

Communications status monitoring

To complement the security system and increase the usability of the system, the robot and the
secondary user interface have been enhanced in this period to be able to detect connection loss in
any of the systems involved. Specifically, each endpoint of the telepresence platform transmits an
acknowledgment signal (Figure 19) when it is connected and monitors the status of other system’s
components (server and remote device).

In any case where the communication between secondary user and robot is interrupted, the robot
is stopped and a wait state starts that is capable of restoring communications automatically once
the device that had lost connection is recovered.

Figure 19 Signals exchanged between different systems involved in telepresence platform

Robotic platform internal status monitoring

Within the robot itself there are several subsystems working together to perform robot
navigations: perception, actuation, control, and semi-autonomy. It is necessary to monitor the
status of each of these subsystems and the communications between them to avoid an
inappropriate behavior of the robot and be able to inform users that there is a problem in robotic
platform.

The OpenMORA7 robotic control architecture (RCA) has been improved to centralize and monitor
the internal state of the robot. A central database inside the RCA collects information from
modules that are active at all times and can be consulted by any software module in the
architecture. The RCA receives feedback from the sensors and actuators through specifically

7 http://sourceforge.net/projects/openmora/

GiraffPlus D2.4

Version 1.1 11th January 2015 30

developed modules for integrating these devices with openMORA. When an anomaly is detected,
depending on the level of risk, the RCA communicates directly with the actuators control software
to disable autonomy (teleoperation remains enabled), apply for reduced speeds, or stop the robot
definitely.

Improvements in the collaborative control

During the last period of evaluation of the prototype, the speed range of collaborative control and
thresholds that determine the system input autonomy over user-requested commands have been
redesigned to make driving smoother and more intuitive. In previous versions collaborative speeds
were too slow and had abrupt transitions when control passed from the user to the autonomous
system or vice versa.

Limitation of the motors’ input range

An additional component has been deployed in the telepresence software provided by GiraffAB
Technologies in order to enhance the safety of the system. The maximum linear and angular
speeds that can be commanded to the motors have been limited to safe ranges, avoiding high
accelerations that may cause collisions or the robot to fall down. Although the reactive navigator
and the teleoperation system provided by GiraffAB include their own safety procedures and they
limit the range of their commands, this issue has been addressed as a monitoring mechanism for
the final set of systems involved in the semiautonomous robotic platform.

4.1.3 Automatic docking based on laser sensor
The auto-docking (AD) assistant described in this section refers to a software module from the
OpenMORA robotics architecture in charge of guiding the robot to the charging station using data
from the laser scanner. Although other solutions could have been considered, e.g. using infrared
sensors, we have opted for relying on the already mounted laser sensor. This solution does not
result in additional hardware neither on the robot nor on the docking station, while provides
precise information from the surroundings of the docking area. The inclusion of this module in the
final version of the GiraffPlus system entails a number of enhancements, namely:

• Increases the usability of the system since it allows the user to command the robot to
recharge its batteries from any room. A new high-level navigation command has been
integrated in the interface that combines topological navigation to the node that
represents the docking station and the subsequent execution of the implemented auto-
docking module.

• Improves the robustness and safety of the system by providing an effective solution in
scenarios where the manual navigation is difficult, as in the case of low light environments
or when obstacles are close to the docking station.

• Improves the tolerance to connection errors (optional) by avoiding the robot to stay idle
without recharging its batteries in situations where the user drops the call due to
connectivity problems.

This module has been intensively tested in lab environments by commanding continuous, random
topological navigations (see Figure 16 for the results of one of such tests). Every time the system

GiraffPlus D2.4

Version 1.1 11th January 2015 31

detects that the battery level is under a threshold, an automatic docking is issued from the
current, unforeseeable location of the robot. Our tests entail, in total, more than 250 automatic
docking operations considering 5 different locations for the docking station. The results yield a
success rate of around 94%. The non-success cases are due to errors in detecting the docking
station, requiring the user intervention to perform a manual docking.

This feature was integrated in the very last months of the projects, and thus it has been
occasionally tested in some of the deployed test sites, being its limited use by secondary users
insufficient for concluding the benefits in real scenarios.

Module description

As mentioned above, the objective of this module is to allow the robot to autonomously find and
reach the docking station for recharging its batteries.

Figure 20 Simplified flow chart of the Auto-Docking module

Figure 20 shows a flow chart of the process where the main stages are described next:

• Move to Docking. The first step consists in getting the robot close to the docking station,
that is, navigate to the room where the docking station is placed. It is to be noticed that
the process itself may be started by the user directly, or if enabled, when the robot detects
that the batteries are getting low. Thus, this stage commands other modules of the
OpenMORA architecture to carry out a reactive navigation to the “Docking” node fro, the
navigation topology.

GiraffPlus D2.4

Version 1.1 11th January 2015 32

• Find Pattern. This is the core stage of the auto-docking process. Here, the developed
algorithm searches for the pattern within the laser scan. Figure 21 shows different laser
scans where the pattern has been detected. Security and error tolerance have been
considered as important requisites when implementing the pattern search algorithm since
this module is expected to be used when the robot has low batteries, and so, failing the
auto docking process will mean leaving the robot unusable. The pattern layout and
dimensions are described next.

(a) (b) (c)

Figure 21 Detailed views of the laser scans when detecting the pattern used for the auto-docking module. (a) Raw
laser scan where the three sticks composing the pattern can be visually appreciated. (b-c) Colored pattern within

the laser scans pointing the location and distance from the robot

• Turn. This stage is performed when the pattern cannot be found in the current laser scan.
Since the robot should be positioned close to the docking station (see “Move to Docking”
stage), the most common cause is that the laser is heading an incorrect direction, thus,
turning represents both a safe alternative and the best option to find the pattern.

• Approach Pattern. Once the pattern is found, the distance between the robot and the
pattern is estimated to differentiate between two approaching modes. Initially, when the
distance is bigger than a set threshold (Phase 1), the robot approaches the pattern heading
to its perpendicular, trying to leave the pattern in front of it. Then, once the pattern is
correctly aligned with the robot, the robot moves in a straight line to approach the pattern.
When the distance to the pattern is below the threshold (phase 2), the robot reduces
considerably the movement speeds to assure a soft and safe docking, keeping the straight
movement fashion. This phase continues until the charging event is detected. Figure 22
depicts the movements performed by the robot when approaching the pattern depending
on the working phase.

GiraffPlus D2.4

Version 1.1 11th January 2015 33

Figure 22 Description of the robot movements when approaching the pattern. In phase 1 the robot will
perpendicularly align to the pattern, while in phase 2 the robot will slowly advance straight

The parking pattern

The pattern used for the auto-docking is based on three sticks of known width and separation,
which can be configured in the mission file. Figure 23 shows a schematic view of the pattern and
the controlled dimensions, while a real implementation is shown in Figure 24. Since the pattern is
to be detected with the laser-range scan sensor onboard the robot, the pattern has to be placed at
a height visible by it (the height of the Giraff docking station is perfect for that purpose). As
described, the robot will approach the pattern until it detects the charging event, so it is important
to always place the pattern on top of the charging station, facing the front.

Figure 23 Schematic view of the pattern used in the auto-docking module

GiraffPlus D2.4

Version 1.1 11th January 2015 34

Figure 24 Auto-docking pattern implementation made of cardboard

4.2 The new features of the Giraff hardware and software

In addition of the work presented in Section 4.1, during the last 6 months of the project focus has
been given to the development of fundamentally new features of the Giraff telepresence system
based upon user input. These enhancements are now in Beta and are expected to be released as
part of the initial commercial version of GiraffPlus in the first half of 2015.

A summary of these enhancements is as follows:

1. Giraff avatar (version 4.1)
a. Numerous improvements to hardware and electronics reliability
b. Improved WiFi connectivity including stronger signal strength (and therefore extended

range)
c. Improved WiFi management and the ability to automatically to numerous stored

configurations
d. Improved microcontroller software to reduce risk of damage to display tilt motor from

user abuse (rapidly forcing the display head up and down)

2. Visitor “Pilot” and Giraff avatar software (version 3.0)
a. Introduction of a new audio/video codec and videoconferencer, to support:

i. Automatic video resolution selection based upon network performance
ii. Ability to port Pilot visitor application to other operating systems including Mac

OS and Android
b. Enhanced security with option to provide 2-stage authentication (see system

enhancements below)
c. Enhanced Pilot UI to be more intuitive

3. Sentry management system enhancements (version 2.0)

a. Numerous improvements to security and system data protection
b. Enhanced security option that requires visitors to sign in, then receive a session

password on their cell phone
c. Completely redesigned UI that is organized by admin function instead of by database

element as before

GiraffPlus D2.4

Version 1.1 11th January 2015 35

Overall, the Giraff system as a stand-alone commercial platform now has nearly all the features
commonly requested by all user groups including residents, caregivers and care
administrators/organizations. Furthermore, it also contains all of the integration support required
to deliver a first commercial version of the GiraffPlus platform.

There are two areas of focus going forward, both associated with the Giraff avatar:

1. Cost reduction of the hardware – it is clear from the economic analysis of the various use
cases for the GiraffPlus platform that it is necessary to achieve a major reduction (up to
50%) in the cost of the hardware/electronics platform. This will happen in two stages; first,
cost reduction of current system via more efficient procurement process based upon
volume commitments, and second, “value engineering” – redesign of the hardware for cost
reduction and more efficient assembly.

2. A new form factor – the GiraffPlus project has produced a wide variety of feedback on the

physical appearance of the avatar, often in direct conflict (e.g. some say it should look
“high-tech” while others say it should look like a “piece of household furniture”). Feedback
generally falls into 3 categories – “minimalistic,” “furniture” and “playful” (e.g. it should
look like an animal). Therefore, no substantial changes to the physical appearance have
been made because there has been no clear direction. Nevertheless, it is expected that a
clearer set of requirements to emerge with more commercial experience, and hope to
combine this effort with the value engineering work described above.

4.3 The DVPIS@Home plugin

A separate contribution to the Giraff robot started after the work of WP1. In particular during the
User Requirement Analysis there has been a frequent demand to offer additional services though
the robot. A specific activity of WP4 has been dedicated to design an additional module to run of
the robot responsible for managing interactions with the primary user. The goal is to create
additional functionalities for the primary user with respect to the pure answering a call from a
secondary user or making an emergency call. The result of such activity is an independent
software plugin called DVPIS@Home. It takes advantage of the features of the hardware platform
and in particular extensively uses the touch screen. Although detailed reporting of this activity is
given in WP4 deliverables, we decided to insert a summary on the plugin in this last report of WP2
to offer in a single document a complete view of the improvements realized on the robot platform
within GiraffPlus.

In detail, besides maintaining the ability to perform all activities of the standard Giraff software,
the DVPIS@Home offers:

• Messages: the primary user can receive messages from DVPIS@Office software. They can
be regular text messages, voice messages, reminders, or questions. The user can also reply
with a voice message, or send voice messages to a secondary user of their choice. Text
messages are read out by a Text-To-Speech system, to facilitate people with visual
impairment.

GiraffPlus D2.4

Version 1.1 11th January 2015 36

• Shared Space: the software provides a “shared space” area that can be used to facilitate
content exchange from a secondary user to the primary. At present it allows to send
pictures or documents.

• Physiological Data Display: the DVPIS@Home provides the elder person with audio/visual
feedback when physiological data is being acquired using the sensors of the GiraffPlus
ecosystem: if, for instance, the primary user takes a blood pressure measurement, the
collected data is displayed on the robot screen and read out, thus giving the primary user
an acknowledgement of their action. This functionality is not a pure speech facilitator it
has also the goal of communicating the old person that the GiraffPlus system “knows”
her/his physiological data.

• Multimedia capabilities: the software integrates a remote-controlled media player based
on YouTube: it allows the secondary user to define playlists for the elder person, and to
control playback on the robot. The primary user can of course intervene by controlling
playback on his own.

• Robot head movement: when the robot is charging, its screen faces the wall, making it
very uncomfortable to use the abovementioned features. Hence, the primary user can
rotate the screen by 180° by just touching whatever part of the screen (when the robot is
charging). Also, the robot automatically rotates its head when it is charging and a
notification arrives (such as a new message, or a new physiological measurement). The
user can also choose to lower or raise the robot neck by tapping a button on the touch
screen, thus making it easier to use when being seated.

For details on the different functionalities the interested reader can refer to the D4.3 report. The
rest of the section presents some technical aspects on the plugin realization.

4.3.1 Software architecture
The DVPIS@Home is a plugin with respect to the standard Giraff software, and as such it follows
the conventions defined for plugins by Giraff developers. Its code is packed in a series of java
archive (jar) files, which are placed by its installer into the directory:

%PROGRAMFILES%\cygwin\home\giraff\telbot\thirdparty

Together with configuration files classpath.conf and mainclass.conf. During application start-up
the Giraff software scripts load and execute the DVPIS@Home software, which in turn loads and
initializes the standard Giraff software, embedding it into the DVPIS@Home user interface.

The GiraffPlus software is generally built upon the OSGI framework. To be able to use the
middleware to communicate with the rest of the ecosystem, the DVPIS@Home has to rely upon
OSGI (Figure 25). However, the standard Giraff software is a regular java application and the way
the platform can be extended through plugins does not play well with complex frameworks like
OSGI. To solve this problem, the @Home software is split between a Giraff plugin frontend and an
OSGI backend, communicating through Java RMI (Remote Method Invocation). The backend is
made up by the bare minimum needed to allow for the communication with DVPIS@Office
through the Internet.

GiraffPlus D2.4

Version 1.1 11th January 2015 37

When the @Home frontend is started it tries to connect to a running instance of the backend,
spawning if necessary the rmiregistry process and executing the backend in a separate instance
of the Java Virtual Machine.

Figure 25 DVPIS@Home architecture

4.3.2 Implementation details
The Giraff software is embedded into the DVPIS@Home by the means of a modified version of the
Giraff-provided GiraffIntegration class and GiraffApplicationListener interface. The modifications
are meant to expose more Giraff features (e.g. robot head movement, screen saver interface,
capabilities enquiry) and are mostly achieved via reflection at runtime.

The communication between the frontend and the OSGI backend happens through java RMI: the
two sides export two façade objects, GiraffApplicationInterface and ServerInterface respectively to
allow for communication in both directions. The backend communicates with DVPIS@Office using
the APIs provided by the middleware, sending and receiving JSON-encoded messages to/from the
appropriate MQTT topics.

Text-To-Speech services are provided by MaryTTS8. MaryTTS is open source (LGPL license),
supports multiple languages and is written in Java. It is embedded in the @Home software by the
means of the LocalMaryInterface API, which allow for the generation of java-compatible raw audio
streams that can be easily played.

The system supports the playback of WAVE and FLAC-encoded audio files, the latter being possible
through the jFLAC9 library. The audio data is captured with a sampling rate of 16 KHz, mono, 16 bit
resolution and is encoded in WAVE or FLAC formats thanks to javaFlacEncoder10 library. Currently
only WAVE data is transmitted for compatibility with DVPIS@Office.

8 http://mary.dfki.de
9 http://jflac.sourceforge.net
10 http://javaflacencoder.sourceforge.net

GiraffPlus D2.4

Version 1.1 11th January 2015 38

YouTube integration is made possible through DJ Native Swing11 library. The library provides a way
to embed native components (such as a web browser) in java Swing code. Thus, the native
browser’s Flash Player plugin is used to load the YouTube player, which is then, controlled using
the official YouTube API version 3.0 through some JavaScript boilerplate code.

Support to different languages is achieved with the standard tools the Java platform provides, that
is, resource bundles based on property files.

11 http://djproject.sourceforge.net/ns

GiraffPlus D2.4

Version 1.1 11th January 2015 39

5 Conclusion

This document represents the final report describing the prototype of the overall GiraffPlus
system in terms of design and development work performed in the work package 2. As in previous
deliverables, it focuses on changes and enhancements with respects to versions of the system
delivered at previous milestones.

The last development cycle, completed at month 36, integrated the feedback and
recommendations collected during the evaluation process in the test sites and taking into account
the valuable comments coming from the reviewers. In this regard, the Mantis bug tracker is
proven a useful tool to collect not only software bugs or malfunctions, but also for aggregating
suggestions coming from secondary users involved in the project.

This document shows how issues regarding the different parts of the system have been addressed.
It also describes improvements inspired by a continuous analysis of state-of-the-art and of new
technologies as they come to the market. Indeed, it is described how the middleware exploited its
communication infrastructure, based on a very popular protocol in the Internet-of-Things scenario
like MQTT, to improve its functionalities in terms of controlling the devices in addition to the
already described capabilities in terms of service discovery and context data transmission. Also
new wearable devices have been investigated in their specifications and possible use in the
GiraffPlus ecosystem. In this case, the described device has been release on the market only in July
2014 making difficult the deployment of such devices in the test sites. Anyhow, the limits and the
opportunities given by such a device are described.

Improvement on the Giraff mobility has also been implemented. The development has been
driven by users’ and reviewers’ comments and suggestions, leading to the realization of a system
ready to be commercialized in the 2015. The improvements described consist of a safe and
reactive navigation to predefined locations within the house, avoiding static and dynamic
obstacles, a self-localization, providing the user with the estimated pose depicted in an illustrative
map, a collaborative control that enables the user to drive the robot in a protected-mode, in which
user commands that could end in a collision are override by the system, and of the automatic
docking operation.

GiraffPlus D2.4

Version 1.1 11th January 2015 40

Appendix 1 - Assessment of security and safety in the final version of
the GiraffPlus system

In the following, we assess how the final GiraffPlus system fulfills the requirements as defined in
deliverable D1.3. The final version of the GiraffPlus system fulfills all security and safety
requirements that were specified in delivery D1.3. The final version of the GiraffPlus system
incorporates state of the practice solutions to confidentiality, data integrity, availability and
authenticity. The final version will also be able to evolve to meet future requirements thanks to
built-in configurability and adaptability.

Confidentiality

R1.1 Confidentiality in the first prototype can be solved by shared symmetrical keys. For wireless
links, encryption is sometimes already provided by the standard. Data stored should be encrypted
to avoid unauthorized access.

R1.2 For later prototypes, a key management system like Public Key Infrastructure (PKI) should be
considered.

The final GiraffPlus system incorporates a public key management system, refined though the
prototypes (D2.2, D5.3). It implements a certificate-based public key infrastructure with its own
GiraffPlus Certificate Agency.

Certificate-based public key infrastructures are state of the practice for confidentiality and
authenticity solutions, so the final GiraffPlus system fulfills the requirements R1.1 and R1.2 as
specified in D1.3.

Integrity

R2.1 Integrity for stored data is for hard disks provided by hardware. To avoid data loss in case of
disk crashes, redundant disks or a RAID system should be used.

The final version of the GiraffPlus system incorporates a cloud server solution from XLab, based on
the MongoDB where redundant servers are employed (D2.2, D2.3, D5.2, D5.3). In addition, a local
server is used for temporary storage in case of connection outage (D5.3). This guarantees storage
of data also in the cases where connectivity to the cloud server is (temporarily) lost.

The redundant cloud servers represent state of the practice for robust and reliable data storage. In
addition, the local temporary storage guarantees data integrity in case of connection outages.
Hence, the final version of the GiraffPlus system fulfills the data integrity requirement R2.1 as
specified in D1.3.

Availability

R3.1 Redundant network paths should be considered for increased availability.

GiraffPlus D2.4

Version 1.1 11th January 2015 41

The final version of the GiraffPlus system incorporates a cloud server solution from XLab, based on
the MongoDB where redundant servers are employed (D2.2, D2.3, D5.2, D5.3).

For added safety, alarms from the additional android sensors can be sent directly to the caregiver
(D5.5).

The redundant cloud servers represent state of the practice for robust and reliable data storage.
With physical distribution and Internet accessibility, redundant paths are provided throughout the
Internet, so availability is guaranteed as long as Internet connectivity is maintained. Alarms are
sent directly to the caregiver also in the case of lost connection to the database. Together, the
final version of the GiraffPlus system fulfills the data integrity requirement R3.1 as specified in
D1.3.

Authenticity

R4.1 For the first prototype, authenticity can be achieved by shared symmetric keys and nonce
challenges to authenticate the communication counterpart.

R4.2 For later prototypes, the use of certificates should be considered together with the PKI
infrastructure mentioned above.

The final GiraffPlus system incorporates a public key management system, refined though the
prototypes (D2.2, D2.3, D5.3). It implements a certificate-based public key infrastructure with its
own GiraffPlus Certificate Agency.

Certificate-based public key infrastructures are state of the practice for confidentiality and
authenticity solutions, so the final GiraffPlus system fulfills the requirements R4.1 and R4.2 as
specified in D1.3.

GiraffPlus D2.4

Version 1.1 11th January 2015 42

References

[1] Barsocchi P, Ferro E, Palumbo F, Potortì F. Smart meter led probe for real-time appliance
load monitoring. SENSORS, IEEE. 2014; 1451-1454.

[2] Palumbo F, Barsocchi P. SALT: Source-Agnostic Localization Technique Based on Context
Data from Binary Sensor Networks. AmI 14 European Conference on Ambient Intelligence.
2014; 17-32.

[3] Potorti F, Palumbo F. CEO: a Context Event Only indoor localization technique for AAL. To
appear on Journal of Ambient Intelligence and Smart Environments.

[4] Jaimez M, Blanco J.L, Gonzalez-Jimenez J. Efficient Reactive Navigation with Exact
Collision Determination for 3D Robot Shapes. To appear in International Journal of
Advanced Robotic Systems.

[5] Koshmak G, Linden M, Loutfi A. Dynamic Bayesian Networks for Context-Aware Fall Risk
Assessment. Sensors. 2014; 14(5):9330-9348.

[6] Rawassizadeh R, Blaine A P, Marian P. Wearables: has the age of smartwatches finally
arrived?. Communications of the ACM. 2014; 58.1:45-47.

[7] Palumbo F, La Rosa D, Chessa S. GP-m: Mobile middleware infrastructure for Ambient
Assisted Living. Computers and Communication (ISCC), 2014 IEEE Symposium on. 2014; 1-
6.

[8] Vyas N et al. Machine learning and sensor fusion for estimating continuous energy
expenditure. AI Magazine. 2012; 33(2):55-66.

[9] Carlson J, Murphy R. R. How UGVs physically fail in the field. Robotics, IEEE Transactions
on. 2015; 21(3):423-437.

[10] Ogorodnikova O. Methodology of safety for a human robot interaction designing stage.
Human System Interactions, 2008 Conference on. 2008; 452-457.

[11] Vasic M, Billard A. Safety issues in human-robot interactions. Robotics and Automation
(ICRA), 2013 IEEE International Conference on. 2013; 197-204.

	1 Introduction
	1.1 Scope of the document
	1.2 Deliverable structure
	1.3 Deviations with respect to the plan

	2 Final version of the middleware
	2.1 Control bus: implementation and testing of actuators
	2.2 Desktop and mobile implementation enhancements
	2.3 Real-time web monitoring tool

	3 Final sensor selection and integration
	3.1 Android-based physiological and inertial sensor
	3.2 Z-Wave environmental sensor network
	3.3 Wearable sensors
	3.3.1 Android wear platform
	3.3.2 Heart rate monitor and accuracy testing

	4 Final version of the Giraff platform
	4.1 Improvement of the Giraff mobility
	4.1.1 Robotic platform safety issues
	4.1.2 General improvements based on the reviewers’ evaluation
	4.1.3 Automatic docking based on laser sensor

	4.2 The new features of the Giraff hardware and software
	4.3 The DVPIS@Home plugin
	4.3.1 Software architecture
	4.3.2 Implementation details

	5 Conclusion
	Appendix 1 - Assessment of security and safety in the final version of the GiraffPlus system
	References

