
Smart	Area	CNR	Pisa	-	Smart	Parking	-	Technical	Report	
	

Giuseppe	Amato,	Fabio	Carrara,	Fabrizio	Falchi,	Claudio	Gennaro,	Claudio	Vairo	
	

Introduction	
	

The	Smart	Parking	application	has	the	purpose	of	determining	the	number	and	
the	position	of	the	available	slots	 in	the	parking	lot	of	the	CNR	Area	in	Pisa.	To	
achieve	 this	 goal,	 nine	 smart	 cameras	 (video	 cameras	 with	 computational	
capabilities)	 are	 mounted	 on	 top	 of	 the	 roof	 in	 front	 of	 the	 parking	 to	 be	
monitored,	 and	 visual	 computing	 algorithms	 have	 been	 developed	 in	 order	 to	
recognize	whether	a	parking	slot	is	empty	or	occupied	by	a	car.	

The	information	produced	by	the	cameras	is	sent	to	a	central	database	located	in	
a	cloud-computing	environment	by	means	of	a	RESTful	web	service.	
	

	
	

Hardware	

Raspberry	PI	and	Camera	Module	
We	used	the	Rapsberry	Pi	2	model	B	equipped	with	a	camera	module	(see	Figure	
1)	as	platform	for	acquiring	and	analyzing	video	information	of	the	parking.	They	
are	equipped	with:	

• BCM2836	900MHz	quad-core	ARM	Cortex-A7	CPU	
• 1GB	RAM	DDR2	
• 32GB	micro	SD	card	for	storage	

	

	
Figure	1	-	Rasberry	Pi	with	camera	module	

	
The	camera	module	is	a	5MP	fixed-focus	camera	that	supports	1080p30,	720p60	
and	VGA90	video	modes,	as	well	as	stills	capture.	The	view	angles	of	the	camera	
are	 53.50°	 horizontally	 and	 41.41°	 vertically.	 The	 allowed	 resolutions	 are	
reported	in	Table	1.	
	
Size	 Aspect	Ratio	 Frame	Rate	
2592x1944	 4:3	 1-15fps	
1920x1080	 16:9	 1-30fps	
1296x972	 4:3	 1-42fps	
1296x730	 16:9	 1-49fps	
640x480	 4:3	 42.1-60fps	
Table	1	-	Raspberry	Pi	camera	module	resolutions	

	
We	put	the	Raspberry	Pi	in	outdoor	boxes	(see	Figure	2)	that	have	been	installed	
on	top	of	the	roof	of	the	building	in	front	of	the	parking	lot.	Each	box	is	provided	
with	 a	 heater/blower	 temperature	 control	 system,	 and	 each	 Raspberry	 Pi	 is	
connected	to	the	network	by	an	Ethernet	cable.	
We	deployed	nine	cameras	 in	order	 to	cover	half	of	 the	parking	 lot	of	 the	rear	
part	of	the	CNR	area.	Other	smart	cameras	installed	by	another	group	working	to	
the	project	cover	the	other	half	of	the	parking	lot.	
	

	
Figure	2	-	Outdoor	box	

	

Software	
	
We	use	the	OpenCV1	library	to	elaborate	the	images	acquired	by	the	cameras	and	
a	deep	learning	approach	to	determine	whether	a	parking	slot	is	available	or	not.	
We	 then	 communicate	 the	 parking	 slot	 updates	 by	 invoking	 a	 RESTful	 web	
service	 responsible	 of	 storing	 the	 updates	 in	 the	 cloud	 and	 of	 providing	 the	
information	about	the	parking	lot	to	the	user.	

Deep	Learning	
	
Deep	 Learning	 (DL)	 [1]	 is	 a	 branch	 of	 Artificial	 Intelligence	 that	 aims	 at	
developing	 techniques	 that	allow	computers	 to	 learn	complex	perception	 tasks	
such	 as	 seeing	 and	 hearing	 at	 human	 levels	 of	 performance.	 It	 provides	 near-
human	 level	 accuracy	 in	 image	 classification,	 object	 detection,	 speech	
recognition,	natural	 language	processing,	vehicle	and	pedestrian	detection,	and	
more.		
The	traditional	approach	to	the	classification	problem	[2],	 [3],	 [4],	 [5],	uses	ad-
hoc	functions	to	extract	particular	features	from	the	image	that	are	considered	to	
be	 indicative	 of	 certain	 objects.	 For	 example,	 hard	 corners	 and	 straight	 edges	
might	be	believed	to	indicate	the	presence	of	manmade	objects	in	the	scene.	The	
outputs	 of	 these	 feature	 extraction	 functions	 are	 then	 fed	 to	 a	 classification	
function,	which	determines	if	a	particular	object	has	been	detected	in	the	image.	
However,	 this	 approach	 leads	 to	 weak	 and	 false-alarm	 prone	 detectors	 and	
present	the	following	problems:	

• It	is	very	hard	to	think	of	robust,	reliable	features,	which	map	to	specific	
object	types.		

• It	is	a	massive	task	to	find	the	right	combination	of	features	for	every	type	
of	object	to	classify.		

• It	 is	 very	 difficult	 to	 design	 functions	 that	 are	 robust	 to	 translations,	
rotations	and	scaling	of	objects	in	the	image.		

All	 these	 problems	make	 very	 hard	 developing	 high	 accuracy	 object	 detectors	
and	classifiers	for	a	broad	range	of	objects.	
	

																																																								
1	http://opencv.org/	

	
	
The	 Deep	 Learning	 approach,	 on	 the	 other	 hand,	 exploits	 a	 large	 number	 of	
ground-truth	 labeled	 images	 to	 discover	 which	 features	 and	 combinations	 of	
features	are	most	discriminative	 for	each	class	of	objects	 to	be	 recognized	and	
builds	 a	 combined	 feature	 extraction	 and	 classification	 model	 (this	 phase	 is	
called	training	the	model).		
The	 model	 thus	 obtained	 can	 be	 deployed	 and	 it	 is	 not	 only	 able	 to	 classify	
specific	 objects	 it	 was	 trained	 on,	 but	 it	 is	 also	 able	 to	 recognize	 previously	
unseen	similar	objects.		
The	Deep	Learning	approach	 is	shown	 in	Figure	3	(borrowed	 from	the	NVIDIA	
Deep	Learning	web	course).	
	

	
Figure	3	-	Deep	Learning	Approach	

	
A	large	set	of	images,	which	compose	the	training	set,	is	fed	to	a	neural	network	
composed	of	a	possibly	large	number	of	hidden	layers	(whence	the	term	“deep”).	
Each	of	these	hidden	layer	perform	mathematical	computation	on	the	input	and	
produce	an	output	that	is	fed	as	input	to	the	following	layer.	The	final	outputs	of	
this	network	are	the	classes	for	which	the	network	has	been	trained	on.	
The	 training	 phase	 is	 usually	 extremely	 computationally	 expensive	 and	 it	may	
take	a	long	time.	On	the	other	hand,	once	the	network	has	been	trained	and	the	
classifier	 has	 been	 initialized	 accordingly,	 the	 run	 time	 phase	 of	 prediction	 is	
quite	fast	and	efficient.	
	

Our	Solution	

Dataset	
We	collected	a	large	number	of	screenshots	of	the	parking	lot	in	different	days,	
from	different	points	of	view,	with	different	occlusion	patterns,	and	in	different	
weather	conditions.	We	then	built	a	mask	for	each	parking	slot	in	order	to	split	
the	original	 image	in	several	smaller	 images	(we	refer	to	these	small	 images	as	

patches),	 one	 for	 each	 parking	 slot	 (see	 Figure	 4).	 Each	 of	 these	 patches	 is	 a	
square	 of	 size	 proportional	 to	 the	 distance	 from	 the	 camera,	 the	 nearest	 are	
bigger	then	the	farthest.	
We	built	a	dataset	of	about	10K	patches	and	this	constitutes	the	training	set	of	
our	 deep	 learning	 network.	 The	 training	 set	 captures	 different	 situations	 of	
luminosity,	 including	 partial	 occlusion	 due	 to	 obstacles	 (lamps,	 trees	 or	 other	
cars)	 and	 partial	 or	 global	 shadowed	 cars	 (see	 Figure	 4).	 This	 allows	 the	
generated	classifier	 to	be	able	to	distinguish	almost	every	situation	that	can	be	
found	 at	 run	 time.	 Of	 course	 total	 occlusions	 and	 nightly	 situations	 cannot	 be	
addressed	with	this	approach.	
	
	

	
Figure	4	-	Training	set	samples	

	

Caffe	Framework	
We	used	the	Caffe	framework2	for	Deep	Learning	to	train	the	neural	network	and	
initialize	 the	 classifier.	 Caffe	 is	 developed	by	 the	Berkeley	Vision	 and	Learning	
Center	 (BVLC)	 and	by	 community	 contributors.	 It	 is	 very	 fast	 due	 to	 its	 highly	
optimized	 C/CUDA	 backend,	 which	 integrates	 GPU	 acceleration.	 It	 provides	
command	line,	python	and	MATLAB	interfaces	and	it	is	very	easy	to	use	since	it	
allows	defining	 the	network	 and	 the	 training/testing	phases	by	writing	 simple	
human-readable	text	files.		
The	neural	network	that	we	adopted	is	presented	in	Figure	5.	It	is	composed	of	
14	 levels,	 5	 of	 which	 trainable	 (3	 convolutions	 and	 2	 fully-connected).	 It	 is	 a	
smaller	network	compared	to	the	typical	Deep	Learning	neural	networks,	since	
we	 need	 that	 the	 classifier	 will	 be	 able	 to	 predict	 only	 two	 classes:	 busy	 and	
available.	
	
	

																																																								
2	http://caffe.berkeleyvision.org/	

	
Figure	5	–	The	neural	network	used	in	our	solution	

	
The	training	phase	generates	the	weights	of	the	neural	network	that	we	used	to	
initialize	 the	 classifier	provided	by	Caffe	 according	 to	our	application	 scenario.	
To	this	purpose,	we	implemented	a	JNI	interface	to	use	the	C	interface	provided	
by	Caffe	 in	order	 to	 instantiate	and	use	 the	neural	network.	We	 then	created	a	
library	containing	the	classifier	initialized	with	the	trained	neural	network,	and	
we	 integrated	 it	 in	 our	 software	 that	 has	 been	 eventually	 deployed	 on	 the	
Raspberry	Pi.	
	

Algorithm	
The	software	we	implemented	first	loads	the	trained	neural	network	generated	
by	Caffe,	then	it	loads	the	masks	to	detect	the	individual	parking	slots	and	to	split	
the	image	in	the	patches.	Please	note	that	each	camera	has	its	own	set	of	masks	
because	 each	 camera	 sees	 a	 different	 portion	 of	 the	 parking	 lot	with	 different	
angles	 of	 view.	However,	 this	 is	 a	 one-time	 process	 to	 be	 done	 only	when	 the	
camera	 is	 installed	 and	 we	 implemented	 a	 semi-automatic	 software	 tool	 to	
generate	 the	masks.	With	this	 tool,	 the	user	can	 load	an	 image	captured	by	the	
camera	 and	 by	 simply	 clicking	 in	 the	 center	 of	 each	 parking	 slot,	 the	
corresponding	mask	will	be	automatically	generated	with	the	proper	size.	
	
The	rest	of	the	computation	is	organized	in	two	main	run-cycles,	one	smaller	of	
15	seconds	called	slot	monitoring	cycle	and	one	larger	of	one	minute,	composed	
of	four	slot	monitoring	cycles,	called	slot	update	cycle.		
In	the	slot	monitoring	cycle	the	status	of	each	slot	is	measured	and	compared	to	
the	previous	consistent	state.	The	slot	update	cycle	determines	if	there	has	been	
an	 actual	 slot	 status	 change	 according	 to	 the	 values	 read	 in	 the	 four	 slot	
monitoring	 cycles.	 In	 particular,	 if	 a	 slot	 status	 change	 is	 detected	 in	 at	 least	
three	slot	monitoring	cycles,	then	we	can	conclude	that	the	slot	status	has	been	
actually	updated.	This	 is	done	 to	avoid	 failures	due	 to	 temporary	maneuvering	
cars,	or	detection	errors.		
	
An	iteration	of	the	slot	monitoring	cycle	performs	the	following	operations:	

1. Capture	the	current	frame.	
2. Split	 the	 frame	 in	 the	 set	 of	 patches	 according	 to	 the	 masks	 for	 that	

camera.	
3. Perform	the	prediction	for	each	patch	by	interrogating	the	classifier.	
4. As	a	result,	a	matrix,	containing	the	score	for	both	the	busy	and	available	

classes	for	each	slot,	is	returned.	

5. Compare	the	occupancy	level	for	each	slot	with	the	status	of	the	previous	
consistent	state	for	that	slot.	If	a	parking	slot	status	change	is	detected,	a	
counter	(called	counterUpdate)	for	that	slot	is	incremented.		

	
If	the	slot	update	cycle	determines	a	change	in	the	status	of	a	parking	slot	(i.e.	the	
counterUpdate	has	a	value	greater	or	equal	to	3),	a	slot	status	update	message	is	
sent	to	the	RESTful	web	service	responsible	of	storing	the	information	about	the	
parking	lot	in	the	cloud.	The	message	is	formatted	in	a	JSON	format	according	to	
the	scheme	reported	in	Table	2	and	it	is	sent	by	means	of	a	POST	primitive.	
	
Name	 Format	 Meaning	
DATE
STATUS
MAC
POSITION
CONFIDENCE
WEIGHT 	

String
int
String
int
int
double

Timestamp	of	the	status	update	
New	status	of	the	slot	(0,1)	
MAC	address	of	the	camera	generating	the	update	
Position	of	the	updated	slot	
Confidence	level	of	the	new	status	(0-100)	
Accuracy	of	the	camera	for	that	slot	(0-1)	

Table	2	-	Structure	of	the	slot	status	update	message	

	

Results	
	
We	performed	some	preliminary	tests	by	placing	the	camera	both	on	the	roof	of	
the	 building	 (Figure	 6)	 and	 behind	 the	 window	 of	 an	 office	 (Figure	 7)	 with	 a	
lower	angle	of	view	and	an	oblique	perspective.	
In	both	cases,	we	obtained	quite	good	prediction	results	from	the	deep	learning	
classifier,	 considering	 that	 trees,	 lamps,	 other	 cars	 and	 shadows	 occlude	 some	
cars.	
	
	

Acknowledgments	
This	work	has	been	funded	by	the	DIITET	Department	of	CNR,	in	the	framework	
of	the	”Renewable	Energy	and	ICT	for	Sustainability	Energy”	project.	
	
	

References	
	
[1].	Y.	Bengio.	Learning	deep	architectures	for	A.I.	Foundations	and	trends	in	
Machine	Learning,	2(1):1–127,	2009.	
[2].	T.	Ojala,	M.	Pietikainen,	and	T.	Maenpaa.	Multiresolution	gray-scale	and	
rotation	invariant	texture	classification	with	local	binary	patterns.	Pattern	
Analysis	and	Machine	Intelligence,	IEEE	Transactions	on,	24(7):971–987,	2002.	
[3].	V. Ojansivu and J. Heikkila. Blur insensitive texture classification using local
phase quantization. In Image and signal processing, pages 236–243. Springer, 2008.

[4]. J. Platt et al. Probabilistic outputs for support vector machines and comparisons to
regularized likelihood methods. Advances in large margin classifiers, 10(3):61–74,

1999.

[5]. E. Rahtu, J. Heikkila ̈, V. Ojansivu, and T. Ahonen. Local phase quantization for
blur-insensitive image analysis. Image and Vision Computing, 30(8):501–512, 2012.

	
	

	
Figure	6	-	Parking	slot	status	detection	example	from	roof	

	
Figure	7	-	Parking	slot	status	detection	example	from	office	

	

