
A

On Learning Prediction Models for Tourists Paths

Cristina Ioana Muntean, ISTI–CNR
Franco Maria Nardini, ISTI–CNR
Fabrizio Silvestri, Yahoo! Research Labs
Ranieri Baraglia, ISTI–CNR

In this paper, we tackle the problem of predicting the “next” geographical position of a tourist, given her
history (i.e., the prediction is done accordingly to the tourist’s current trail) by means of supervised learning
techniques, namely Gradient Boosted Regression Trees and Ranking SVM. The learning is done on the basis
of an object space represented by a 68 dimension feature vector, specifically designed for tourism related
data. Furthermore, we propose a thorough comparison of several methods that are considered state-of-the-
art in recommender and trail prediction systems for tourism, as well as a popularity baseline. Experiments
show that the methods we propose consistently outperform the baselines and provide strong evidence of the
performance and robustness of our solutions.

Categories and Subject Descriptors: H.3.3 [Information Storage and Retrieval]: Information Search and
Retrieval—Search process

General Terms: Algorithms, Design, Experimentation

Additional Key Words and Phrases: Geographical PoI Prediction, Learning to Rank

ACM Reference Format:
Cristina Ioana Muntean, Franco Maria Nardini, Fabrizio Silvestri, Ranieri Baraglia 2015. On Learning
Prediction Models for Tourists Paths. ACM Trans. Intell. Syst. Technol. V, N, Article A (January 2015), 35
pages.
DOI: http://dx.doi.org/10.1145/2766459

1. INTRODUCTION
Tourism applications spark an increasing interest from industry and academia due to
the continous growth of user generated content from multiple geo-referenced sources.
The aim is helping tourists make smarter decisions in different scenarios involving
recommendation, intelligent planning, booking, etc. Such systems are used within
location-based social networks and targeted mobile applications.

This work extends LEARNEXT [Baraglia et al. 2013], a “next-tourist-place” predictor
allowing the provisioning of the “next” most likely place that a tourist will visit in
a city. The approach we propose can be used as a building block for more complex
applications, such as devising suggestions regarding places of interest when visiting a
city and making effective predictions of the tourist behavior in a city.

LEARNEXT predicts tourist places according to the footprints of a tourist while visit-
ing a city and a history of previously visited places (i.e., visit patterns) by other tourists.

This work was partially supported by the EU projects InGeoCLOUDS (no. 297300), MIDAS (no. 318786),
E-CLOUD (no. 325091), the Italian PRIN 2011 project “Algoritmica delle Reti Sociali Tecno-Mediate” (2013-
2014) and the Regional (Tuscany) project SECURE! (FESR PorCreo 2007-2011). Author’s addresses: C.I.
Muntean (Corresponding Author), F.M. Nardini, R. Baraglia, High Performance Computing Laboratory,
ISTI–CNR, via G. Moruzzi, 1, 56124, Pisa, Italy. F. Silvestri, Yahoo Labs, London, UK.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or repub-
lish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
© 2015 ACM. 2157-6904/2015/01-ARTA $15.00
DOI: http://dx.doi.org/10.1145/2766459

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January 2015.



A:2 Muntean, Nardini, Silvestri, Baraglia

For the selection of tourist sites, the system uses a set of Points of Interest (PoIs) iden-
tified a priori.

The work published in [Baraglia et al. 2013] presents the preliminary results for the
task of predicting the “next” PoI for tourism. While our intuition showed the proposed
approach works, further investigation is required in understanding why the method
has such promising results and what are the factors contributing to that. This version
of the work wishes to answer four new research questions. We do more than predict-
ing where a tourist would move next, in fact we want to understand the signals that
interfere with the tourists movements in cities of different dimensions by varying the
conditions in which they move. For example, the previous analysis of LEARNEXT does
not explain how the performance varies by changing the set of features used or how
the learning parameters affect the prediction power of the methods.

In order to address these challenging tasks and more, in the following we present a
deeper analysis of the performance of LEARNEXT. In particular, we answer the follow-
ing new research questions:

(1) What is the robustness of the proposed techniques? In particular, how does the
performance change by varying the learning parameters? We answer this question
by varying the learning parameters and evaluating each configuration for the two
ML techniques used in our framework.

(2) How does the trail length affect the effectiveness of the proposed models? Are the
proposed methods able to deal with trails of different lengths? If yes, how does
this property affect the effectiveness of the prediction? We answer this question by
analysing the prediction accuracy when employing trail sets of different lengths in
building the models.

(3) How does the popularity of PoIs affect the prediction? Is predicting a popular PoI
easier than predicting a rare PoI? We answer this question by performing an anal-
ysis of the effectiveness of our proposed techniques on two distinct classes of PoIs
(frequent and rare).

(4) What is the sensitivity of the model w.r.t. the proposed features? How does the
performance of the model change by varying the set of features employed? We per-
form an analysis to understand what are the features that contribute most to the
effectiveness of the prediction, including an indepth analysis of the top 5 most dis-
criminant ones. Are those features always the same for each city? We answer these
questions using three different approaches, one of which a graph-based approach
for selecting significant features based on the correlation between pairs of features,
and several methods for assessing the importance of the features employed in a
prediction model.

LEARNEXT is structured in two modules: one operating offline and one operating
online w.r.t. the current visit of a tourist. The offline module is used to build the knowl-
edge model that is in turn used for predicting tourist behavior. The online module uses
information from the current visit of a tourist and the knowledge model to predict the
next location. Recommending next PoIs is quite a challenging task. One would expect
that suggesting the most frequently visited set of PoIs would provide high quality rec-
ommendations. In fact, as show in Section 4, such a baseline performs quite poorly
compared to the methods we proposed.

The paper is structured as follows: in Section 2 we present the related work regard-
ing tourism recommendations and prediction. In Section 3 we define the problem of
predicting the next tag as a structured learning problem, whereas Section 3.1 details
the machine learning methods we adopt to solve the problem and Section 3.2 details
the features we consider for modeling PoIs and tourist trails. Section 4 describes the
dataset and the methodology we use to assess our solutions together with a thorough
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evaluation of the effectiveness of our methods. Finally, Section 5 concludes the current
research and draws up future work directions.

2. RELATED WORK
This paper explores the problem of predicting the most likely “Point of Interest” (PoI)
to be visited by a tourist during her tour in a city. It involves two appealing fields of
research in the tourism scenario: data analysis and PoI prediction/recommendation.
The first focuses on the analysis of the photo traces left by tourists when visiting a city
and the second studies techniques to predict/recommend interesting PoIs exploiting
knowledge mined from historical data.

2.1. Data Analysis.
A significant number of papers relies on mining geo-spatial and textual metadata asso-
ciated with Flickr images. Important efforts have been spent in analyzing the dynam-
ics of people moving through cities [Girardin 2009]. Girardin et al. study explicit (e.g.
Flickr photos) or implicit (e.g. cell association in a mobile communication network)
digital footprints that people leave behind while traveling through a city [Girardin
et al. 2008a]. Girardin et al. [Girardin et al. 2008b] tap tourist dynamics for better
urban planning and deployment of location-based services. Moreover, Rattenbury et
al. [Rattenbury et al. 2007] analyze the geo-temporal dynamics of Flickr tags in order
to distinguish between tags describing places and events. Popescu and Grefenstette
[Popescu and Grefenstette 2009] deduce visit times at landmarks based on timestamps
of Flickr photos, while Ahern et al. [Ahern et al. 2007] plot aggregated textual meta-
data associated with geo-referenced Flickr images on a map interface with the aim of
exposing how Flickr users at large describe landmarks. Crandall et al. study the as-
sociation of Flickr photos to physical locations [Crandall et al. 2009]. They also apply
their techniques to extract landmarks corresponding to a geo-spatial hierarchy. Arase
et al. [Arase et al. 2010] apply pattern mining to 5.7 million of geo-tagged photos to per-
form photo trip pattern mining. Experimental result shows that the proposed method
outperforms the baselines in segmenting photo collections into photo trips.

2.2. PoI Prediction/Recommendation.
A first approach to solve the PoI prediction problem uses trajectory pattern mining to
devise temporally-annotated common patterns (trajectories) of movements from data.
Trajectories are a concise representation of the behavior of moving objects as sequences
of regions frequently visited with typical travel time. Trajectory-based models are ex-
ploited in [Monreale et al. 2009], [Baraglia et al. 2012], [Krumm and Horvitz 2006] to
predict the most likely locations that are of interest for a tourist.

Monreale et al. propose “WhereNext”, a method predicting the next location of a mov-
ing object [Monreale et al. 2009]. A decision tree, named T-pattern Tree, is built and
evaluated with a formal training and test process. The tree is learned from the trajec-
tory patterns within a certain area, and it is used as a predictor for the next location of
a new trajectory by finding, on the tree, the best matching path. Authors propose three
different matching methods to classify a new moving object. Furthermore, they study
their impact on the quality of the prediction. Finally, the authors show an exhaustive
set of experiments and results on real-world datasets. Moreover, a set of different mea-
sures aimed at evaluating a-priori the predictive power of a set of trajectory patterns
has been proposed and tuned on a real life case study. Since this contribution, by using
the trajectory pattern matching approach, is designed for predicting the next PoI for
a given trajectory, we will use it as a baseline in the experimental evaluation of our
proposed method, in Section 4.
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Krumm and Horvitz propose a trajectory-based system, called Predestination
[Krumm and Horvitz 2006]. It tries to predict the location of a certain vehicle as a
natural progression of a trip by exploiting previous covered trajectories and other in-
formation, such as the geological nature of the territory and the driver history. The sys-
tem tries to directly calculate the point a driver will find after a certain period of time.
Multiple analysis components are fused together using Bayesian inference to produce
a map of the probabilistic destinations. The space is divided into a grid of square cells,
and each cell can be seen as a destination. The purpose of Predestination is to predict
in which cell a trip will end by studying the cells that a traveler has already traversed
and the characteristics of each one of them. It exploits a method that computes the
probability of each cell to be the final destination. Many random variables such as the
geological nature of the territory of a cell are used by the adopted model. Authors test
the system on a set of GPS trajectories obtained from 169 subjects over a total of over
7,000 tracks.

Similar efforts have been spent in solving the PoI recommendation task. Here, the
problem deals with generating a list of possible PoIs that are of interest for a tourist.
It differs from the prediction task as it aims at maximizing the satisfaction of a user
during her tour of the city, while the first one aims at identifying only one PoI as
the first candidate to be visited. In [Levandoski et al. 2012], a location-aware recom-
mender system (LARS), that uses location-based ratings to produce recommendations,
is proposed. LARS exploits user ratings of locations through user partitioning, a tech-
nique that influences recommendations with ratings spatially close to querying users.
It maximizes system scalability while not sacrificing recommendation quality. Exper-
iments conducted on large-scale real-world data from Foursquare and MovieLens re-
veal that LARS is efficient and capable of producing recommendations twice as accu-
rate compared with state-of-the-art competitors.

Ye et al. [Ye et al. 2010], [Ye et al. 2011] realize location recommendation services
for large-scale location-based social networks by exploiting the social and geographical
characteristics of users and locations/places. Authors develop a friend-based collabora-
tive filtering approach for location recommendation based on collaborative ratings of
places made by social friends. They also propose a unified PoI recommendation frame-
work, which fuses user preference to a PoI with social and geographical influences.
Results show that the unified collaborative recommendation approach significantly
outperforms a wide spectrum of alternative recommendation approaches.

Zheng et al. perform travel recommendations by mining multiple users’ GPS traces
[Zheng and Xing 2011], [Zheng et al. 2009]. They model multiple users’ location his-
tories with a tree-based hierarchical graph. Based on the graph, authors propose a
HITS-based inference model, which regards the access of an individual in a location as
a directed link from the user to that location. The recommendation process uses a col-
laborative filtering model that infers a user’s interests in an unvisited location based
on her location histories together with those of others tourists. Results show that the
HITS-based inference model outperforms baseline approaches like rank-by-count and
rank-by-frequency.

Noulas et al. [Noulas et al. 2012] study the problem of predicting the next venue a
mobile user will visit (in Foursquare-like terminology, the next check-in) by exploring
the predictive power offered by different aspects of the user behavior. Authors propose
a set of 12 features that aims to capture the factors that may drive users’ movements.
They model transitions between types of places, mobility flows between venues, and
spatio-temporal characteristics of user check-in patterns. Furthermore, they exploit
such features in two supervised learning models, based on linear regression and M5
model trees, resulting in a higher overall prediction accuracy.
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They model the task as a binary classification problem, whereas we model it as a
next PoI ranking problem, based on the likelihood of each PoI to be next in the user
trail. It is worth noting that the dataset used in this approach is different from ours in
both type of movements and places: ours is focused on tourist movements within a city,
while both Foursquare and Facebook Places data contains check-in such as workplaces,
homes, restaurants, meeting places with friends, etc., and not necessarily points of
tourist interest. The goal of tourists is to visit as many places in a limited time span,
leading to longer trails whereas on Foursquare data is more oriented towards recording
movements of regular users in a day, tending to shorter and more repetitive trajecto-
ries. Moreover, we propose a broader set of features, originated from a Flickr dataset,
capturing more dimensions of the tourist behavior. We cast the prediction problem
into a learning to rank task which allows us to use two effective machine-learned tech-
niques (Ranking SVM [Joachims 2006] and GBRT [Zheng et al. 2007]) to solve it.

Another important contribution by Lian et al. studies the limit of check-in location
predictability, i.e., to what extent the next locations are predictable, in the presence
of special properties of check-in traces [Lian et al. 2014]. Authors starts by estimat-
ing the entropy of an individual check-in trace and then leverage Fano’s inequality to
transform it to predictability. Authors propose an extensive analysis on two large-scale
check-in datasets from Jiepang and Gowalla with 36M and 6M check-ins, respectively.
As a result, they find 25% and 38% potential predictability respectively. Finally, a cor-
relation analysis between predictability and users’ demographics has been performed.
The results show that the demographics, such as gender and age, are significantly
correlated with location predictability.

PoI prediction has been also investigated in [Sadilek et al. 2012]. Here, authors
present FLAP, a system that solves two closely related tasks: link and location pre-
diction in online social networks. For link predictions, FLAP infers social ties by con-
sidering patterns in friendship formation, the content of people’s messages, and user
location. Authors show that while each component is a weak predictor of friendship
alone, combining them results in a strong model, accurately identifying the major-
ity of friendships. For location prediction, FLAP implements a scalable probabilistic
model of human mobility, where each user with known GPS positions becomes a noisy
sensors of the location of their friends. Authors propose supervised and unsupervised
learning scenarios. Moreover, they evaluate FLAP on a large sample of highly active
users from two distinct geographical areas. Authors show that i) it reconstructs the
entire friendship graph with high accuracy even when no edges are given; and ii) it
infers users’ fine-grained location, even when they keep their data private and we can
only access the location of their friends.

We are investigating techniques for predicting the “next” PoI visited by a tourist. The
approaches above are thus different from ours because authors of [Lian et al. 2014;
Sadilek et al. 2012] do not focus on this particular class of people, namely tourists,
moving in a geographical area. Our approach is different from the one above because
we do not take into account social network information for computing the prediction.
We only exploit sequences of previously visited PoIs of a tourist for computing “next”
likely locations that will be visited in the future.

Another recent work exploiting social and historical relations to model users’ check-
in prediction is [Gao et al. 2012]. Here, Gao et al. propose a social-historical model to
explore user’s check-in behavior on Location-Based Social Networks (LBSNs). Authors
employ a model that integrates the social and historical effects and assesses the role
of social correlation in user check-in behavior. In particular, the model captures the
property of user check-in history in forms of power-law distribution and short-term
effect, and helps in explaining the check-in behavior. The experimental results on a
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real world LBSN demonstrate that the proposed approach properly models user check-
ins and shows how social and historical ties can help predicting locations.

Cho et al. also propose a characterization of human movements and their correlation
with social networks [Cho et al. 2011]. In particular, authors aim to understand what
basic laws govern human motion and dynamics. They find that users experience a com-
bination of: i) periodic movements that are geographically limited and 2) occasionally,
movements that seem random jumps. Short-ranged travel is periodic both spatially
and temporally and not effected by the social network structure, while long-distance
travel is more influenced by social network ties. Based on the above findings, authors
develop a model of human mobility that combines periodic short range movements
with travel due to the social network structure.

A similar social-oriented approach to ours exploits a dataset from Facebook Places to
understand the factors that influence where users check in, including previous check-
ins, similarity to other places, where their friends check in, time of day, and demo-
graphics [Chang and Sun 2011]. Authors show how users respond to their friends’
check-ins and which factors contribute to users liking or commenting on them. They
also show how this can be used to improve the ranking of check-in stories, ensuring
that users see only the most relevant updates from their friends. Finally, authors con-
struct a model to predict friendship based on check-in count and show that co-check-ins
has a statistically significant effect on friendship.

Lian et al. [Lian et al. 2015] propose a Collaborative Exploration and Periodically Re-
turning model (CEPR), based on a novel problem, Exploration Prediction (EP), which
forecasts whether people will seek unvisited locations to visit. The evaluation results
show that EP achieves a roughly 20% classification error rate outperforming the base-
lines. Moreover, results confirm that CEPR improves performance up to 30% compared
to the traditional location prediction algorithms.

Lucchese et al. propose an algorithm which interactively generates personalized rec-
ommendations of places based on the knowledge mined from photo albums and Wiki-
pedia [Lucchese et al. 2012]. The authors introduce the model as a graph-based repre-
sentation of the knowledge, and exploits random walks with restart to select the most
relevant PoIs for a specific user. The basic idea is that the recommender system relies
on an initial set of PoIs to be used as query places. Query places are important because
they represent contextual information identifying tourists sites. The proposed recom-
mendation algorithm has been evaluated by checking whether the suggested PoIs were
actually posted in albums on Flickr. The approach by Lucchese et al. is particularly
tailored for tourism. It also exploits photos from Flickr and data from Wikipedia for
devising the recommendation. Moreover, results show it is an effective competitor. For
these reasons, in Section 4 we presents a comprehensive comparison of this approach
against our proposal.

3. THE LEARNEXT PROBLEM
Let P = {p1, . . . , pN} be the set of PoIs in a given tourist location. Let U = {u1, u2, . . . , um}
be a set of tourists that visited the location in the past. We assume a tourist ui ∈ U has
visited a subset of the PoIs, Vi ⊆ P , Vi = {v1, v2, . . . , vk}. Moreover, we define Zi = P ∖ Vi
as the subset of PoIs not yet visited by ui.

Definition 3.1 (Trail). Given a tourist ui and her set of visited PoIs Vi, we define as
trail V̂i a temporally ordered sequence of k PoIs in Vi.

Let Ŷ = ⟨y1, y2, . . . , y∣Zi∣
⟩ be the ordering (i.e., a permutation) for the PoIs in Zi, such

that y1 is the PoI that a tourist will likely visit after vk, y2 the second one, etc. Finally,
let Y be a general permutation of PoIs in Zi.
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We define the LEARNEXT problem as follows. The goal is to learn a ranking function
γ over the class of ranking functions H, such that a given loss function ∆ (Yγ , Ŷ ) is
minimized. The loss function measures the penalty of having ordered PoIs in Zi as in
Y instead of having outputted the correct ordering Ŷ .

Given a training set S ⊆ 2P , a subset of 2P - the universe of all permutations of
PoIs in P , we aim at minimizing a given loss function ∆ (Yf , Ŷ ), over all the ranking
functions f ∈H,

γ = argmin
f∈H

∑
S

∆ (Yf , Ŷ ) (1)

We thus aim at solving the LEARNEXT problem by learning from a given training
set of data the best function γ that can predict the ranking of PoIs, which a tourist has
not yet visited, according to the probability of being the next in the trail.

3.1. Machine Learning Based Models
The above LEARNEXT problem can be seen as a learning to rank problem [Liu 2009].
Learning to rank allows to build models able to order PoIs following their decreasing
likelihood of being visited as the next PoI by a given tourist.

Machine learning (ML), in fact, allows to learn from data the function γ that min-
imizes the error of a given loss function ∆ (Y, Ŷ ). This way, the LEARNEXT problem
becomes a supervised ML problem solved by building a model which ranks highest the
PoI with the highest likelihood of being visited next by a tourist. Models are trained
on datasets containing examples built from trails of tourists moving in a city. Each PoI
is represented by a high-dimensional feature vector and its associated label indicates
the PoI’s likelihood of being visited next for the particular tourist ui within her current
trail V̂i.

We build our ranking models by relying on two well-known learning to rank tech-
niques: Ranking SVM [Joachims 2002, 2006] and Gradient Boosted Regression Trees
(GBRT) [Zheng et al. 2007]. Ranking SVM is a “pairwise” learning to rank technique
based on the well-known Support Vector Machines. The method aims at learning a re-
trieval function that maximizes the empirical Kendall’s τ [Baeza-Yates et al. 1999] on
the training set, i.e., τ(Yf , Ŷ )). Joachims prove that maximizing Kendall’s τ is equiva-
lent to minimize the “number of mis-ordered pairs in the ordering” loss function during
learning [Joachims 2002]. In this context, the “number of mis-ordered pairs in the or-
dering” loss function can be written as the “number of mis-ordered pairs of PoIs in a
given Yf ”. We do not detail here the mathematical formulation proving the relations
between Kendall’s τ and such loss function. Interested readers can find it in [Joachims
2002].

Gradient Boosted Regression Trees (GBRT) works by building an ensemble of re-
gression trees, typically of limited depth. At each iteration the algorithm builds a new
tree with the aim of minimizing the root mean squared error (RMSE). RMSE is a
“pointwise” loss function. While training the model, it measures the error between the
prediction of the likelihood of a PoI to be the next and its given likelihood of being
next. This loss function is thus different from the previous one exploited by Ranking
SVM where the loss is defined as the number of mis-ordered pairs of PoIs in a given
ordering. More formally, let n be the size of Ŷ ,

∆GBRT (Yf , Ŷ ) = RMSE (Yf , Ŷ ) =
1

n

n

∑
i=1

(Ŷi − Y if )2 (2)
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where Ŷi is the given likelihood of the i-th PoI in the correct ordering Ŷ and Y if is
the prediction of the likelihood of the i-th PoI. The error computed on a single ordering
as above is then averaged over all the orderings in the training set to obtain the total
RMSE. GBRT is one of the current state-of-the-art approaches in learning to rank.
In the Yahoo Labs Learning to Rank Challenge 2010 [Chapelle and Chang 2011] all
winning methods used approaches that incorporated GBRT.

3.2. Features of PoIs and Tourist Trails
Our aim is to solve the LEARNEXT problem by learning from a given training set of
trails the best function γ that can predict the ranking of PoIs, which a tourist has not
yet visited, following their decreasing likelihood of being visited as the next PoI.

Learning to rank techniques employ a feature representation of the data to learn a
prediction model. As a consequence, an important step for solving the LEARNEXT prob-
lem using learning to rank consists of carefully designing the feature space, so that the
latent behaviour of the tourists contained in the data are captured and generalized
during learning. This is a crucial phase that depends on the data used, from which we
define the set of signals used for learning an effective prediction model.

In our tourism scenario we believe that many different dimensions influence how
tourists choose PoIs in a city. When visiting a city, in fact, a tourist chooses what to
visit next taking into account the popularity of a PoI, the distance of a given PoI with
respect to her current position, how much a particular PoI matches her interests, the
time needed to reach it, the time needed to visit it, etc. We identify a set of 68 different
features, each one modeling one possible factor that a tourist can take into account
for deciding what to visit. By employing these features, we are able to describe the
trails of tourists as more than just PoI sequences thus giving them more significance
than mere pattern occurrences. It is worth noting that tourist trails reflect how a city
is made and how visitors see and perceive it during their visits. A tourist trail is, in
fact, affected by distances between PoIs but at the same time by the type of tourist
attractions, whether popular or specific.

We devise the signals above from a training set of trails that will be discussed later
in Section 4. Each trail of the dataset is used to compute the 68 signals. To do it, we
divide a trail of N PoIs in two parts: we assume the first N − 1 PoIs to be the actual
visit performed by the tourist (we refer to this part of the trail as “current path”) while
the last PoI of the trail is used as candidate “next” PoI. Features can thus be broadly
classified in two main categories, namely “Current Path” and “PoI” features. Roughly
speaking, the two classes of features aim at modeling: i) the behavior of the tourist
that can be distilled by what she has already seen in the actual current visit and ii)
the characteristics of the candidate “next” PoIs.

Current path features are meant to model the tourist behavior during her ac-
tual/current visit (i.e., the sequence of PoI he has visited so far). They capture concepts
on groups of visited PoIs like, for example, the total time that the tourist employed
so far in her current path, the number of categories of the PoIs visited, the distances
between them, some statistics about the length of the current path, etc.

The features belonging to this class aim at defining a “profile” of the tourist, by
describing the many possible ways a tourist decides to move in a city. This is done
by employing, for example, features representing aggregate information on distances
between PoIs visited, i.e., is the distance very important when choosing a PoI to visit
or is she driven also by other factors like the categories belonging to the PoI? How
does a tourist visit a PoI? Does she do short or long visits? How much does she move
in the city, i.e., does she show availability for moving or she tries to visit places very
close each other? These questions lead us to the definition of this class of features. We
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add several features describing the behavior of the tourist from different perspectives:
distance, transfer and visit time of PoIs, variety of categories belonging to PoIs visited,
length of a path, total time spent in a path, etc.

PoI features model the characteristics of a candidate “next” PoI, also taking into
account the past activities of other tourists. Accordingly, PoI features model the char-
acteristics of the PoI to be suggested like, for example, the categories of the PoI, the
popularity of the PoI, its distance w.r.t. the first PoI of the trail, etc.

The features belonging to this class aim at describing PoIs in terms of their char-
acteristics. We believe the choice of choosing a particular PoI instead of another one
(i.e., the “appealingness” of a particular PoI) is a function of its intrinsic characteris-
tics and, more importantly, the characteristics it shows w.r.t. a particular trail we are
considering. This observation lead us to define global characteristics as, for example,
popularity, the categories that the PoI belongs, etc. Moreover, the second group of fea-
tures are related to a particular trail we are considering, for example, the distance of
the PoI w.r.t the first PoI of the current trail.

Tables I and II summarize the set of features we introduce and the intuition behind
proposing such features, including their relationship to the current path or the next
PoI or both. Current path features (Table I) are based on the current trail of a tourist.
Given a trail, features can be, for example: the total transfer time and the actual visit
time spent by a tourist, the number of unique categories of all PoIs in the trail, the
euclidean and latitude/longitude distance of consecutively visited PoIs (average, max,
min, total), the total time and length of the trail, the number of photos per PoI (average,
max, min, total), and the length of the current paths belonging to the same tourist
(average, max, min, total).

On the other hand, PoI features are based on the next PoI to be suggested and model,
for example: the distance of the next PoI from the first PoI of the current path, whether
the next PoI belongs to the top ten categories visited by tourists, the number of times a
tourist visits that PoI in the training set, the conditional probability of observing that
PoI given the last PoI visited by a tourist, the probability of observing the PoI as first
(resp. last) PoI in the training set trails, the number of photos of the PoI (average, max,
min), the number of past photos of the PoI from the same tourist, and the visit time of
the PoI (average, max, min, total).

To sum up, the above presented features have been selected in order to describe the
trails and PoIs in a city. However, they contribute to it in different ways. We perform a
comprehensive analysis of this aspect in Section 4. Results shows that the influence of
the features depends quite a lot on the type of city a tourist is visiting.

4. EXPERIMENTAL EVALUATION
In this section we present the main results of the paper. Firstly, we describe the dataset
used for the evaluation of our solutions. We then present a comprehensive study aim-
ing at answering the four new research questions we stated in Section 1.

4.1. Data Setup
To assess the effectiveness of our proposed techniques, we use three different datasets,
built in a fully automatic process, by exploiting both photos from Flickr1, a photo shar-
ing portal, and Wikipedia pages. We build three datasets containing tourist movements
covering three Italian cities important from a tourist point of view, namely Pisa, Flo-
rence and Rome. The rationale of the choice is to propose a complete evaluation of our
techniques and its competitors by varying the size of the cities we are dealing with.

1http://www.flickr.com
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Table I. List of current path features used to model the behavior of a tourist in
a city.

Feature Name Description Intuition

actualTransferTime
Total transfer time from a PoI
to the next one in a current
path.

Time-based features are de-
signed to understand how
tourists exploit their avail-
able time to visit a city. For
instance, the less the total
transfer time the higher the
chances that a tourist prefers
closer PoIs.

actualVisitTime

The visit time for all PoIs in a
current path, by summing up
the time spent in each PoI.

currPathTime
Total time for a current path,
from beginning to end.

categsPerCurrPath
Number of categories per cur-
rent path.

A PoI might be associated with
different categories. The more
categories the more general a
PoI is. This feature is designed
to capture how much a tourist
likes specific PoIs. For instance
the diversity in tastes of a
tourist can be used to trim
down the possible candidate
PoIs depending on their cate-
gories.

uniqueCategsPerCurrPath
The number of unique cate-
gories per current path.

distLat Avg

Average, Max, Min, Total Lat-
itude and Longitude distance
between PoIs in a current
path.

How spread out the already
visited PoIs are. The less
spread out the more likely the
next PoI is going to be closer to
the current one.

distLat Max
distLat Min
distLat Tot
distLon Avg
distLon Max
distLon Min
distLon Tot

euclideanDist Avg Average, Max, Min, Total Eu-
clidean distance between PoIs
in a current path.

euclideanDist Max
euclideanDist Min

euclideanDist Total

phPoICurrPath Avg Average, Max, Min, Total num-
ber of photos of the PoIs in a
current path.

Information about number of
PoIs (or information associated
with them) and their impor-
tance (e.g. the number of pho-
tos per PoI) on the paths taken
by a tourist in a given city. This
is correlated (even if not ex-
actly the same) with category
information described above.

phPoICurrPath Max
phPoICurrPath Min
phPoICurrPath Tot

currPathLen
Number of PoIs in a current
path.

pathLen Avg Average, Max, Min, Total
length of all the paths belong-
ing to a given tourist.

pathLen Max
pathLen Min

pathLen Total

currPathRatio

The ratio between the num-
ber of current paths performed
by the current tourist and the
maximum number of current
paths per tourist, as observed
in the training set.

This gives us an idea whether
a tourist is active or not in com-
parison with the most active
tourist.

The datasets have been made available for download to encourage the reproducibility
of results2.

We build the datasets by identifying the PoIs in a certain geographical region and the
corresponding photos available on Flickr. Given an area of interest, we firstly collect

2Link to the trail datasets: http://hpc.isti.cnr.it/∼nardini/datasets/LearNext.tar.gz
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Table II. List of PoI features used to model the characteristics of each candidate
destination.

Feature Name Description Intuition
cat1, cat2, ..., cat10 Top 10 most frequent categories. Categories can be an indicator

(combined with path features) of
preferred PoIs for a user.numCategories

The number of categories assigned
to the next PoI.

distFromFirstPoI Eucl

Latitude, Longitude and Euclidean
distance from last and first PoI of
the current path.

How far from the beginning of the
trail has the tourist gone. The intu-
ition is that the farther the tourist
has gone the less likely she will
move even farther.

distFromFirstPoI Lat

distFromFirstPoI Lon

distFromLastPoI Eucl

distFromLastPoI Lat

distFromLastPoI Lon

entropy
The entropy of the last PoI of the
current path.

This class of features entails as-
pects of the probability distribu-
tions associated with the consid-
ered next PoI. For instance the en-
tropy captures the likelihood that
from the current PoI one would al-
most always select among a very
small subset of PoIs, therefore the
smaller the entropy the smaller the
set of candidate PoIs.

middleProbab

The probability that the next PoI is
within a trail and not at the
extremes.

startProb The probability that a PoI is first or
last in a trail.stopProb

freqBigrams

The frequency of the next PoI,
given the last PoI of the current
path.

freqTrigrams

The frequency of the next PoI,
given the last two PoIs of the
current path.

noOfVisits
The total number of visits of the
next PoI in the collection. Information on how likely a tourist

will visit this PoI. Intuitively, the
higher this value the more likely
this PoI will be visited in general.ratioUsersVisitingPoI

The ratio between the number of
users visiting a given PoI and the
total number of users.

numPhotos Avg
Average, Max, Min and Total num-
ber of photos of the next PoI in the
collection.

Number of photos is another proxy
for popularity. This group of fea-
tures should represent, from a dif-
ferent perspective, how popular a
PoI is among tourists.

numPhotos Max

numPhotos Min

numPhotos Total

photosPerUser
The total number of visits of the
next PoI in the collection.

photosPoI UserId Avg Average and total no. of pics of the
candidate PoI for a given user.photosPoI UserId Total

ratioPhotosPoI

The ratio between the number of
photos for the next PoI and the
maximum number of photos per
PoI, as observed in the training
set.

ratioPoIInUserPhotos

The ratio between the number of
photos of the next PoI for a given
tourist and the total number of
photos taken by that user.

ratioTrailsWithPoI

The ratio between the number of
trails containing a given PoI and
the total number of trails.

visitTimePoI User
The total visit time of a PoI for a
given user. Information about the visit time of

PoIs. Intuitively, a tourist that has
already spent lots of time in her
trail will more likely visit PoIs re-
quiring not too much time.

visitTime Avg

Average, Max, Min, StdDev and To-
tal visit time of a PoI.

visitTime Max

visitTime Min

visitTime StdDev

visitTime Total

all the geo-referenced Wikipedia pages falling within this region. We assume each geo-
referenced Wikipedia page, whose geographical coordinates falls into the given area,
to be a PoI in the city we are analyzing. For each PoI, we retrieve its descriptive label
as the named entity associated with it, its geographic coordinates as the ones specified
in the Wikipedia page, and the set of categories the PoI belongs to, listed in the page3.

3Wikipedia provides a fine-grained categorization of its geo-referenced pages.
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The method is thus able to build a list of PoIs within a given geographical bounding box
in a fully automatic way by exploiting Wikipedia as an external source of knowledge.

To devise tourist trails in the area of interest we query Flickr to retrieve the meta-
data (user id, timestamp, tags, geographic coordinates, etc.) of the photos taken in the
given area. The assumption we are making is that photo albums made by Flickr users
implicitly represent tourism itineraries within a given city.

To strengthen the assumption and thus the accuracy of our method, we retrieve
only photos having the highest geo-referenced precision in the given area of interest.
Then, we collect geo-tagged photo albums (i.e., sets of photos logically grouped under a
common name) from Flickr users. We discard photo albums containing only one photo
and those containing photos with no GPS information associated. Eventually, photos
are mapped to the set of PoIs previously collected from Wikipedia. This is done by
associating a photo to a PoI if that photo is in the circular area having the PoI as its
center and r = 100 meters as its radius. Moreover, since several photos by the same
user are usually taken close to the same PoI, we collapse them by considering the
timestamps associated with the first and last of these photos as the starting and ending
time of a user visit in a PoI. The results of the assignment above produce, for each
Flickr user, a stream of PoIs she visited. To sum up, given a geo-tagged photo album
with at least two photos, we are able to build a trail by mapping photos to PoIs and
collapsing them into trails of PoIs visited by Flickr users.

Finally, in order to build the trail sets, we need a way to split the stream of PoIs
visited by each tourist in a meaningful and realistic time-wise set of trails. We employ
a time-based cutting method that produces the list of trails a tourist performed, by
considering the inter-arrival time of each pair of sequential photos in her stream. To
do so, for each city, we compute the probability distribution of the inter-arrival time x to
be less then a given time threshold k, i.e., P (x ≤ k). Then for each dataset we devise the
time threshold k corresponding to P (x ≤ k) = 0.9. Regarding Rome, it corresponds to 5
hours, for Florence 6 hours, while for Pisa 3 hours. A similar methodology is employed
also in [Brilhante et al. 2013], as both works are based on the same dataset, although
presenting minor specific changes.

Table III shows the main properties of the datasets we use to evaluate our tech-
niques. We report the number of PoIs (column “# PoIs”) that have been found for each
of the three cities. Furthermore, columns “# Users”, “# Photos” and “# Trails” report
the number of distinct users, the number of public photos we crawl from Flickr, and
the total number of trails extracted from the photos in the dataset. Table IV shows
the main properties of the trails. We report the number of trails (i.e., longer than two
PoIs), the number of PoIs visited at least once and the average number of trails going
through each PoI.

Table III. Properties of the three datasets.
Dataset # PoIs # Users # Photos # Trails
Pisa 124 1,825 18,170 3,446
Florence 1,022 7,049 102,888 16,863
Rome 671 13,772 234,616 35,602

Table IV. Properties of the tourist trails in the three datasets.
Dataset # Trails ≥ 2 # Visited PoIs Avg. Trails per PoI
Pisa 992 110 9.01
Florence 5,984 888 6.73
Rome 12,565 490 25.64
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Fig. 1. Probability distribution of the inter-arrival time for each set of photos of the three cities analyzed.
The horizontal dotted lines highlight the time thresholds used to cut the trails. The leftmost one (3 hours)
has been used to cut the trails for Pisa, the central one (5 hours) refers to the threshold used to produce
trails for Rome, and the rightmost one (6 hours) has been used to cut trails for Florence.

Given a PoI, the set of possible destinations is an important information we may
exploit in order to detect the most likely next PoI a tourist will visit. Figures 2(a), 2(b),
2(c), 2(d) present important properties of the dataset. Figure 2(a) and 2(b) reports the
distribution of trails and PoIs in the dataset, while in Figure 2(c) we plot the outlink
distribution of PoIs for the three cities. All of them are power-law. Figure 2(d) shows
the outlinks entropy of the three datasets computed on the distribution of PoIs reached
from the previous ones. In this case the lower the entropy the higher the likelihood that
a tourist will select a frequently visited PoI.

4.2. Effectiveness Evaluation
The evaluation of our solution to the LEARNEXT problem is aimed at answering the
following research questions4:

— Are learning to rank techniques effective for predicting the next PoI? (RQ1)
— What is the robustness of the proposed techniques? In particular, how does the per-

formance change by varying the learning parameters? (RQ2)
— How does the length of trails affect the effectiveness of the proposed models? (RQ3)
— How does the popularity of PoIs affect the prediction? (RQ4)
— What is the sensitivity of the model with respect to the proposed features? How does

the performance of the model change by varying the set of features employed? (RQ5)

We intend to answer the questions above by adopting a standard training/test eval-
uation strategy over the three datasets of available trails. For each of the three cities,

4We highlight in bold the new research questions that have not been previously addressed in [Baraglia et al.
2013].
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Fig. 2. Properties of the datasets used: (a) shows the distribution of the trail length, (b) shows the distribu-
tion of the PoI frequency, (c) shows the outlink distribution of the PoIs and (d) shows the distribution of the
outlinks entropy of the PoIs.

we generate a training set (80%) and a test set (20%) of trails. The effectiveness of
the methods is assessed by means of Success@k (i.e., the percentage of times that the
correct answer is in the top-k ranked PoIs [Pennacchiotti et al. 2012]), Mean Recipro-
cal Rank (MRR@k), and total Mean Reciprocal Rank (MRR) [Baeza-Yates et al. 1999].
MRR is defined as the reciprocal rank of a prediction, i.e., the multiplicative inverse of
the rank of the correct answer. Moreover, we compare our solutions against a probabil-
ity baseline and four important state-of-the-art techniques, i.e., WhereNext [Monreale
et al. 2009] and Random Walk [Lucchese et al. 2012], logistic regression and SVM
classifier. All the methods have been tested by using the same datasets and the same
training/test methodology described above. The results have been validated by means
of a standard 10-fold cross validation.

For comparing our solution to the state of the art we use five different baselines.
More in detail, “PROB” is a pure baseline modeling the markovian behavior of the
tourist, “WhereNext” and “Random Walk” are two well-known state-of-the-art methods
for predicting tourist movements, while “Logistic Regression” and “SVM-C” are two
well-known state-of-the-art techniques for regression/classification. Different reasons
led us to compare our proposals against these five methods. We report them below
together with a description of the methods.

— “PROB” uses the training set to build a directed graph where nodes are PoIs of a
given city and edges are transactions from a source PoI to a destination PoI. Each
edge is weighted with the probability to observe the transaction from a source PoI
to a destination PoI (if any) in the training set. Given a PoI currently visited by a
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tourist, PROB predicts the most likely PoI to be visited next by selecting from the
set of the current PoI’s outlinks, the one with highest probability. The reason behind
comparing LEARNEXT against “PROB” is to understand what the difference is be-
tween our method exploiting 68 different features and a simple method exploiting
only one (even if very strong) signal. This comparison thus allows us to understand
the “real” gain against methods employing simple statistics to predict the next PoI.

— “WhereNext” [Monreale et al. 2009] uses trajectory pattern mining to devise T-
Patterns, i.e., frequent behaviors of movement in a city from data. T-Patterns consti-
tute the knowledge model used to compute the prediction. In this paper, we use the
original implementation of the predictor presented in [Monreale et al. 2009] kindly
provided to us by the authors. We test different combinations of parameters to mine
T-Patterns from our datasets. We compare LEARNEXT against “WhereNext” be-
cause the latter one is based Trajectory Pattern Mining. The method is known to be
effective in predicting locations. Moreover, it can be applied to the dataset we build
from Flickr. For these reasons we believe it is a good competitor for LEARNEXT.

— “Random Walk” [Lucchese et al. 2012] employs a graph-based representation of the
PoIs in a city. Authors named it “itinerary graph” and exploit it by using a ran-
dom walk with restart to select the most relevant PoIs for a given tourist. As for
WhereNext, we use the original implementation of the method presented in [Luc-
chese et al. 2012], provided by the authors. We build the itinerary graph over each
of the cities we are considering and, for each trail in the test set we compute the
list of the top-10 recommendations. The list of recommended PoIs is then used to
evaluate the effectiveness of the method for predicting the next candidate PoI. For
the two methods above, we report only the best performance obtained. We compare
LEARNEXT against “Random Walk” because it is tailored for tourism. It employs
Flickr and Wikipedia data as LEARNEXT. It is also known to be an effective system
for prediction/recommendation of tourist locations.

— “Logistic Regression” [Bishop et al. 2006] is used to predict the probability of a PoI
being relevant (i.e., the next one) or not relevant for a certain current path. We use
this method because logistic regression is an effective technique for classification
capable of approximating the predicted classes with a certain probability. Instead of
outputting a class for a given feature vector, it gives the probability that the vector
is relevant or not, thus we can compare it to the ranking offered by the ranking
models.

— “SVM-C” [Cortes and Vapnik 1995] uses Support Vector Machines for classification
and is used similarly to “Logistic Regression”. SVM is used to binary classify PoIs
in two classes: “relevant”, “not relevant”, but also set to output probabilities, thus
comparable to our proposed methods.

The evaluation strategy we use to assess how the proposed techniques behave in
terms of effectiveness (RQ1) is the following: each model for the three cities has been
trained on the corresponding training set. A training set contains positive and negative
examples of a candidate next PoI, represented by its features. Given a trail of length
N , the training set contains both current path features (computed on the first N − 1
PoIs of the trail) and PoI features (computed for the N -th PoI). The latter are computed
considering both the actual next PoI visited by the tourist, i.e., the N -th PoI of the trail
(as a positive example) and a few negative examples, with PoIs different from the ones
seen in the actual trail.

We experiment the performance of LEARNEXT by varying the negative examples in
the training set. We conduct this analysis in the city of Florence and we experiment
1, 3, 5, and 10 negatives examples per trail. Negative examples have been sampled on
a distance basis. The rationale behind this choice is to allow LEARNEXT to be robust
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toward possible false positives that are close to the current PoI visited by the tourist.
We do so by selecting as negative examples PoIs close to the N -th one in the trail while
one has been selected far from the N -th one.

Results, in term of Success@1 show the following performance in the case of Florence:
34.92% with 1 negative example, 37.76% with 3 negative examples, 36.84% with 5 nega-
tive examples and 37.51% with 10 negative examples. In the case of 1 negative example
the performance is slightly below than in the case of 3 or more negatives, meaning the
algorithm produces better results when provided with more learning examples, while
at the same time not creating a negative bias. Moreover, it is worth highlighting that
there is no statistical significance between the results obtained by using 3 or more neg-
ative examples. This analysis led us to use 3 negatives examples, so as not to create a
negative bias in the resulting learned models but still feed the algorithm with enough
data for computing the ranking information. This choice also allow us to have a lighter
process for building the training set, than when using more negative examples.

Positive
Example

Current Path Candidate PoI Relevance

1f1,f2,...,fm, fm+1,fm+2,...,fn

✓

Feature
vector :

Negative
Example

0

✕

Feature
vector : f1,f2,...,fm,  fm+1,fm+2,...,fn

�
�
�
�

Fig. 3. Assignment of relevance labels to sequences of PoIs and extraction of the feature vectors for corre-
sponding trails. If a PoI is actually visited in the training set, its relevance label is set to 1, otherwise it is
set to 0.

For building the test set we adopt the following process. Given a trail of length N
in the test set, we use the first N − 1 PoIs of the trail to profile the tourist history and
re-rank all final PoIs observed in the training, according to the prediction model. The
resulting sorted list is then evaluated by using the metrics introduced previously. The
aim of this evaluation is thus to measure how many times our models are able to re-
rank correctly, i.e., to rank in the first positions of the whole list of PoIs the actual next
PoI.
Answering Research Question #1
RQ1: Are learning to rank techniques effective for predicting the next PoI?
In the first experiment we measure metrics like: Success@k, MRR@k and total MRR,
i.e., MRR computed on the complete list of re-ranked PoIs. Results are computed
for all the techniques, our proposed solutions to the LEARNEXT problem along with
three methods we choose as baselines. Table V shows the results of the experiment.
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WhereNext and Random Walk never outperform PROB in terms of Success@1. The
techniques we propose instead outperform all the competitors. Regarding Pisa, in
terms of Success@1, Ranking SVM scores 37.18% and GBRT scores 40.70%, Logistic
Regression scores 29.14%, SVM-C scores 26.13% and PROB scores 16.08%. As expected,
Logistic Regression is the most effective competitor while lower performances can be
highlighted for SVM-C. However, our techniques always outperform the baseline by at
least 10% in the case of Pisa, 7% in the case of Florence and 6% in the case of Rome.
An important note is that we offer results for PROB only @1 for reasons of fairness, as
it extracts candidates only from outgoing links, whereas the other methods reorder all
PoIs in each dataset.

Important results should be highlighted also for Success@2. Here, our methods are
able to score 52.76% (Ranking SVM), and 55.27% (GBRT). In half of the cases our meth-
ods are able to rank the actual next PoI in the two highest positions of the list. Per-
formance improves when considering higher values for the cut-off parameter. In par-
ticular, if we look at the performance in terms of Success@10, Random Walk attains a
score of 46.73%, Logistic Regression scores 55.77% and SVM-C scores 50.25% whereas
Ranking SVM scores 76.38%, and GBRT scores 88.44%. GBRT is the technique showing
the best performance, while Ranking SVM is second and both techniques perform bet-
ter than the competitors we considered. Furthermore, the result for total MRR points
out that, even if Ranking SVM and GBRT in some cases are not able to place the next
PoI in a high position of the list, the overall ranking does not degrade significantly.
The same behavior could be highlighted for the medium and the large city, where both
Ranking SVM and GBRT are always outperforming the competitors. In particular,
while for Firenze GBRT performs about 7 times better w.r.t. PROB, when considering
Rome GBRT only doubles the performance of PROBand the same trend is confirmed
for both Logistic Regression and SVM-C. Looking at the Entropy plotted in Figure 2(d)
we would expect that PROB would perform better for Pisa than for Florence and Rome.
Indeed, from results in Figure 2(d) we can observe that PROB behaves as expected.
Nevertheless, entropy distribution is very skewed and we expect that in many cases
probability features are not enough for a good performance. This is confirmed once
again by the effectiveness of our learning based techniques.

From the results shown above we conclude that RQ1 has an affirmative answer:
learning to rank techniques are effective for predicting the next PoI in a trail.
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Table V. Effectiveness (%) in terms of Success@k, MRR@k, and total MRR of the proposed techniques along
with the competitors.

City Predictor Success (MRR) MRR@1 @2 @3 @5 @10

Pisa

PROB 16.08% - - - - -
WhereNext 12.56% - - - - -
Random Walk 15.07% (0.15) 20.60% (0.17) 25.12% (0.19) 31.65% (0.20) 46.73% (0.22) -
Ranking SVM 37.18% (0.37) 52.76% (0.44) 60.30% (0.47) 69.34% (0.49) 76.38% (0.50) 0.51
GBRT 40.70% (0.40) 55.27% (0.47) 63.81% (0.50) 75.87% (0.53) 88.44% (0.55) 0.56
Logistic Regression 29.14% (0.29) 36.18% (0.32) 39.19% (0.33) 45.22% (0.35) 55.77% (0.36) 0.37
SVM-C 26.13% (0.26) 28.64% (0.27) 33.66% (0.29) 39.69% (0.30) 50.25% (0.31) 0.33

Florence

PROB 4.59% - - - - -
WhereNext 2.90% - - - - -
Random Walk 3.25% (0.03) 6.09% (0.04) 8.77% (0.05) 11.69% (0.06) 20.13% (0.07) -
Ranking SVM 34.58% (0.34) 42.02% (0.38) 45.69% (0.39) 49.37% (0.40) 56.47% (0.41) 0.42
GBRT 37.76% (0.37) 46.78% (0.42) 53.04% (0.44) 59.31% (0.45) 69.34% (0.47) 0.48
Logistic Regression 29.40% (0.29) 35.00% (0.32) 36.59% (0.32) 39.18% (0.33) 42.52% (0.33) 0.34
SVM-C 27.73% (0.27) 31.41% (0.29) 32.16% (0.29) 34.50% (0.30) 36.34% (0.30) 0.31

Rome

PROB 12.93% - - - - -
WhereNext 6.37% - - - - -
Random Walk 8.43% (0.08) 13.76% (0.11) 19.22% (0.12) 26.38% (0.14) 38.12% (0.16) -
Ranking SVM 25.06% (0.25) 32.51% (0.28) 37.24% (0.30) 48.22% (0.32) 61.99% (0.34) 0.35
GBRT 30.95% (0.30) 40.07% (0.34) 47.15% (0.38) 56.34% (0.40) 67.68% (0.41) 0.42
Logistic Regression 24.07% (0.24) 30.24% (0.27) 33.82% (0.28) 38.95% (0.29) 46.27% (0.30) 0.31
SVM-C 19.77% (0.19) 23.27% (0.21) 24.43% (0.21) 26.82% (0.22) 30.32% (0.22) 0.23
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Answering Research Question #2
RQ2: What is the robustness of the proposed techniques? In particular, how does the
performance change by varying the learning parameters?
We evaluate the prediction performance of both Ranking SVM and GBRT by varying
the parameters used in the learning phase. We have done grid search on a portion of
the training set and validated it on a validation set (held out again from the training).
When building the GBRT model, we vary both the “number of leaves” (NL) used in the
model and the “learning rate” (LR), while for Ranking SVM we vary the cost parameter
(C) as it controls soft margins needed for avoiding misclassifications. In particular, NL
assumes the values in {7,10,15,20}, LR assumes values in {0.01,0.05,0.1}, while C
assumes values in {3,6,10,30,50,100,200, . . . ,1,000}. Tables VI and Figure 4 report the
different performance of our proposed solutions.

The best performance of the GBRT technique for Pisa is reached on two different sets
of parameters: (NL = 20, LR = 0.01) and (NL = 15, LR = 0.05). However, we highlight
the best one in respect to the overall performance (i.e, by considering also Success@k,
k > 1). Moreover, the best performance of GBRT for Firenze is achieved by using 15
leaves and learning rate equal to 0.05. A smaller number of leaves (10) and a smaller
learning rate (0.01) allows to obtain the best performance when dealing with data from
Rome.

We also study the statistical significance of the results we obtain in this analysis.
In particular, we test whether the difference between results is statistically significant
w.r.t. different parameter combinations. We analyze the difference between the maxi-
mum value and various results for each city obtained by varying the number of leaves
and the learning rate. If the difference is statistically significant we highlight it with
a ▼, whereas if the difference is not statistically significant we use a ▽. The test is
conducted by setting p-value = 0.05. As shown in Table VI there is no statistical signifi-
cance between the maximum performance and other various parameter settings in the
case of Pisa and Florence, while for Rome results are different. A possible explanation
of this phenomenon relies in the different sizes of the populations between the three
cities covered by the dataset.

Table VI. Effectiveness (in terms of Success@1) of the models
by varying the learning parameters of the GBRT. In bold we
highlight the best performance.

City NL LR
0.01 0.05 0.1

Pisa

7 38.69% 38.69% ▽ 36.18%
10 38.19% 38.19% ▽ 37.18%
15 39.69% ▽ 40.70% 33.16% ▽
20 40.70% 37.68% ▽ 33.66%

Florence

7 35.33% 35.58% ▽ 33.24%
10 36.75% 37.09% ▽ 35.75%
15 37.00% ▽ 37.76% 36.00% ▽
20 36.50% 37.25% ▽ 36.84%

Rome

7 30.48% ▽ 30.36% 28.25%
10 30.95% 29.88% ▽ 29.36% ▽
15 27.01% ▼ 29.40% 28.01%
20 27.61% ▼ 29.00% 28.65%
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We also study how Ranking SVM varies its performance w.r.t. the parameter C.
Concerning Pisa, the best behavior @1 is achieved for C = 600, C = 800 and C = 1000,
whereas C = 1000 shows the best overall performance by varying k. Moreover, Figure 4
shows that, for Florence and Rome the optimal performance is reached when C = 200
and C = 500, respectively. From the results we can devise that the differences of the
size and particularities of the datasets needs a differentiation of the parameter C.
However, as we increase the value of C, (i.e., C > 500) results tend to stabilize with no
statistically significant difference between the achieved performance.

Consequently, the answer to RQ2 is that, for the proposed techniques, a careful tun-
ing of the parameters must be done on the basis of the size of the dataset considered.

 15

 20

 25

 30

 35

 40

 0  100  200  300  400  500  600  700  800  900  1000
Value of C

Pisa
Florence

Rome

Fig. 4. Efficiency of Ranking SVM by varying parameter C.

Answering Research Question #3
RQ3: How does the length of trails affect the effectiveness of the proposed models?
We assess how the length of trails affects the performance of our technique. This is
an important aspect to study as our feature space is made of two subsets of features:
current path and PoI features. While PoI features model the characteristics of a PoI,
current path features model the behavior of the tourist when visiting the city. This
behavior is derived from the PoIs she already visited in the trail. Thus, current path
features strictly depend on the set of PoIs already visited (we refer to it as “history”). In
this section we want to understand what is the influence of shortening training trails
on the prediction quality of the learned model. In order to do that we build a training
set of trails by varing the number of PoIs exploited to derive current path features. To
answer to RQ3, we thus evaluate the prediction of our models by varying the number
of PoIs used to compute the set of current path features. To do so, for each dataset
available, we define the maximum number of PoIs constituting the current path of a
given tourist. As an example, k = 3 means that the first three PoIs are used to compute
the current path features in the training data.

Adding more information to the history (in terms of PoIs visited) determines an im-
portant gain of the predictive performance of the proposed methods. This gain is clear
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when comparing the performance obtained by exploiting 1 PoI and 3 PoIs for computing
current path features. If history contains only 1 PoI, the method loses its performance
w.r.t. PROB. A possible explanation of this phenomenon relies in the complexity of the
models behind LEARNEXT. Such models are complex formulae obtained by combining
68 different signals. Their normal behavior is thus to drop performance if a set of such
signals lose their expressiveness regarding previous tourist interactions. To conclude,
the behavior highlighted by the reviewer is expected. If a set of features exploited by
the model are missing, the model is not able to rank PoI thus resulting in a very low
prediction power. The impact of the history on prediction performance can be seen in
Figure 5, where we test the effectiveness of our solutions by varying the number of
PoIs used to derive current path features.

The answer to RQ3 is that historical information has an important role in the def-
inition of a model for predicting a PoI a tourist will visit. Effectiveness measured in
terms of Success@1 shows a steady growth for a history size depending on the city size.
In the case of small cities (e.g., Pisa), having a longer history helps in better under-
standing the particular tastes of tourists. In the case of medium and big cities (e.g.
Florence and Rome), history length is important to a lesser extent. This may be due to
the fact that, for small cities, the entropy of tourists’ decisions is lower. Therefore, we
need more contextual information in order to improve predictions in respect to those
made by taking into account only probability features.

A related experiment to this one aims at understanding what is the effectiveness of
the model by varying the number of PoIs used to derive current path features from test
trails. In this kind of test, we maintain the full predictive power of the initial training
(the one obtained by exploiting the full history of the trails) and we vary the history
of the test trails. This experiment reflects the predictive power of the model when a
tourist is at the beginning of her visit and how it changes by adding more visited PoIs
to her visit. As expected, results improve as the length of test trails increases.

 5

 10

 15

 20

 25

 30

 35

 40

 1  2  3  4  5  6  7
Size of the history (k)

Pisa (GBRT)
Pisa (SVM)

Florence (GBRT)
Florence (SVM)

Rome (GBRT)
Rome (SVM)

Fig. 5. Effectiveness (in terms of Success@1) of the proposed methods by varying the size of the history used
to train/test the model.

Answering Research Question #4
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RQ4: How does the popularity of PoIs affect the prediction?
We aim at understanding how our proposed techniques behave by taking into account
the popularity of the PoIs to be suggested. In particular, we are interested in under-
standing how the visit frequency of PoIs impacts on the models behavior. We assess it
by sampling, from each of the three test sets, two distinct sets of trails, those whose
N -th PoI (to be predicted) is observed to be either frequent or rarely visited in the
training set. We consider the top-10 most frequent PoIs for each dataset. The trails
with the N -th PoI included in top ten belong to the frequent last PoI test set, while the
remaining ones belong to the rare last PoI test set. To be as fair as possible we evaluate
our PROB baseline in the same way.

As it can be seen in Table VII, there is a substantial difference amongst frequent
and rare PoI prediction results. For Pisa, PROB captures the frequent PoIs, with a
15.07% in Success@1, while offering a poor performance in the case of rare PoIs, 1%
Success@1. This is due to the specific properties and size of the dataset, which succeeds
in capturing frequent passages. However, these characteristics change when dealing
with larger datasets corresponding also to larger cities. In the case of Florence and
Rome, due to their topology, the performance is quite similar, but still low, namely
2.50% and 6.20% Success@1 for frequent PoIs and 2.17% and 6.80% Success@1 for rare
PoIs.

On the other hand, the proposed methods - Ranking SVM and GBRT - show an im-
provement for both frequent and rare PoIs. For Pisa, the GBRT Success@1 for frequent
PoIs rises up to 47.27%, while Success@10 rises up to 95.45%. We notice also a steady
growth in the MRR, with an overall 0.63%. The values in the case of Ranking SVM are
slightly lower than GBRT, but still 3 times larger than PROB. A significant improve-
ment with respect to PROB can be seen also in predicting rare PoIs. For Florence,
results show an even bigger improvement w.r.t. that described for Pisa. In particular,
the prediction of frequent PoIs in this case reaches 50.84% for GBRT and 44.53% for
Ranking SVM, respectively.

The answer to RQ4 is that prediction models are better at predicting popular PoIs
rather than rarely visited PoIs. Our proposed solutions based on learning to rank mod-
els reach high prediction performance also in the case of less popular PoIs.
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Table VII. Effectiveness of the proposed techniques on predicting frequently (F) and rarely (R) visited PoIs. We report
both Success@k, MRR@k and total MRR.

City Predictor Success (MRR) MRR@1 @2 @3 @5 @10

Pisa (F) PROB 15.07% (0.15) - - - - -
Pisa (F) GBRT 47.27% (0.47) 62.72% (0.55) 73.63% (0.58) 85.45% (0.61) 95.45% (0.62) 0.63
Pisa (F) Ranking SVM 45.45% (0.45) 64.54% (0.55) 75.45% (0.58) 82.72% (0.60) 88.18% (0.61) 0.61
Pisa (R) PROB 1% (0.01) - - - - -
Pisa (R) GBRT 32.58% (0.32) 46.06% (0.39) 61.58% (0.41) 64.04% (0.44) 79.77% (0.46) 0.47
Pisa (R) Ranking SVM 16.85% (0.16) 31.46% (0.24) 31.46% (0.24) 44.94% (0.27) 55.05% (0.28) 0.30
Florence (F) PROB 2.50% (0.02) - - - - -
Florence (F) GBRT 50.84% (0.50) 64.28% (0.57) 71.84% (0.60) 79.41% (0.61) 84.87% (0.62) 0.63
Florence (F) Ranking SVM 44.53% (0.44) 53.78% (0.49) 61.34% (0.51) 69.32% (0.53) 78.57% (0.54) 0.55
Florence (R) PROB 2.17% (0.02) - - - - -
Florence (R) GBRT 34.51% (0.34) 42.44% (0.38) 48.38% (0.40) 54.32% (0.41) 65.58% (0.43) 0.44
Florence (R) Ranking SVM 27.84% (0.27) 33.47% (0.30) 36.07% (0.31) 38.99% (0.32) 44.00% (0.32) 0.34
Rome (F) PROB 6.20% (0.06) - - - - -
Rome (F) GBRT 45.95% (0.45) 63.00% (0.54) 71.67% (0.57) 82.65% (0.59) 90.89% (0.61) 0.61
Rome (F) Ranking SVM 36.27% (0.36) 51.87% (0.44) 60.83% (0.47) 77.60% (0.50) 93.06% (0.52) 0.53
Rome (R) PROB 6.80% (0.06) - - - - -
Rome (R) GBRT 23.06% (0.23) 30.14% (0.26) 36.79% (0.28) 45.24% (0.30) 58.20% (0.32) 0.34
Rome (R) Ranking SVM 16.41% (0.16) 22.02% (0.19) 27.07% (0.20) 35.31% (0.22) 46.73% (0.24) 0.25
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Answering Research Question #5
RQ5: What is the sensitivity of the model with respect to the proposed features? How
does the performance of the model change by varying the set of features employed?
We further analyze the features with which we describe our data and their predictive
power. We do this in three different ways. First, we investigate the relationships be-
tween each feature and the associated target labels in the training set. We propose it
as a preliminary analysis because the method studies how much single features are
related with the associated label. The method does not consider possible relations be-
tween features. To extend the results of the first analysis, we resort to analysing the
structure of the models (i.e., forests of trees) generated by GBRT. As further described,
this analysis is more effective in understanding the importance of a feature because
it takes into account possible dependencies between features. Finally, we study the
pairwise mutual relationships between features to derive the relations between them
and thus to find the most relevant ones by choosing good representatives from groups
of similar features. We do it by employing a graph-based model of the relationships
between them. Lastly, we compare our findings against several well-known techniques
for feature selection.
Relationships between features and labels. We compute the Pearson product-
moment correlation coefficient (r) between each feature and the class of each PoI in
the training set. Pearson’s r indicates a priori the features that weight most in the
model. We are interested in medium/high correlations (−1 ≤ r ≤ −0.3 and 0.3 ≤ r ≤ 1)
between a given feature and the corresponding class/target of a given PoI. The results
are presented in Table VIII.

We obtain three different set of features with medium/high correlation w.r.t. the label
of PoIs in the training set. Each feature in the three sets captures a concept of “popu-
larity” of the PoI determined by means of different approaches. As an example, while
noOfVisits measures the number of times a PoI is visited (the higher the number,
the higher the popularity thus showing a positive correlation), ratioPoIInUserPhotos
measures how popular a PoI is in each user’s photo collection. Moreover, numPhotos
reflects the popularity of a PoI in the collection and ratioUsersVisitingPoI measures
the ratio of users in the training set that visit a PoI. In the case of Pisa, an interesting
anti-correlation is shown by distFromLastPoI Eucl. This feature measures how far is
the candidate PoI w.r.t. the last PoI that has been visited by a tourist: the closer the
PoI, the more likely for it to be visited next. This suggests that, in small cities, the
behavior of a tourist is mainly affected by distance-based criteria. freqBigrams and
freqTrigrams capture a more structured concept of popularity as they measure how
many times a PoI is visited given the previous one or two PoIs, respectively. Results
from this experiment highlights that the popularity of a PoI is an important signal to
take into account by tourists when choosing the next PoI to visit.
Importance of the features assessed by GBRT models. A different analysis we
conduct is that of studying the importance of the features in a given GBRT-based model
by computing the average position of each feature within the model, namely the av-
erage position of a feature within the regression trees ensemble. This analysis piggy-
backs the behavior of GBRT-based learning techniques in selecting the features to be
used as splitting nodes [Pan et al. 2009]. These techniques build the model by selecting
at each iteration the feature that minimizes a given error metric. GBRT are a particu-
lar class of regression trees that exploit gradient boosting for minimizing RMSE. The
average position of a feature in the model thus reveals its importance in approximat-
ing the training dataset. The more the average position of a feature occurs higher in
the model, the more it is discriminative in describing the training set.
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Table VIII. Features per dataset showing high or moderate Pearson’s correlation coefficient w.r.t. the
training label. The analysis is performed per city on the models showing the best prediction performance.

Pisa Florence Rome
Feature Correlation Feature Correlation Feature Correlation
ratioUsersVisitingPoI 0.492 freqTrigrams 0.501 ratioPhotosPoI 0.440
ratioTrailsWithPoI 0.489 visitTime Total 0.342 numPhotos Total 0.440
freqBigrams 0.484 ratioPhotosPoI 0.323 freqTrigrams 0.425
noOfVisits 0.481 numPhotos Total 0.323 freqBigrams 0.403
ratioPhotosPoI 0.466 visitTime Max 0.315 noOfVisits 0.368
numPhotos Total 0.466 ratioTrailsWithPoI 0.363
numPhotos Max 0.440 ratioUsersVisitingPoI 0.362
visitTime Total 0.431 numPhotos Max 0.315
visitTime Max 0.423
freqTrigrams 0.419
ratioPoIInUserPhotos 0.345
distFromLastPoI Eucl -0.374
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Table IX. Top-10 features per dataset with a high average position in the GBRT model. The analysis is performed per city
on the models showing the best prediction performance (see Table VI).

Pisa Florence Rome

Feature AvgPos.
(Occ.) Feature AvgPos.

(Occ.) Feature AvgPos.
(Occ.)

freqBigrams 2.914 (129) freqBigrams 2.700 (172) freqBigrams 2.385 (614)
freqTrigrams 5.085 (83) freqTrigrams 6.927 (88) freqTrigrams 3.155 (331)
distFromLastPoI Eucl 9.928 (60) entropy 9.234 (122) numPhotos Total 6.997 (213)
distFromLastPoI Lat 10.528 (45) visitTime Max 10.117 (63) ratioPhotosPoi 7.197 (206)
ratioPoIInUserPhotos 10.742 (33) ratioPoIInUserPhotos 10.837 (41) numPhotos Avg 7.586 (230)
distFromLastPoI Lon 10.871 (36) distFromFirstPoI Eucl 10.927 (54) ratioPoIInUserPhotos 7.661 (122)
visitTime Avg 11.057 (38) noOfVisits 11.234 (71) currPathLen 7.954 (182)
startProb 11.157 (38) startProb 11.432 (58) visitTime Max 8.185 (182)
visitTime Max 11.242 (35) distFromLastPoI Eucl 11.468 (62) noOfVisits 8.248 (167)
entropy 11.257 (37) uniqueCategsPerCurrPath 11.531 (52) stopProb 8.448 (107)

Table X. Top-10 features per dataset with the highest number of occurrences in the GBRT model. The analysis is performed
per city on the models showing the best prediction performance (see Table VI).

Pisa Florence Rome
Feature Occurrences Feature Occurrences Feature Occurrences
freqBigrams 129 freqBigrams 172 freqBigrams 614
freqTrigrams 83 entropy 122 freqTrigrams 331
distFromLastPoI Eucl 60 freqTrigrams 88 numPhotos Avg 230
distFromLastPoI Lat 45 noOfVisits 71 numPhotos Total 213
visitTime StdDev 40 numPhotos Avg 64 ratioPhotosPoi 206
startProb 38 visitTime Max 63 currPathLen 182
visitTime Avg 38 distFromLastPoI Eucl 62 visitTime Max 182
entropy 37 startProb 58 noOfVisits 167
distFromFirstPoI Eucl 37 distFromFirstPoI Lon 55 ratioPoIInUserPhotos 122
distFromFirstPoI Lon 36 distFromFirstPoI Eucl 54 stopProb 107
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Results in Table IX show that the two features freqBigrams and freqTrigrams are
the two most discriminative signals in the three cities examined. In particular, these
features and the features distFromLastPoI are the same of those discovered in the a
priori analysis based on Pearson’s correlation. Not surprisingly, the analysis on GBRT-
based models points out that the features freqBigrams and freqTrigrams are the most
significative signals capturing popularity since they model both the global importance
of a PoI and its relative importance w.r.t. those that have been already visited. In gen-
eral, the model uses different signals regarding sequences of PoIs as well as distance,
popularity and entropy indicators. Table X presents the top most recurrent features
in each model and confirms once again the prevalence of the features previously dis-
cussed.

Tables IX and X highlight the different types of features that are in the top-
10 positions per city. In particular, for Pisa and Florence (small and medium-
size cities) distance-based features like, for example, distFromLastPoI Eucl and
distFromFirstPoI Eucl are discriminative in modeling the behavior of a tourist. Sur-
prisingly, this class of features is not as important for bigger cities (i.e., Rome). This
observation suggests that the size of the city affects the way the tourist chooses to
visit it. In small cities, where PoIs are close to each other, tourists take distances
more into account (as they usually walk from a PoI to the next one) while in bigger
city distances are less important. Here, the behavior of the “average” tourist is more
popularity-driven.

We now investigate how our method behaves without employing the top 5 most sig-
nificant features, we take as example Florence, and then adding each one step by
step. To do so, we employ the top 5 features from Table IX that are: freqBigrams,
freqTrigrams, entropy, visitTime Max and ratioPoIInUserPhotos. These 5 features
are found to be extremely relevant to the models due to their discriminative power.

In Table XI, we experiment with training models on datasets which do not contain
either one or all of top 5 features. We see that the effectiveness of LEARNEXT drops
significantly when we take out the top 5 most important features from the training
set. Once we start adding each one of the top 5 features, we see results vary. The
biggest contribution to the effectiveness is brought on by adding the feature which
captures short sequences of 3 PoIs, freqTrigrams followed by the one capturing se-
quences of 2 PoIs, freqBigrams. By adding freqTrigrams to the set of features without
the top 5 most important ones, the performance in terms of Success@1 triples. How-
ever, it is not enough to achieve the maximum effectiveness as when using all 68 fea-
tures. On the contrary, the improvement brought on by entropy, visitTime Max and
ratioPoIInUserPhotos is rather low.

Table XI. Effectiveness (in terms of Success@k) of the models by varying the top 5
features for Florence used for modeling the tourist behavior.

Features Success
@1 @2 @3 @5 @10

All - top 5 9.18% 13.45% 17.12% 21.63% 28.73%
All - top 5 + entropy 9.44% 13.78% 16.37% 21.05% 27.81%
All - top 5 + visitTime Max 9.60% 13.70% 16.29% 21.38% 28.98%
All - top 5 + freqBigrams 14.87% 21.21% 26.56% 34.75% 47.28%
All - top 5 + freqTrigrams 34.50% 42.43% 46.95% 51.54% 57.14%
All - top 5 + ratioPoIInUserPhotos 9.85% 13.61% 17.20% 21.80% 29.65%

Pairwise mutual relationships between features. We introduce a novel technique
that takes into account the Pearson’s correlation between pairs of features. To assess
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the sensitivity of the model w.r.t. the features, we selectively eliminate a subset of
features from the training set and we then learn and evaluate the performance.

We define an undirected graph where nodes are features and edges are weighted by
the Pearson’s correlation between pairs of features. Edges are then removed if their
weight is below a given threshold ρ. In the resulting pruned graph we extract the
connected components. From each connected component we choose one node as its rep-
resentative. In particular, we choose as representative the node with highest Pearson’s
correlation w.r.t. the training label. Note that after pruning the graph some nodes
could be disconnected. We use these resulting individual nodes together with the set of
representatives because, even if they are not correlated with other features, they may
withhold predictive power by themselves. We call this technique “Graph” and we test
this approach on the city of Florence, chosen for its medium size and performance. We
compare it with:

— Random - a simple baseline that chooses randomly the set of features to use in the
model.

— SelectKBest - a univariate feature selection method which selects features accord-
ing to the k highest scores, based on the Anova F-value statistical test.

— Tree-Based - a tree-based feature selection method which employs tree-based esti-
mators and forests of trees in order to compute feature importance.

— InfoGain - a feature selection method, which employs an information gain loss func-
tion within forests of trees in order to compute feature importance.

— GBFS - Gradient Boosted Feature Selection, a state-of-the-art method for feature
selection based on a modification of Gradient Boosted Trees [Xu et al. 2014]. Our
tests employed the code kindly made available from the authors of the technique.

When comparing all the strategies, we fix the ρ parameter of our Graph method,
which in turn determines the number of features selected (the first column of Tables
XII, XIII). We then employ the same number of features for all the other feature selec-
tion strategies.

Results in Tables XII and XIII highlight the fact that all methods have a better per-
formance than Random. The Graph method always outperforms the random baseline
and the difference in terms of Success@k is significant.

Note that lower values of ρ means a deeper pruning of the feature space (i.e., a lower
number of features to be used in the model). The resulting connected components have
a higher number of nodes from which to choose the representative one. For ρ = 0.17,
the method seems to be less accurate than all other feature selection methods, due to
the fact that it build a long connected component, containing almost all features, from
which extracts just one representative feature. If the top 5 feature belong to the same
connected component then only one of them will be selected. However as we increase
the degree of correlation between pairs the Graph method improves performance, the
difference between Graph and all other methods not being statistically significant.
The ability to select highly significant features is proven by the fact that by selecting
21 features the effectiveness of the prediction is even better than the one obtained by
employing all the features, even though the difference is not statistically significant.

When computing feature selection, we used both GBFS with implicit parameter tun-
ing as proposed by the authors and GBFS with a parameter setting similar to GBRT.
When using the existing parameters we obtain 5 significant features and when we
set out parameters we obtain 51 features from the feature selection process. Using
all other feature selection method we select top 5 features and compare the results.
The best performance is obtained however by the Tree-based feature selection method
which reaches 33.75% in Success@1, when training with GBRT. Although using 5 fea-
tures yields good results, they can be further improved for example by using 21 fea-
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tures, the difference best feature selection method for 5 features and the best for 21
features being of approximately 4%.

Regarding Ranking SVM (RSVM), the methods behave similarly in proportion as
when training with GBRT. We have also computed the statistical significance for the
values obtained with every feature selection method, for both RSVM and GBRT, and
in most cases the difference is not statistically significant (p-value = 0.05), except when
using 5 features and Graph has less in Success@k than the others: InfoGain, Tree-
Based, SelectKBest and GBFS.

As the number of features increases, the performance is maintained around 37%-
38% so there is no significant improvement with adding more features. By looking at
the global MRR, values are very similar with the exception of Random and Graph with
5 features, for GBRT they vary by 0.01, while for RSVM they vary by maximum 0.02.
MRR also has the same in the case of GBRT with Graph (ρ = 0.5), Graph (ρ = 0.6).

For top performance we can largely say that Graph, SelectKBest, Tree-Based, Info-
Gain and GBFS behave similarly. We observed the behavior of the proposed techniques
on a various number of features and after computing the statistical significance of re-
sults we can say that results are “statistically” the same as when using 68 features.

In conclusion we answer RQ5 by stating that the method we propose for solving the
LEARNEXT problem captures the overall behavior of a tourist. The performance of the
model remains constant for a smaller number of features if they are “well-chosen”. Sim-
ilar performance can be obtained with less features by using feature selection methods
as the ones presented above.
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Table XII. Effectiveness of the proposed feature selection techniques on the Florence dataset w.r.t random by apply-
ing GBRT. We report Success@k, MRR@k and total MRR.

# Feat. Method Success (MRR) MRR@1 @2 @3 @5 @10

5 GBRT

Graph (ρ = 0.17) 23.30% (0.23) 30.57% (0.26) 34.75% (0.28) 38.17% (0.29) 41.93% (0.29) 0.29
Random 4.23% (0.04) 5.78% (0.04) 8.56% (0.06) 10.45% (0.07) 13.96% (0.07) 0.08
SelectKBest 31.99% (0.31) 38.42% (0.35) 43.27% (0.36) 47.86% (0.37) 53.04% (0.38) 0.39
Tree-Based 33.75% (0.33) 43.52% (0.38) 49.95% (0.40) 58.14% (0.42) 67.00% (0.43) 0.45
InfoGain 32.99% (0.32) 43.10% (0.38) 49.12% (0.40) 57.56% (0.41) 66.49% (0.43) 0.44
GBFS 30.24% (0.30) 38.17% (0.34) 42.02% (0.35) 46.11% (0.36) 51.62% (0.37) 0.38

21 GBRT

Graph (ρ = 0.5) 38.01% (0.38) 46.95% (0.42) 52.21% (0.44) 59.56% (0.45) 67.75% (0.47) 0.48
Random 13.61% (0.13) 18.27% (0.15) 21.92% (0.17) 26.43% (0.18) 34.03% (0.19) 0.20
SelectKBest 37.00% (0.37) 46.44% (0.41) 52.54% (0.43) 59.73% (0.45) 68.67% (0.46) 0.47
Tree-Based 35.83% (0.35) 46.61% (0.41) 52.96% (0.43) 59.64% (0.44) 68.67% (0.46) 0.47
InfoGain 34.67% (0.34) 45.27% (0.39) 52.63% (0.42) 58.73% (0.43) 68.58% (0.45) 0.46

27 GBRT

Graph (ρ = 0.6) 37.92% (0.37) 46.44% (0.42) 51.12% (0.43) 58.39% (0.45) 68.92% (0.46) 0.48
Random 20.40% (0.20) 26.21% (0.23) 30.74% (0.24) 36.47% (0.26) 44.54% (0.27) 0.28
SelectKBest 37.51% (0.37) 46.53% (0.42) 52.04% (0.43) 59.73% (0.45) 68.75% (0.46) 0.48
Tree-Based 38.09% (0.38) 46.61% (0.42) 52.63% (0.44) 59.56% (0.45) 69.08% (0.47) 0.48
InfoGain 35.00% (0.35) 44.36% (0.39) 51.46% (0.42) 58.81% (0.43) 69.34% (0.45) 0.46

39 GBRT

Graph (ρ = 0.7) 36.17% (0.36) 44.86% (0.40) 51.12% (0.42) 58.31% (0.44) 68.50% (0.45) 0.46
Random 22.32% (0.22) 29.67% (0.25) 34.46% (0.27) 41.30% (0.29) 51.87% (0.30) 0.32
SelectKBest 35.67% (0.35) 46.78% (0.41) 53.13% (0.43) 60.06% (0.44) 68.42% (0.46) 0.47
Tree-Based 36.59% (0.36) 46.28% (0.41) 52.46% (0.43) 58.89% (0.44) 69.08% (0.46) 047
InfoGain 36.50% (0.36) 46.36% (0.41) 52.46% (0.43) 60.73% (0.45) 69.42% (0.46) 0.47

47 GBRT

Graph (ρ = 0.8) 37.34% (0.37) 45.19% (0.41) 50.37% (0.42) 58.81% (0.44) 68.92% (0.46) 0.47
Random 28.07% (0.28) 36.15% (0.32) 41.75% (0.33) 49.10% (0.35) 59.73% (0.37) 0.38
SelectKBest 35.67% (0.35) 45.11% (0.40) 51.62% (0.42) 58.73% (0.44) 68.58% (0.45) 0.46
Tree-Based 36.59% (0.36) 46.36% (0.41) 52.21% (0.43) 59.23% (0.45) 68.58% (0.46) 0.47
InfoGain 36.84% (0.36) 46.36% (0.41) 52.46% (0.43) 60.15% (0.45) 69.17% (0.46) 0.47

51 GBRT

Graph (ρ = 0.825) 36.75% (0.36) 46.70% (0.41) 52.71% (0.43) 58.81% (0.45) 68.25% (0.46) 0.47
Random 27.98% (0.27) 35.95% (0.31) 41.56% (0.32) 48.83% (0.35) 58.06% (0.36) 0.37
SelectKBest 36.50% (0.36) 45.69% (0.41) 53.46% (0.43) 59.98% (0.45) 69.84% (0.46) 0.47
Tree-Based 36.59% (0.36) 46.03% (0.41) 52.54% (0.43) 60.23% (0.45) 68.75% (0.46) 0.47
InfoGain 37.42% (0.37) 47.11% (0.42) 52.96% (0.44) 59.64% (0.44) 69.25% (0.47) 0.48
GBFS 35.42% (0.35) 45.44% (0.40) 52.96% (0.42) 60.06% (0.44) 69.59% (0.45) 0.46

57 GBRT

Graph (ρ = 0.9) 36.92% (0.36) 46.28% (0.41) 51.87% (0.43) 58.56% (0.44) 68.33% (0.46) 0.47
Random 27.80% (0.27) 36.14% (0.31) 42.23% (0.34) 49.64% (0.35) 60.18% (0.37) 0.38
SelectKBest 37.17% (0.37) 45.69% (0.41) 52.96% (0.43) 59.98% (0.45) 70.59% (0.46) 0.47
Tree-Based 37.76% (0.37) 47.53% (0.42) 53.04% (0.44) 60.15% (0.46) 69.00% (0.47) 0.48
InfoGain 37.17% (0.37) 46.11% (0.41) 52.38% (0.43) 59.56% (0.45) 69.17% (0.46) 0.47

68 GBRT None 37.76% (0.37) 46.78% (0.42) 53.04% (0.44) 59.31% (0.45) 69.34% (0.47) 0.48
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Table XIII. Effectiveness of the proposed feature selection techniques on the Florence dataset w.r.t. random by ap-
plying RSVM. We report Success@k, MRR@k and total MRR.

# Feat. Method Success (MRR) MRR@1 @2 @3 @5 @10

5 RSVM

Graph (ρ = 0.17) 23.72% (0.23) 31.16% (0.27) 34.92% (0.28) 38.93% (0.29) 42.43% (0.30) 0.30
Random 3.45% (0.03) 4.80% (0.03) 5.65% (0.04) 7.45% (0.04) 9.84% (0.05) 0.05
SelectKBest 29.82% (0.29) 36.84% (0.33) 39.34% (0.34) 44.27% (0.35) 48.95% (0.35) 0.36
Tree-Based 32.49% (0.32) 43.44% (0.37) 48.12% (0.39) 54.21% (0.40) 61.65% (0.41) 0.43
InfoGain 32.99% (0.32) 42.18% (0.37) 47.03% (0.39) 51.71% (0.40) 58.73% (0.41) 0.42
GBFS 30.32% (0.30) 36.09% (0.33) 39.51% (0.34) 42.10% (0.34) 47.11% (0.35) 0.36

21 RSVM

Graph (ρ = 0.5) 34.92% (0.34) 44.36% (0.39) 49.20% (0.41) 54.38% (0.42) 60.81% (0.43) 0.44
Random 9.90% (0.09) 13.91% (0.11) 16.39% (0.12) 21.21% (0.13) 27.95% (0.14) 0.16
SelectKBest 33.75% (0.33) 41.35% (0.37) 45.19% (0.38) 50.87% (0.40) 57.39% (0.41) 0.42
Tree-Based 34.25% (0.34) 42.27% (0.38) 45.69% (0.39) 50.71% (0.40) 56.97% (0.41) 0.42
InfoGain 32.35% (0.32) 41.01% (0.36) 45.27% (0.38) 49.53% (0.39) 56.32% (0.39) 0.41

27 RSVM

Graph (ρ = 0.6) 35.17% (0.35) 44.52% (0.39) 49.12% (0.41) 53.88% (0.42) 59.23% (0.43) 0.44
Random 17.27% (0.17) 22.90% (0.20) 25.61% (0.20) 30.55% (0.22) 38.06% (0.23) 0.24
SelectKBest 34.58% (0.34) 42.52% (0.38) 46.11% (0.39) 50.54% (0.40) 56.55% (0.41) 0.42
Tree-Based 34.25% (0.34) 42.35% (0.38) 45.44% (0.39) 49.54% (0.40) 56.14% (0.41) 0.42
InfoGain 33.39% (0.33) 41.22% (0.37) 45.36% (0.38) 49.85% (0.39) 56.30% (0.40) 0.41

39 RSVM

Graph (ρ = 0.7) 34.50% (0.34) 44.61% (0.39) 49.28% (0.41) 54.05% (0.42) 59.89% (0.43) 0.43
Random 19.83% (0.19) 25.49% (0.22) 28.92% (0.23) 33.08% (0.24) 41.25% (0.25) 0.27
SelectKBest 34.58% (0.34) 42.02% (0.38) 45.69% (0.39) 49.37% (0.40) 56.47% (0.41) 0.42
Tree-Based 34.33% (0.34) 41.93% (0.38) 45.02% (0.39) 49.03% (0.40) 55.97% (0.41) 0.42
InfoGain 34.00% (0.34) 41.77% (0.37) 45.61% (0.39) 50.12% (0.40) 56.47% (0.41) 0.42

47 RSVM

Graph (ρ = 0.8) 35.08% (0.35) 43.52% (0.39) 47.03% (0.40) 52.13% (0.41) 58.06% (0.42) 0.43
Random 24.85% (0.24) 31.86% (0.28) 35.52% (0.29) 40.11% (0.30) 47.26% (0.31) 0.32
SelectKBest 34.58% (0.34) 42.02% (0.38) 45.69% (0.39) 49.37% (0.40) 56.47% (0.41) 0.42
Tree-Based 34.33% (0.34) 41.93% (0.38) 45.02% (0.39) 49.03% (0.40) 55.97% (0.41) 0.42
InfoGain 34.08% (0.34) 42.02% (0.38) 45.53% (0.39) 49.87% (0.40) 56.05% (0.40) 0.42

51 RSVM

Graph (ρ = 0.825) 35.08% (0.35) 43.52% (0.39) 47.03% (0.40) 52.13% (0.41) 58.06% (0.42) 0.43
Random 24.36% (0.24) 31.22% (0.28) 36.04% (0.29) 40.67% (0.30) 47.96% (0.31) 0.32
SelectKBest 34.58% (0.34) 42.02% (0.38) 45.69% (0.39) 49.37% (0.40) 56.47% (0.41) 0.42
Tree-Based 34.25% (0.34) 42.77% (0.38) 45.69% (0.39) 50.45% (0.40) 56.89% (0.41) 0.42
InfoGain 34.58% (0.34) 42.43% (0.39) 46.19% (0.39) 50.37% (0.40) 55.80% (0.41) 0.42
GBFS 33.39% (0.33) 41.22% (0.37) 45.36% (0.38) 49.85% (0.39) 56.30% (0.40) 0.41

57 RSVM

Graph (ρ = 0.9) 34.41% (0.34) 42.43% (0.38) 46.03% (0.39) 50.71% (0.40) 58.31% (0.41) 0.42
Random 24.71% (0.24) 31.54% (0.28) 34.87% (0.29) 39.29% (0.30) 46.59% (0.31) 0.32
SelectKBest 34.58% (0.34) 42.02% (0.38) 45.69% (0.39) 49.37% (0.40) 56.47% (0.41) 0.42
Tree-Based 34.25% (0.34) 42.77% (0.38) 45.69% (0.39) 50.45% (0.40) 56.89% (0.41) 0.42
InfoGain 34.58% (0.34) 42.43% (0.38) 46.19% (0.39) 50.37% (0.40) 55.80% (0.41) 0.42

68 RSVM None 34.58% (0.34) 42.02% (0.38) 45.69% (0.39) 49.37% (0.40) 56.47% (0.41) 0.42
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5. CONCLUSIONS AND FUTURE WORK
We proposed to apply machine learning techniques to tackle the problem of predicting
the next tourist attraction a tourist will visit on the basis of her visit history (i.e., the
prediction is done accordingly to what a tourist has already visited). This application
could be of help in different scenarios, e.g., i) prediction of tourist flows, ii) location
advertising. In the first scenario, our predictor can be used to devise how tourists will
visit the city from a macroscopic point of view thus helping the management of the
resources of the city dedicated to tourism, while the second scenario relies on exploiting
a tourist prediction for understanding the effect of the advertisement in a particular
part of the city or, more importantly, for choosing where to place it in order to maximize
its effects.

We modeled the task as an instance of learning to rank problem and we defined a fea-
ture space composed of 68 features capturing both the tourist behavior and the peculiar
characteristics of candidate PoIs. In particular, we built the ranking models by exploit-
ing two well-know techniques: Ranking SVM [Joachims 2006] and Gradient Boosted
Regression Trees (GBRT) [Zheng et al. 2007]. GBRT and Ranking SVM consistently
outperform the PROB baseline by 300% in terms of prediction accuracy. Our methods
also outperform the proposed competitors: “WhereNext”, “Random Walk”, “Logistic Re-
gression” and “SVM-C”. We tested the effectiveness of the proposed solutions on three
important tourist cities (Pisa, Florence, and Rome) and we observed a consistent gain
in performance compared to all other methods.

Moreover to analyzing the performance in comparison with the baselines, we test
the robustness of our approach by answering five different research questions.

— The first RQ is related to the efficiency of learning-to-rank models for predicting
the next PoI. In order to answer these question we compare our propose methods
with a probability baseline and four competitors. Our methods always outperform
our competitors thus we can conclude that learning to rank methods are efficient for
predicting the “next” PoI of a user visiting a city.

— The second RQ regards the tuning of the parameters for each learning algorithm
and their impact on the performance. We observe that although they have a certain
influence, the performance results, especially in the case of GBRT for the small
and medium dataset, are not significantly different. For Ranking SVM we also see
that results tend to stabilize, so once achieved the minimum threshold, performance
varies slightly, but the difference is not statistically significant. Nevertheless, a good
tuning of parameters in accordance with the size of the dataset is necessary for
attaining good results.

— The next RQ takes into account how results are affected by the length of the trails.
According to our tests results improve with more historical information about the
current trails, the best performance is achieved after the tourist has already visited
5-7 PoIs in respect with just one. However, a reasonably good prediction can be made
with having only 3 PoIs in the current trail.

— Another RQ makes the distinction between predicting rare or popular PoIs. As one
would expect, it is easier to predict more popular PoIs than rare PoIs, but our system
succeeds in coping with rare PoIs as well, and offer a performance of more than 30%
for the small and medium dataset and more that 20% for the large dataset.

— The last RQ makes a thorough analysis of the sensitivity of the models with re-
spect to the features. We analyze features prior and after training, and determine
the ones which have a higher impact on each of the three datasets. We also propose
a method for selecting the most discriminant features, which allows us to achieve
similar performance when using only 21 features instead of 68, and compare it with
other feature selection methods and a random baseline. We conclude that our fea-
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tures succeed in covering several aspects involved in a tourist visit and the overall
behaviour of a tourist, but at the same time, by using a method for feature selection,
thus reducing the dimensionality of the feature space, we can attain comparable
performances.

We are investigating possible applications where our proposed technique can be a
fruitful building block. A promising use of this research is to devise a method to plan
a visit in a city ahead of time by using LEARNEXT as a building block.
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