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ABSTRACT
In this work, a local feature based background modelling for
background-foreground feature segmentation is presented.
In local feature based computer vision applications, a lo-
cal feature based model presents advantages with respect
to classical pixel-based ones in terms of informativeness, ro-
bustness and segmentation performances. The method dis-
cussed in this paper is a block-wise background modelling
where we propose to store the positions of only most frequent
local feature configurations for each block. Incoming local
features are classified as background or foreground depend-
ing on their position with respect to stored configurations.
The resulting classification is refined applying a block-level
analysis. Experiments on public dataset were conducted to
compare the presented method to classical pixel-based back-
ground modelling.

1. INTRODUCTION
Many computer vision application dealing with object de-

tection, tracking, description, and recognition on static video
streams are based on local features (such as SIFT, SURF
and ORB). Those kind of applications usually have to ap-
ply a pixel-wise background subtraction algorithm (such as
Mixture of Gaussian) to isolate the local features of inter-
est (foreground) from the background. These background
subtraction methods increase the total computational cost,
already high due to keypoint detection, without exploiting
local features of the scene for the foreground/background
segmentation. Moreover, some features near the foreground
boundaries may not be detected since some neighboring parts
around the interest point are cut-off.

In this work, a block-wise local feature based background
modelling for background subtraction is presented. A lo-
cal feature-based model presents advantages with respect to
classical pixel-based ones in terms of informativeness and
robustness, providing a better foreground/background seg-
mentation of the detected features. Moreover a feature-
based model of the background is useful to computer vision
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applications that would anyway detect local features’ key-
points, saving resources otherwise reserved to other meth-
ods and providing the already detected keypoints for further
processing.

The presented foreground detection method has been im-
plemented and tested on the Raspberry Pi platform (equipped
with the Pi Camera module) as first step to perform unsu-
pervised learning to recognize 3D objects in a distributed
camera scenario.

The rest of the paper is organized as follows: Section 2
describes the main features of some studied background sub-
traction methods. Section 3 presents our feature based back-
ground subtraction method. Section 4 reports the experi-
ments performed and the metrics used to evaluate our method.
Conclusive remarks are addressed at the end of this paper.

2. RELATED WORK
Background subtraction methods differ in the type of back-

ground model maintained and in the way they evaluate and
update it.

Classical methods maintain a model for each pixel inde-
pendently from each other. Wren et al. [11] proposed to
model each pixel with a gaussian probability density func-
tion fitting the last n pixel’s values. A running (or online
cumulative) average is maintained to compute the mean µ
and standard deviation σ of the gaussian pdf at each new
pixel value. Evaluation is done comparing the current pixel
value x to the pixel model: if |x − µ| > kσ, the current
pixel is considered foreground. Cucchiara et al. [2] makes
this model more robust taking µ as a temporal median of
the last n values. Those methods have the advantage of a
low memory footprint and a high speed, particularly useful
in embedded smart camera platforms, but might provide a
poor model in case of an active background since they are
based on a single scalar value.

A more accurate and widely used approach for background
modeling is mixtures of gaussians (MoG) [9]. In this ap-
proach, statistics of each pixel are modeled by a mixture
of a variable number N of gaussians whose parameters are
updated online using the EM (Expectation-Maximization)
algorithm on a sliding window of pixel values. This kind
of model can represent up to N different “sources” of back-
ground in a single pixel and hence are accurate in presence
of an active background, but it is more demanding in terms
of memory occupation and computational resources with
respect to simple gaussian model. Moreover, this method



Figure 1: Example of foreground-background missclassification
in background subtraction method based on MoG: half of the re-
mote control shares color with the background and therefore is
misclassified.

presents some drawbacks: a) since it is color-based, the back-
ground subtraction does not perform well if a foreground
object we are trying to detect shares colors with the back-
ground (see Figure 1), b) training and updating the model
with a number N > 1 of gaussian components may result
in an unwanted memory effect. For instance consider the
following scenario: a new object appearing in the scene is
correctly detected and after a while, thanks to the online
training, its pixel values becomes part of the background
model. If the object is removed from the scene and then
reinserted in approximately the same position, a gaussian
component of the model previously trained will match with
the object pixel values, marking them as background. This
problem is better visualized in Figure 2.

More complex models exploit spatial correlation of pix-
els in the background model, dropping the assumption of
indipendent pixels.

Oliver et al. [6] presents a method based on eigen-value
decomposition applied to the whole image. In the learning
phase, the mean µ and the covariance matrix C of n back-
ground images are computed. Principal component analysis
(PCA) is applied to maintain only the M strongest eigen-
vectors of C, stored in an eigenvector matrix ΦM . In the
evaluation phase, ΦM is used to project the current frame I
to the eigen-space

I ′ = ΦM (I − µ)

and than back project it to the image-space, obtaining

I ′′ = ΦT
MI

′ + µ

Since the transformation keeps only background components,
is it possible to identify foreground pixels where |I−I ′′| > T .

Seki et al. [8] exploits block-wise spatial informations stat-
ing that neighboring blocks of pixels belonging to the back-
ground should experience similar variations over time. For
each block of N × N pixels, its image variation (a N2-
component vector) is computed as the average of the mean-
subtracted samples of a block. Applying PCA, the dimen-
sionality of an image variation is reduced from N2 to K and
an eigen-space transformation is found. Blocks are classi-
fied as background if its image variation in the eigen-space
is close to the variations of its neighboring blocks.

3. FEATURE-BASED BACKGROUND MODEL
The presented method, which will be referred to as LF-

BBM+ (Local Feature Based Background Model plus) in
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(28,32,64,67,84) 7 143
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Figure 3: (a) The visualization of an event as simultaneous ob-
servation of interest point positions inside a block. (b) Numerical
representation of the event.

this paper, is an enhanced version of the method presented
by Dehghani and Sutherland [3], which will be referred to as
LFBBM. The main goal of this method is to segment the lo-
cal features extracted from the current frame in two sets: the
foreground features, potentially belonging to a foreground
object, and the background ones, which are fixed and not
interesting for our goal.

3.1 Background Model
In LFBBM, a block-wise background model is built. The

image coming from the camera is divided into blocks of Wb×
Hb pixels. After the position of all local feature keypoints
(KPs) have been detected from the image, they are assigned
to the appropriate block based on their (x, y) position in the
image. In each block, the set of KPs’ positions is called an
event (Figure 3a). In order to facilitate event labeling, the
2D coordinates of the KPs are mapped in a 1D coordinate
by numbering the pixels from 0 at the top left corner of the
block, and then counting along each row from left to right
to Wb×Hb− 1 at the bottom right corner. The set of those
1D coordinate forms the event hash (see Figure 3b).

Together with the hash, a counter and a timestamp are
maintained for each event. The counter associated with each
event is incremented every time a particular event (that si-
multaneous observation of that group of KPs) occurs.

The whole background model is made by the sets of the
occurred events (one set for each block) and their associated
counters.

3.2 Learning Phase
The model is continuously updated at every incoming

frame: each detected KP is associated with the correct block
and becomes part of the current event for that block. Then
for each block the event is inserted in the set of the occurred
events of that block. If the event is already present in the
set, its counter is incremented, otherwise a new counter is
created.

In order not to store forever all KPs which occurred at
least once, LFBBM+ has been enhanced with an an aging
technique. A timestamp (frame number) is associated with
each event and updated every time that event occurs: if an
event does not occur again within a fixed number Tage of
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Figure 2: Example of unwanted memory effect in background subtraction method based on MoG. Frames (a-e) and extracted foreground
masks (f-j) of a testing video are shown: background is initially trained (a), then an object is inserted and detected (b). After a while
it is inserted in the background model (c). The object is then removed and reinserted in a slightly different position, but its detection is
not correct due to memory effect (d). No problem arises if the object is reinserted in a position not overlapping with the first one (e).

frames, it is discarded and removed from the background
model. Common values for Tage are around 50 frames. In
this way, possible memory effects due to intermittent object
motion are avoided and in the long run the model will not
increase its memory occupancy too much.

In LFBBM+, the data structure used to store and retrieve
events of a block is an hash table having event hashes as key
instead of the binary search tree suggested by LFBBM. In
this way, LFBBM+ has better speed performance at the
cost of higher model memory requirements. However, since
in LFBBM+ the size of the model is reduced by the aging
technique, its final memory requirements are comparable to
LFBBM.

An example of background model for a block is reported
in Table 1.

3.3 Classification Phase
In each block, a set B of background KP positions is main-

tained: every time a counter is above a threshold parameter
T , all the 1D coordinates belonging to the associated event
are inserted in B.

If a position of an incoming KP is present in B, it is
considered as a background KP, otherwise it is considered
as a foreground one.

After this preliminary classification of the incoming KPs,
the following post-processing tasks are executed in order to
decrease the misclassification rate:

3.3.1 Background Zone Enlargement
Due to acquisition noise, the exact positions of the KPs

can slightly change during time. Therefore a background
point could be incorrectly classified as a foreground one
when its position is not the same as the background point
present in the B set.

In LFBBM, all the non dominant events hashes (events
that has not reached the minimum threshold to be con-
sidered background) are compared using a distance func-

(a) (b)

Figure 4: LFBBM+ output: (a) features are partitioned in Fore-
ground KPs (red circles) and Background KPs (blue circles). (b)
The extracted foreground mask.

tion with all the dominant ones. Non dominant events near
enough to dominant ones are still classified as background.
This task is very computational demanding since the num-
ber of non dominant events in a block can be very high, and
therefore also the comparisons to be computed.

In LFBBM+, in order to limit this effect, the r× r neigh-
bors pixels of any background KP are considered as back-
ground and are inserted in B. Common values of r are
around 3-5. In this way, the precision of the post-processing
is slightly decreased but the computational cost is afford-
able. We did not use more complex and computationally
expensive region shapes approaches, such as superpixels [1]
or MSER [5], because we expect many keypoints to lie on
the edge between regions.

3.3.2 Neighbor Blocks Analisys
The blocks of the image can be divided in three different

types: 1) background blocks, that contain only background
KPs, 2) foreground blocks, containing only foreground KPs
and 3) mixed blocks, that contain both. Some blocks are
spurious and all their KPs can be correctly reclassified in



Event Hash Counter Timestamp

(16,19,22) 1 187
(10,16,20,23) 2 117

(20) 1 14
(10,23) 1 3
(11) 11 204

(19,23) 29 220
(16,18,20,23) 1 76

(20,22) 5 212
(11,22) 3 215
(18,23) 2 209

(20,22,26) 1 72
(12,23,25) 1 4

(11,16,23,32) 1 151
(23) 11 216

(11,16,23) 6 210
(11,23,48) 2 95
(19,22,32) 1 217

. . . . . . . . .

(a)

B: 11, 16, 19, 20, 22, 23

(b)

Table 1: (a) Example of background model for an image block
(without post-processing tasks), containing all the events occurred
(background events are bold). In this example, the background
events are obtained applying a threshold T = 5 to the counter
column. (b) The obtained background positions list B used to
classify incoming interest points. It is obtained grouping together
the positions of background events.

1 1 1
1 0 1
1 1 1

Table 2: The 2D 3 × 3 filter used to compute the number of
foreground neighbors of a block.

foreground or background points. For example a mixed or
foreground block with no foreground blocks in its neighbor-
hood is probably spurious and has to be reclassified as back-
ground block. Similarly a background block with many fore-
ground blocks in its neighborhood is probably a foreground
one.

To do this, a binary image with one pixel per block is
created: each pixel has value 1 if the correspondent block is
a mixed or foreground one, 0 otherwise. A 2D 3 × 3 filter,
reported in Table 2, is applied to compute the number of
foreground neighbors for each block. If the neighbors count
is below a threshold parameter TFG the block and all its
KPs are reclassified as background since it has not enough
foreground neighbors to be considered foreground. If the
neighbors count is above a threshold parameter TBG > TFG,
the block is surrounded by enough foreground blocks to be
considered a foreground one and all its KPs are reclassified
as foreground. Common values for those parameters are
TFG = 1 and TBG = 4.

At the end, the output of this algorithm is the partition
of the initial set of KPs in foreground and background ones,
respectively shown in Figure 4 as blue and red circles.

A foreground mask similar to the ones produced by the
background subtraction algorithms is obtained drawing white
filled circles centered in the foreground KPs’ positions on a

completely black mask. Morphological opening operation is
applied to the mask, in order to discard singular spurious
foreground spots and to fill background holes inside a fore-
ground area. Finally, the convex hull of each isolated white
spot is found and filled (see Figure 4).

The presented method is independent from the interest
point detection algorithm. Among the available detectors,
FAST [7] detection algorithm is suggested for the following
reasons:

• its implementation does not use image pyramids. In
this stage, we are searching for parts of the frame con-
taining detectable features and we are not interested in
finding features robust to scale transformations, hence
image pyramids are unnecessary.

• it does not limit the number of detected points. Since
the background model is based on interest point po-
sitions, detected points should not disappear from a
part of the image because of the insertion of something
which has stronger points.

• it is usually faster than other detectors, which is rele-
vant in a low resource computing platform.

4. EXPERIMENTS
For evaluation of the background modelling, we have per-

formed a foreground-background segmentation of the local
features of some test videos using different methods . Ex-
periments were performed on two public datasets:

4.1 BMC dataset
The BMC dataset1 [10] is composed by 20 synthetic videos

of two outdoor scenes (see Figure 3), divided in “learning
phase”videos and“evaluation phase”videos, and 9 real videos.
Camera acquisition noise, illumination changes and back-
ground movements are artificially added in synthetic videos,
emulating a windy and cloudy environment. Only “learn-
ing phase” videos have been used, since they come with
groundtruth foreground masks for each frame.

4.2 CDW-2012 dataset
The CDW-2012 dataset2 [4] is composed by different cate-

gories of videos and was designed for evaluation of change de-
tection algorithms. However, some of the categories are also
suitable for background modelling evaluation, since videos
come with groundtruth annotation of each pixel of evalua-
tion frames and with already segmented region of interest.
Each video is composed by a first unannotated training part
and an annotated evaluation part.

Four background models are evaluated: static frame (frame
difference with thresholding or FrameDiff), Mixture of Gaus-
sian model (MoG), LFBBM and LFBBM+. Each algorithm
is applied to each video: at each frame FAST keypoints are
extracted and classified as foreground or background key-
point. For pixel-based methods (FrameDiff and MoG), the
classification is performed looking to the foreground mask
obtained by the algorithm. The correct classification is given
by the groundtruth foreground masks. For videos of the

1Background Models Challenge: http://bmc.iut-auvergne.
com/
2Change Detection Workshop: http://changedetection.net/



BMC dataset, models are continuously trained and evalua-
tion metrics are computed over the entire video. For CDW-
2012 videos, models are trained only during the training part
of the video and metrics are computed over the evaluation
part of the video only. The parameters of the evaluated
methods have been tuned for each category of video used
during tests. A visualization of test videos and outputs of
each method is reported in Figure 3.

Measures related to binary classification problems are ex-
tracted for each video and their averages for each video cat-
egory are reported in Table 4. Positive and negative classes
represent respectively foreground and background points.
The following measures are extracted:

Precision Prec = TP
TP+FP

, where TP is the number of cor-
rectly classified foreground points and FP is the num-
ber of background points incorrectly classified as fore-
ground. This measure represents the fraction of key-
points classified as foreground that are really foreground
keypoints.

Recall Rec = TP
P
, where P is the number of foreground

keypoints. This measure represents the fraction of all
foreground keypoints correctly classified as foreground
points.

F-Score F1 = 2pr
p+r

which is the harmonic mean of precision
and recall. Values reported in Table 4 are averaged for
each video category.

Specificity Spec = TN
N
, where TN is the number of cor-

rectly classified background points and N is the num-
ber of background keypoints. This measure represents
the fraction of all background keypoints correctly clas-
sified as background points.

Accuracy Acc = TP+TN
P+N

, which represents the fraction of
all keypoints correctly classified.

FPS how many frames per second are processed during
tests. For each frame, FAST keypoints are extracted
and classified using one of the evaluated methods.

5. CONCLUSION
Although pixel-based methods (FrameDiff and MoG) are

more precise in background subtraction, they tend to incor-
rectly classify features on the boundary between foreground
and background, hence having low recall values. LFBBM+
provides a foregrond/background segmentation of the local
features that is better or as good as the ones obtained with
the other evaluated methods. In our tests, LFBBM+ has in
general best performances in terms of accuracy and f-score
and, on execution time, it is the closest to FrameDiff, a very
simple and fast pixel-based method. The loss of recall in
LFBBM+ with respect to LFBBM is a minor drawback we
have afforded in order to get higher precision and accuracy
values. LFBBM+ is more precise on foreground keypoints,
whereas LFBBM has a tendency to incorrectly classify key-
points as foreground more frequently.
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