
1 
 

1 

Smart Cameras for ITS in 

Urban Environment 
Massimo Magrini1, Davide Moroni1

, Gabriele Pieri1 and Ovidio 

Salvetti1 

1
Signals and Images Lab, Institute of Information Science and Technologies (ISTI),  

National Research Council of Italy (CNR), Via Moruzzi 1, 56124, Pisa  

 

 

1.1 Introduction 

Fully automatic video and image analysis from traffic monitoring cameras is a fast-emerging field based on 

computer vision techniques with a growing impact on Intelligent Transport Systems (ITS). 

Indeed the decreasing hardware cost and, therefore, the increasing deployment of cameras and embedded systems 

have opened a wide application field for video analytics both in urban and highway scenarios. It can be envisaged 

that several monitoring objectives such as congestion, traffic rule violation, and vehicle interaction can be targeted 

using cameras that were typically originally installed for human operators [1]. 

On highways, systems for the detection and classification of vehicles have successfully been using classical visual 

surveillance techniques such as background estimation and motion tracking for some time. Nowadays existing 

methodologies have good performance also in case of inclement weather and are operational 24/7. On the converse, 

the urban domain is less explored and more challenging with respect to traffic density, lower camera angles that lead 

to a high degree of occlusion and the greater variety of street users. Methods from object categorization and 3-D 

modelling have inspired more advanced techniques to tackle these challenges. In addition, due to scalability issues 

and cost-effectiveness, urban traffic monitoring cannot be constantly based on high-end acquisition and computing 

platforms; the emerging of embedded technologies and pervasive computing may alleviate this issue: it is indeed 

challenging yet definitely important to deploy pervasive and untethered technologies such as Wireless Sensor 

Networks (WSN) for addressing urban traffic monitoring. 

On the basis of these considerations, the aim of this chapter is to introduce scalable technologies for supporting ITS-

related problems in urban scenarios; in particular we survey embedded solutions for the realization of smart cameras 

that can be used to detect, understand and analyse traffic-related situation and events thanks to an on-board vision 

logics. Indeed, to suitably tackle scalability issues in the urban environment, we propose the use of a distributed, 

pervasive system consisting in a Smart Camera Network (SCN), a special kind of WSN in which each node is 

equipped with an image sensing device. For this reason, SCN are also known as Visual Sensor Networks (VSN). 

Clearly, gathering information from a network of scattered cameras, possibly covering a large area, is a common 

feature of many video surveillance and ambient intelligence systems. However, most of classical solutions are based 

on a centralized approach: only sensing is distributed while the actual video processing is accomplished in a single 

unit. In those configurations, the video streams from multiple cameras are encoded and conveyed (sometimes thanks 

to multiplexing technologies) to a central processing unit which decodes the streams and perform processing on each 

of them. With respect to those configurations, the need to introduce distributed intelligent system is motivated by 

several requirements, namely [2]: 
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• Speed: in-network distributed processing is inherently parallel; in addition, the specialization of modules 

permits to reduce the computational burden in the higher level of the network: in this way the role of the central 

server is relieved and it might be actually omitted in a fully distributed architecture.  

• Bandwidth: in-node processing permits to reduce the amount of transmitted data, by transferring only 

information-rich parameters about the observed scene and not the redundant video data stream. 

• Redundancy: a distributed system may be re-configured in case of failure of some of it components, still 

keeping the overall functionalities. 

• Autonomy: each of the nodes may process the images asynchronously and may react autonomously to the 

perceived changes in the scene. 

In particular, these issues suggest moving a part of intelligence towards the camera nodes. In these nodes, artificial 

intelligence and computer vision algorithms are able to provide autonomy and adaptation to internal conditions (e.g. 

hardware and software failure) as well as to external conditions (e.g. changes in weather and lighting conditions). It 

can be stated that in a VSN the nodes are not merely collectors of information from the sensors, but they have to 

blend significant and compact descriptors of the scene from the bulky raw data contained in a video stream.  

This naturally requires the solution of computer vision problems such as change detection in image sequences, 

object detection, object recognition, tracking, and image fusion for multi-view analysis. Indeed, no understanding of 

a scene may be accomplished without dealing with some of the above tasks. As it is well known, for each of such 

problems there is an extensive corpus of already implemented methods provided by the computer vision and the 

video surveillance communities. However, most of the techniques currently available are not suitable to be used in 

VSN, due to the high computational complexity of algorithms or to excessively demanding memory requirements. 

Therefore, ad hoc algorithms should be designed for VSN, as we will explore in the next sections.  

In this chapter, we first envisage applications of smart cameras and VSN to urban scenarios, highlighting specific 

challenges and peculiarities. Embedded vision nodes are introduced and a brief survey of existing hardware 

solutions is provided; the implementation of general computer vision algorithms on smart cameras and VSN is then 

addressed. We move further describing two sample ITS applications, namely analysis of traffic status and parking 

lot monitoring. In the first sample application, the estimation of vehicular flows on a lane is performed by using a 

lightweight computer vision pipeline that is somewhat dissimilar form the conventional one used on standard 

architecture. In the second sample application, an approach to parking lot monitoring is presented; here the vision 

nodes can collaborate each other for producing more accurate and robust results, e.g. by resorting to the middleware 

for VSN presented in Chapter ? by Petracca et al. A smart camera prototype designed with ITS application in mind 

is presented in Section 1.5, while in Section 1.6 we present its envisaged application scenarios and experimental 

results.  

 

1.2 Applications to urban scenarios 

According to [1], there has been an increased scope for the automatic analysis of urban traffic activity. This is 

partially due to the additional numbers of cameras and other sensors, enhanced infrastructure and consequent 

accessibility of data. In addition, the advances in analytical techniques for processing video streams together with 

increased computing power have enabled new applications in ITS. Indeed, video cameras have been deployed for a 

long time for traffic and other monitoring purposes, because they provide a rich information source for human 

understanding. Video analytics may now provide added value to cameras by automatically extracting relevant 

information. This way, computer vision and video analytics become increasingly important for ITS.  

In highway traffic scenarios, the use of cameras is now widespread and existing commercial systems have excellent 

performance. Cameras are used tethered to ad hoc infrastructures, sometimes together with Variable Message Signs 

(VMS), RSU and other devices typical of the ITS domain. Traffic analysis is often performed remotely by using 

special broadband connection, encoding, multiplexing and transmission protocols to send the data to a central 

control room where dedicated powerful hardware technologies are used to process multiple incoming video streams 

[3]. The usual monitoring scenario consists in the estimation of traffic flows distinguished among lanes and vehicles 

typologies together with more advanced analysis such as detection of stopped vehicles, accidents and other 

anomalous events for safety, security and law enforcement purposes. 

By converse, traffic analysis in the urban environment appears to be much more challenging than on highways. In 

addition in urban environments several extra monitoring objectives can be supported in principle by the application 

of computer vision and pattern recognition techniques, including the detection of complex traffic violations (e.g. 

illegal turns, one-way streets, restricted lanes) [4,5], identification of road users (e.g. vehicles, motorbikes and 

pedestrians) [6] and of their interactions understood as spatiotemporal relationships between people and vehicle or 
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vehicle to vehicle [7]. For these reasons, it is worthwhile to apply the wireless sensor network approach to the urban 

scenario.  

Generally, we may identify four different scopes that can be targeted thanks to video-surveillance based systems, 

namely i) safety and security, ii) law enforcement, iii) billing and iv) traffic monitoring and management. Although 

in this chapter we focus mostly on the latter, we give a brief overview of each of them. 

Safety and security relate to the prevention and prompt notification both of proper traffic events and of roadside 

events typical of urban environment. From one side, detection of events like car accidents, stopped vehicles, general 

obstacles, tunnel accidents, floods and landslides is of fundamental importance: real time detections allows for 

immediate response that might be life-saving. In most cases, the information obtainable thanks to visual nodes most 

be usefully complemented with other detectors. For example, smoke detectors play a more crucial role than video 

sensors for dangerous tunnel accidents involving fire. In general, visual information turns out to be essential when 

complex scenes with non-trivial semantics should be understood. For instance, in case of landslides and obstacle 

detection, technologies based on radar might provide extended reliability and be fully operational also in case of 

adverse meteorological conditions (e.g. rain and snow) and low visibility situation (e.g. foggy weather). However, 

also in this case, integration of video information might be useful in reducing false positives by using object 

recognition methods thus improving the overall performance. Safety in urban environment regards also the detection 

of roadside events like crimes and vandalisms. For instance the commercial available solution [8] includes methods 

for detecting car park surfing, that is the act of a pedestrian getting out as passenger of one car and moving to 

another. This is indeed the usual hunting behaviour of car thieves.  

Law enforcement is based on the detection of unlawful acts and to their documentation for allowing the emission of 

a fine. Besides well-known and established technologies e.g. for streetlight violations, vision based systems might 

allow for identification of more complex behaviour e.g. illegal turns or trespassing on a High Occupancy Vehicle 

(HOV) lane. For instance, Xerox has recently produced a vehicle passenger detection system that uses geometric 

algorithms to detect whether a seat is vacant or occupied without using facial recognition [9]. Documentation of 

unlawful acts is usually performed by acquiring a number of images sufficient for representing the violation, 

combined with automatic number plate recognition (ANPR) for identifying the offender vehicle. 

ANPR is also a common component of video-based billing and tolling. Also in this case there are a number of 

established technologies provided as commercial solutions by many vendors [10]. A peculiarity of urban billing 

systems with respect to highways is the non-intrusiveness requirement: it is not possible to alter the normal vehicular 

flow but a free-flow tolling must be implemented. Technologies satisfying this requirement are already available and 

used in cities such as London, Stockholm and Singapore but their actual cost prevents their massive deployment in 

medium-size or low-resource cities. Nevertheless, the availability of such billing technologies at a lower cost may 

pave the way to the collection of fine-grained data analytics of vehicular flows, road usage and congestions, 

allowing for the implementation of adaptive Travel Demand Management (TDM) policies aimed at a more 

sustainable, effective and socially acceptable mobility applied to urban and metropolitan contexts. It is likely that 

other technologies not based on video but for instance on NFC might become widespread in the near future to fill 

this gap.  

Finally, traffic monitoring and management is related to extraction information from urban observed scenes that 

might be beneficial in several contexts. For instance, real-time vehicle counting might be used to assess level of 

service on a road and detecting possible congestions. Such real-time information might then be used for traffic 

routing; either by providing directly suggestion to user (e.g. by VMS) of by letting a trip planner deploys these data 

to search for an optimal path. Finally, statistics on vehicular flows may be used to understand mobility patterns and 

help stakeholders to improve urban mobility. Usually, vehicle count is performed by inductive loops which provide 

precise measurements and some vehicle classification. The major drawback of inductive loops is that they are very 

intrusive in the road surface and therefore require a rather long and expensive installation procedure. Furthermore, 

maintenance also requires intervention on the road pavement and therefore is not sustainable in most urban scenarios. 

Radar-based sensing systems are also used for vehicle counting and simple analytics but in cases of congestions they 

generally exhibit deteriorated performance. In the last years there has been interest in video-based counting system 

based on imaging devices, also embedded. Some solutions, such as Traficam [11], are commercially available and 

provide vehicle count in several lanes at an intersection. A version of Traficam working in the infrared spectrum is 

also available. Besides vehicle counting, traffic management can include the extraction of other flow parameters, e.g. 

discriminating the components of flow generated by different vehicle classes (car, track, buses, bike and motorbikes) 

and assessing the transit speed of each detected vehicle.  

Another interesting topic is the monitoring of parking slots. Indeed, although there are several commercial parking 

slot monitoring solutions, most of them are only suitable for structured and closed parking lots, often requiring great 

installation costs to be adapted to already existing parking facilities. Visual nodes, instead, are flexible for 
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application to several scenarios, including roadside parking spaces. The visual nodes can provide then information 

pertaining the availability or not of a single parking space. This might be useful for example in the monitoring of 

special spaces, such as disabled space or spaces featuring electric vehicle charging station. 

From this brief survey of urban scenario applications, we might argue that pervasive technologies based on vision 

turn out to be of interest when i) there is some semantics to be understood that cannot be acquired solely on the basis 

of scalar sensors, ii) there is no possibility or no sufficient revenue in actuating installation of tethered technologies, 

such as intrusive sensor or high-end devices and iii) there is the need of a scalable architecture, capable of covering a 

metropolitan area. Since computer vision is not application specific, an additional feature of a VSN is represented by 

the fact that it can be re-adapted to the changing urban environment and reconfigured even for supporting new scene 

understanding tasks by  just updating the vision logics hosted in each sensor. On the converse, scalar sensors (like 

inductive loops) and specific sensors like radar have no flexibility in providing information different form the one 

they were built for. 

In summary, with respect to more conventional ITS, that are often are limited to close and rich systems, pervasive 

technologies based on VSN can thus provide a cost-effective collaborative sensing infrastructure which has intrinsic 

scalability features (since the architecture is made out of logical islands corresponding to VSN segments), can be 

adapted to several -even unstructured- scenarios and employs advanced yet low cost technologies. Thus VSN may 

be exploited at several levels, impacting on transportation systems to be set up in small, mid-size and big cities as 

well as in unstructured road networks. 

 

1.3 Embedded vision nodes 

Following the trends in low-power processing, wireless networking and distributed sensing, VSN are experiencing a 

period of great interest, as shown by the recent scientific production [12]. A VSN consists of tiny visual sensor 

nodes called camera nodes, which integrate the image sensor, the embedded processor and a wireless RF transceiver. 

The large number of camera nodes forms a distributed system where the camera nodes are able to process image 

data locally (in-node processing) and to extract relevant information, to collaborate with other-cameras – even 

autonomously – on the application specific task, and to provide the system user with information-rich descriptions of 

the captured scene. 

1.3.1 Features of available vision nodes  

In the last years, several research projects produced prototypes of embedded vision platforms which may be 

deployed to build a VSN. Among the first experiences, Panoptes project [13] aimed at developing a scalable 

architecture for video sensor networking applications. The key features of Panoptes sensor are a relatively low 

power and high-quality video capturing device, a prioritizing buffer management algorithm to save power and a bit-

mapping algorithm for the efficient querying and retrieval of video data. Nevertheless the size of the sensor, its 

power consumption, and its relatively high computational power and storage capabilities makes Panoptes sensor 

more akin to smart high-level cameras than to untethered low-power low-fidelity sensors. The Cyclops project [14] 

provided another representative smart camera for sensor networks. The camera nodes is equipped with a low-

performance ATmega128 8-bit RISC microcontroller. From the storage memory point of view the system is very 

constrained, with 128 KB of FLASH program memory and only 4 KB of SRAM data memory. The CMOS sensor 

supports three image formats of 8-bit monochrome, 24- bit RGB colour, and 16-bit YCbCr colour at CIF resolution 

(352x288). In the Cyclops board, the camera module contains a complete image processing pipeline for performing 

demosaicing, image size scaling, colour correction, tone correction and colour space conversion. In the MeshEye 

project [15] an energy-efficient smart camera mote architecture was designed, mainly with intelligent surveillance as 

target application. MeshEye mote has an interesting special vision system based on a stereo configuration of two 

low-resolution low-power cameras, coupled with a high resolution colour camera. In particular, the stereo-vision 

system continuously determines position, range, and size of moving objects entering its fields of view. This 

information triggers the colour camera to acquire the high-resolution image sub-window containing the object of 

interest, which can then be efficiently processed. Another interesting example of low-cost embedded vision system 

is represented by the CMUcam series [16], developed at the Carnegie Mellon University. More precisely the third 

generation of the CMUcam series has been specially-designed to provide an open-source, flexible and easy 

development platform with robotics and surveillance as target applications. The hardware platform is more powerful 

with respect to its predecessors and may be used to equip low-cost embedded system with simple vision capabilities, 

so as to obtain smart sensors. The hardware platform is constituted by a CMOS camera, an ARM7 processor and a 
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slot for MMC cards. Standard RF transceiver (e.g. TELOS mote) can be easily integrated. CMUcam4 is now on the 

market, featuring a Parallax P8X32A and an Arduino compatible shield. More recently, the CITRIC platform [17] 

integrates in one device a camera sensor, a CPU (with frequency scalable up to 624MHz), a 16 MB FLASH memory 

and a 64 MB RAM. Such a device, once equipped with a standard RF transceiver, is suitable for the development of 

VSN. The design of the CITRIC system allows performing moderate image processing task in-network that is along 

the nodes of the network. In this way, there are less stringent issues regarding transmission bandwidth than with 

respect to centralized solutions. Such results have been illustrated by 3 sample applications, namely i) image 

compression, ii) object tracking by means of background subtraction and iii) self-localization of the camera nodes in 

the network. The aforementioned electronics projects are examples of existing devices that can be turned into sensor 

nodes of a visual wireless sensor network. In Section 1.5 we will present an alternative smart camera prototype. 

1.3.2 Computer vision on embedded nodes  

Embedded nodes equipped with an image sensor need special computer vision algorithms to be turned into actual 

smart cameras. The versatility of computer vision offers the possibility to tackle a great range of problems, by 

drawing on the extensive literature on the subject. Indeed for most of computer vision tasks such as change detection, 

object detection, object recognition, tracking, and image fusion for multi-view analysis there exists an arsenal of 

already implemented methods (see [18] for a survey of change detection algorithms); however most of the 

techniques currently available are not suitable to be used in VSN. Indeed, as shown by the examples reported in 

previous sections, embedded nodes have usually very constrained memory and computational power. Sometimes 

microcontroller architectures are also used, where floating point operation are not natively supported. In addition, 

power consumption is often limited in self-powered or battery-powered sensors: intensive operations might reduce 

autonomy below acceptable levels. For these reasons, conventional computer vision pipeline used in standard 

centralized infrastructure cannot be used on VSN, but a redesign of the employed algorithms is necessary. The 

redesign may range from an optimization for the embedded architecture (use of lookup tables, approximation in 

computations and introduction of heuristics) to more drastic changes in the pipeline in order to implement a more 

lightweight approach. Some attempts to employ non-trivial image analysis methods over VSN have been done. For 

example [19] presents a VSN able to support the query of a set of images in order to search for a specific object in 

the scene. To achieve this goal, the system uses a representation of the object given by the Scale Invariant Feature 

Transform (SIFT) descriptors [20]. SIFT descriptors are indeed known to support robust identification of objects 

even among cluttered background and under partial occlusion situations, since the descriptors are invariant to scale, 

orientation, affine distortion and partially invariant to illumination changes. In particular, using SIFT descriptors 

allows retrieving the object of interest from the scene, no matter at which scale it is imaged. Interesting computer 

algorithms are also provided on the CMUcam3 vision system. Besides basic image processing filters (such as 

convolutions), methods for real-time tracking of blobs on the base either of colour homogeneity or frame 

differencing are available. A customizable face detector is also included. Such detector is based on a simplified 

implementation of Viola-Jones detector [21], enhanced with some heuristics to further reduce the computational 

burden. For example, the detector does not search for faces in the regions of the image exhibiting low variance. 

Machine learning classifiers, such as the Viola-Jones detector, are very useful for deployment on embedded nodes, 

in order to provide a semantic interpretation of the scene. Indeed, the automatic detection of semantic concepts in 

videos and images represents an attempt to overcome the semantic distance between machines and humans, a 

distance that can be defined as the lack of coincidence between the information that one can extract from the sensor 

data and the interpretation that this same data can give a user in a given situation [22]. Bridging this gap with vision 

logics that can automatically recognize certain semantic concepts (such as car, person, or obstacle) is the real 

strength that makes VSN unparalleled with respect scalar sensors.  

The detection of basic concepts can be performed using supervised learning methods, where a sufficient set of 

labelled data (annotated so that they contain, or do not contain, the concept to be detected) is used in a training phase 

to learn a model of the concept. The system learned in a supervised manner (e.g. a Support Vector Machine, SVM 

[23]) extracts some features of the images and their labels as input and learns a relationship model between these 

visual features and the concept. We can then classify new images not used in the training process using the learned 

model. The low-level visual features typically used are the colour histograms depicting the image or parts of the 

image, histograms of gradients, points of interest [20], edges, motion and depth to cite a few. 

In more complex cases, it is required to detect events instead of simple objects; events can be formally represented 

and recognized as a set of objects (including people) interacting in time and space, e.g. a group of pedestrian 

crossing the street, a load loss, a car accident and car park surfing for instance. The regions in images of a video 

sequence are labelled by objects, and the spatial relationships between objects changes between images as a result of 
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their interactions. Machine learning algorithms require a preliminary (and generally computational intensive) 

learning phase to produce a trained classifiers. Clearly, when the methods are to be deployed on a VSN, the 

preliminary learning phase may be accomplished off-site, while only the already trained detectors need to be ported 

to the visual nodes. Among machine learning methods, a common and efficient one is based on the sliding windows 

approach; namely rectangular sub-windows of the image are tested sequentially, by applying a binary classifier able 

to distinguish whether they contain an instance of the object class or not. A priori knowledge about the scene or – if 

available –information already gathered by other nodes in the network may be employed to reduce the search space 

either by a) disregarding some region in the image and b) looking for rectangular regions within a certain scale range 

(e.g. rectangular regions covering less than 30% of the whole image area). For example, since license plates have 

standard sizes, if we know roughly the scale of the image, we could expect to observe a plate only if the size in pixel 

of the area is compatible with the actual physical size. For what regards the binary classifiers itself, among various 

possibilities, the Viola-Jones method is particularly appealing for use on VSN. Indeed, such classifier is based on the 

use of the so-called a rejection cascade. A window which fails to meet the acceptance criterion in some stage of the 

cascade is immediately rejected and no further processed. In this way, only detection should go through the entire 

cascade. The cascade permits also to adapt the response of the detector to the particular use of its output in the 

network, also in a dynamical fashion, in order to properly react to changes in the internal and external conditions. 

First of all, the trade-off between reliability of detections and needed computational time may be controlled by 

adaptive real-time requirements of the overall network. Indeed, the detector maybe interrupted at an earlier stage in 

the cascade, thus producing a quick even though less reliable output, which may be anyhow sufficient for solving 

the current decision making problem. In the same way, by controlling the threshold in the last stage of the cascade, 

the VSN may dynamically select the optimal trade-off between false alarm rate and detection rate needed in a 

particular context. 

One advantage of VSN with respect monocular systems is the fact that they can inherently exploit multi-view 

information. Due to bandwidth and efficiency considerations, however, images cannot be routinely shared on the 

network, so that no dense computation of 3D properties (like disparity maps and depth) can be made over a VSN. 

Nevertheless, the static geometrical entities observed in the scene may be suitably codified during the setup of the 

acquisition system. In addition, specially-designed references may be introduced in the scene for obtaining an initial 

calibration of the views acquired by each camera, thus permitting to find geometrical correspondences among 

regions or points of interest seen by different nodes. To this end, a coordinator node, aware of the results of such 

calibration step, may be considered, so as to translate events from the image coordinates to physical world 

coordinates. Such approach may produce more robust results as well as a richer description of the scene. Such ideas 

are used for tackling the parking lot monitoring problem by using multiple cameras and a special middleware layer 

for complex event composition (Section 1.4). 

 

1.4 Implementation of computer vision logics on embedded systems for ITS 

In this Section, two sample ITS applications based on computer vision over VSN are reported. The first one regards 

the estimation of vehicular flows and is based on a lightweight computer vision pipeline that is dissimilar form the 

conventional one used on standard architectures. In the second sample application, an approach to parking lot 

monitoring is presented; here the vision nodes can cooperate among each other for producing more accurate and 

robust results, performing an inter-node decision regarding parking slot occupancy status. The inter-node decision 

logics can be implemented in an Internet of Things (IoT) framework, e.g. by using the middleware for VSN 

presented in Chapter ? by Petracca et al. The presented applications are based and extend previous work [25, 26].  
 

1.4.1 Traffic status and level of service  

The analysis of traffic status and the estimation of level of service are usually obtained by extracting information on 

the vehicular flows in terms of passed vehicles, their speed and typology. Conventional pipelines start with i) 

background subtraction and move forward to ii) vehicle detection, iii) vehicle classification, iv) vehicle tracking and 

v) final data extraction. On VSN, instead, it is convenient to adopt a lightweight approach; in particular data only in 

Region of Interest (RoI) is processed, where the presence of a vehicle is detected. On the basis of these detections, 

then, flow information is derived without making explicit use of classical tracking algorithms. 

More in detail, background subtraction is performed only on small quadrangular RoIs. Such shape is sufficient for 

modelling physical rectangles under perspective skew. In this way, when low vision angles are available (as 
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common in urban scenarios), it is possible to deal with a skewed scene even without performing direct image 

rectification, which can be computationally intensive on an embedded sensor. The quadrangular RoI can be used to 

model lines on the image (i.e. a 1 pixel thick line) either. 

On such RoI, lightweight detection methods are used to classify a pixel as changed (in which case it is assigned to 

the foreground) or unchanged (in which case it is deemed to belong to the background). Such decision is obtained 

by modelling the background. Several approaches are feasible. The simplest one is represented by straightforward 

frame differencing. In this approach, the frame previous to the one that is being processed is taken as background. A 

pixel is considered changed if the frame difference value is bigger than a threshold. Frame differencing is one of the 

fastest methods but has some cons in ITS applications; for instance a pixel is considered changed two times: first 

when a vehicle enters and, second, when it exits from the pixel area. In addition, if a vehicle is homogeneous and it 

is imaged in more than one frame, it might be not detected in the frames after the first. Another approach is given by 

static background. In this approach, the background is taken as a fixed image without vehicles, possibly normalized 

to factor illumination changes. Due to weather, shadow, and light changes the background should be updated to 

yield meaningful results in outdoor environments. However strategies for background update might be complex; 

indeed it should be guaranteed that the scene is without vehicles when updating. To overcome these issues, 

algorithms featuring adaptive background are used. Indeed this class of algorithms is the most robust for use in 

uncontrolled outdoor scenes. The background is constantly updated fusing the old background model and the new 

observed image. There are several ways of obtaining adaptation, with different levels of computational complexity. 

The simplest is to use an average image. In this method, the background is modelled as the average of the frames in 

a time window. Online computation of the average is performed. Then a pixel is considered changed if it is different 

more than a threshold from the corresponding pixel in the average image. The threshold is uniform on all the pixels. 

Instead of modelling just the average, it is possible to include the standard deviation of pixel intensities, thus using a 

statistic model of the background as a single Gaussian distribution. In this case, both the average and standard 

deviation images are computed by an online method on the basis of the frames already observed. In this way, instead 

of using a uniform threshold on the difference image, a constant threshold is used on the probability that the 

observed pixel is a sample drawn from the background distribution which is modelled pixel by pixel as a Gaussian. 

Gaussian Mixture Models (GMM) are a generalization of the previous method. Instead of modelling each pixel in 

the background image as a Gaussian, a mixture of Gaussians is used. The number k of Gaussians in the mixture is a 

fixed parameter of the algorithm. When one of the Gaussian has a marginal contribution to the overall probability 

density function, it is disregarded and a new Gaussian is instantiated. GMM are known to be able to model changing 

background even in cases where there are phenomena such as trembling shadows and tree foliage [27]. Indeed in 

those cases pixels clearly exhibit a multimodal distribution. However GMM are computationally more intensive than 

a single Gaussian. Codebooks [28] are another adaptive background modelling techniques presenting computational 

advantages for real-time background modelling with respect GMM. In this method, sample background values at 

each pixel are quantized into codebooks which represent a compressed form of background model for a long image 

sequence. That allows to capture even complex structural background variation (e.g. due to shadows and trembling 

foliage) over a long period of time under limited memory.  

Several ad hoc procedures can be envisaged starting with the methods just described. In particular, one important 

issue concerns the policy by which the background is updated or not. In particular, if a pixel is labelled as 

foreground in some frame, we might want that this pixel does not contribute in updating the background or that it 

contributes to a lesser extent. Similarly, if we are dealing with a RoI, we might want to fully update the background 

only if no change has been detected in the RoI; if a change has been detected instead, we may decide not to update 

any pixel in the background. 

The data extraction procedure starts taking in input one or more RoIs for each lane suitably segmented in 

foreground/background by the aforementioned methods. When processing the frame acquired at time t, the 

algorithm decides if the RoI Rk is occupied by a vehicle or not. The decision is based on the ratio of pixels changed 

with respect the total number of pixels in Rk, i.e. ak(t)=#(changed pixels in Rk)/ #(pixels in Rk). Then ak(t) is 

compared to a threshold  in order to evaluate if a vehicle was effectively passing on Rk. If ak(t) > and at time t-1 no 

vehicle was detected, then a new transit event is generated. If a vehicle was already detected instead at time t-1, no 

new event is generated but the time length of the last created event is incremented by one frame. When finally at a 

time t+k no vehicle is detected (i.e. ak(t) <) , the transit event is declared as accomplished and no further updated. 

Assuming that the vehicle speed is uniform during the detection time, the number of frames k in which the vehicle 

has been observed is proportional to the vehicle length and inversely proportional to its speed. In the same way, it is 

possible to use two RoIs R1 and R2, lying on the same lane but translated by a distance , to estimate the vehicle 

speed. See Figure 1.1. Indeed, if there is a delay of  frames, the vehicle speed can be estimated as v=/(*) where 

 is the frame rate. The vehicle length can in turn be estimated as l=k/v. Clearly the quality of these estimates varies 
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greatly with respect to several factors, and is in particular due to a) frame rate and b) finite length of RoIS. Indeed, 

the frame rate generates a quantization error which leads to the estimation of the speed range; therefore the approach 

cannot be used to compute the instantaneous speed. For what regards b), an ideal detection area is represented by a 

detection line, having length equal to zero. Otherwise, a localization error affects any detection, i.e. it is not know 

exactly where the vehicle is inside the RoI at detection time. The use of a 1-pixel thick RoIs alleviates the problem 

but it results in less robust detections. This problem introduces some issues both in vehicle length and speed 

computations, because in both formulas we use the nominal distance  and not the precise (and unknown) distance 

between the detections. This is the drawback in not using a proper tracking algorithm in the pipeline, which would 

require however computational resources not usually available on embedded devices. Nevertheless, it is possible to 

provide a speed and size class for each vehicle. For each speed and vehicle class a counter is used to accumulate the 

number of detections. Temporal analysis on the counter is sufficient for estimating traffic typologies, average speed 

and analysing the level of service of the road identifying possible congestions.   

 

 

Figure 1.1 RoI configuration for traffic flow analysis. 

1.4.2 Parking monitoring  

As a second sample application, an algorithm suitable for deployment on VSN has been studied and designed for the 

analysis of parking lot occupancy status. The approach followed is based on frame differencing, in order to highlight 

the changes in the RoIs, with respect to a background reference image. In the following details on the change 

detection algorithm will be given, and then specifications regarding the modality of detecting the occupancy rate of 

a single parking slot will be introduced. Afterwards, the cooperation of nodes within the VSN in order to improve 

the detection performances is described.  

In order to improve the computational efficiency, the frame differencing for detecting changes is performed only on 

predetermined RoI in the acquired frame. Each of the RoI corresponds to a specific parking slot, and for each of the 

regions the absolute accumulated pixel-wise differences is reported; such a difference is dynamically weighted in 

order to correct and improve the robustness of the algorithm with respect to environmental light changes. 

In order to perform this improvement, normalized versions of the images are computed and used, with respect to 

global illumination parameters (average and variance of both the current and reference image). The sum of the 

differences is scaled with respect to the size of the RoI, and finally it is stored in a buffer. At this point verification 

occurs in order to detect the eventual change. In particular, a comparison of the stored actual value with the 

historical values allows filtering out possible spurious values (i.e. exceeding the threshold) due to, e.g. the presence 

of shadows. In the same way the stored value is compared with another threshold in order to detect possible changes 

with respect to the reference image. At this point the algorithm yields a first outcome which is a value regarding the 

occupancy status of the specific parking slot. 

Once the algorithm has computed values regarding the occupancy for each parking slot (corresponding to the RoIs), 

an intra-node occupancy detection process occurs. In order to avoid transitory events (e.g. such as walking people 

and shadows casted by external objects), the occupancy status becomes effective and is transmitted to the VSN, only 

after being observed consecutively for a specific number of acquired frames. 

For each parking slot, the algorithm yields a confidence value in the range [0..255]. Meaning that values next to 0 

represent an almost no-change detected with respect to the reference value, and thus the slot is likely to be free; 

higher values, on the other hand, indicate that main changes have occurred in the observed scene, and thus the slot is 

likely to be occupied. Figure 1.2 shows the flow chart of the algorithm. 
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Figure 1.2 Flow chart representation of the parking lot occupancy algorithm. 

 

At a higher level of the VSN, the confidence values produced by the single nodes as a 256 levels number should be 

transformed to binary values corresponding either to free or busy parking slots, thus taking a final decision regarding 

the parking availability.  

To this end, local confidence values will be propagated through the VSN thanks to a middleware layer. In particular 

when a parking space is monitored by more than one sensor node, the final decision regarding its occupancy is 

obtained at an inter-node level. 

More in detail, this final decision is obtained aggregating all the confidence values produced by the different nodes 

(which are statically dislocated and have static tables of the monitored parking slots). If a slot k is monitored by 

n=n(k) sensor nodes, and being   
 ( )     

 ( ) the confidence values measurements from each single sensor node 

at time t, then the aggregated measure is computed as: 

  ( )  ∑      
 ( )

 

   

 

Where the      are the non-negative weights and: 

∑      

 

   

 

Thus the final decision    ( )regarding the slot k is obtained performing a comparison with a threshold ε: 

   ( )  {
                        ( )   

                       ( )    
 

In order to implement a more robust algorithm, avoiding meaningless oscillations, the above decision is further 

improved using two levels of thresholds     , and considering the status of the slot at the previous measure 

obtained at time t-1: 

   ( )  {
              ( )          ( 

 ( )            
 (   )   )

              ( )          ( 
 ( )            

 (   )   )
 

Weights      are determined heuristically for each physical configuration of the VSN, while the thresholds       are 

set to a common value for all the nodes, the sensors and the parking slots. 

 

1.5 Sensor node prototype  

In this section the design and development of a sensor node prototype based on VSN concepts is presented. This 

prototype is particularly suited for urban application scenarios. In particular, the prototype is a sensor node having 

enough computational power to accomplish the computer vision task envisaged for urban scenarios as described in 

the previous section. Along with such computational power, the prototype is completed with a networking board in 

order to make it included within the sensor network, and for dispatching and receiving data, through a deployed 

event-based middleware. Finally an energy harvesting module, implemented to keep the node autonomous, is 

included and described. 

In the following an overview of the prototype implementation is given; starting with the description of the 

architecture of the implemented prototype, followed by the features of the single hardware components, namely: the 
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vision board, the networking board, characteristics of the acquisition sensor and the energy harvesting module. 

Thereafter the layout of designed and implemented board will be presented.  

For the design of the prototype an important issue to follow has been the use of low cost technologies. In particular, 

the node is using sensors and electronic components at low cost, so that once engineered, the device can be 

manufactured at low cost in large quantities. In the design and planning of the architectural side, an important issue 

is represented by the ease of installation of the device, thus the protective shield that has been considered for the 

sensor node is compact but able to accommodate all components of the device. 

Going into detail, the single sensor node can be divided into two main parts: the vision board equipped with the 

camera sensor and the logics for image analysis and the networking board connected to the wireless communication 

module (RF Transceiver). 

They have respectively the following tasks: i) acquire and process images and ii) control the device to coordinate the 

processes of transmission of all the information extracted about the scene. 

Other components of the sensor node are given by the power supply system that controls charging and permits to 

choose optimal energy savings policies. The power supply system includes the battery pack and a module for 

harvesting energy, e.g. through photovoltaic panel. Figure 1.3 shows the last design of the sensor node architecture. 

 

 

Figure 1.3 Architecture of the sensor node. 

1.5.1 The vision board 

For the realization of the vision board, an embedded Linux architecture has been selected in the design stage for 

providing enough computational power and ease of programming. A selection of ready-made Linux based 

prototyping boards had been evaluated with respect to computing power, flexibility / expandability, 

price/performance ratio and support. For example, the following candidates were considered Raspberry Pi Model B 

(ARM11, 700 MHz) [29], Phidget SBC (ARM9, 400 MHz) [30] and BeagleBone – TI Sitara AM3359 (Cortex A8, 

720 MHz) [31]. 

All these candidates have as common disadvantages high power consumption and the presence of electronic parts 

which are not useful for the tasks foreseen here. 

It has been therefore decided to design and realize a custom vision component by designing, printing and producing 

a new PCB. The new PCB was designed in order to have the maximum flexibility of use while maximizing the 

performance / consumption ratio. A good compromise has been achieved by using a Freescale CPU based on the 

ARM architecture, with support for MMU -like operating systems GNU / Linux. 

This architecture has the advantage of integrating a Power Management Unit (PMU), in addition to numerous 

peripherals interface, thus minimizing the complexity of the board. Also the CPU package of type TQFP128 helped 

us to minimize the layout complexity, since it was not necessary to use multilayer PCB technologies for routing. 

Thus, the board can be printed also in a small number of instances. The choice has contributed to the further benefit 

of reducing development costs, in fact, the CPU only needs an external SDRAM, a 24MHz quartz oscillator and an 

inductance for the PMU. 

It has an average consumption, measured at the highest speed (454MHz), of less than 500mW. 

The system includes an on-board step-down voltage regulator type LM2576 featuring high efficiency to ensure a 

range of voltages between 6 and 25V, making it ideal for battery-powered systems, in particular for power supply by 

lithium batteries (7.2 V packs) and lead acid batteries (6V, 12V, 24V packs). 

The board has several communication interfaces including RS232 serial port for communication with the 

networking board, SPI, I2C and USB. 
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Thanks to the GNU / Linux operating system, software development is partially relieved, relying on libraries already 

available for the interface to devices connected to the board. For example, it is not necessary to know the 

characteristics of a particular HW camera, but it is enough that it is compatible with the standard USB Video Class 

(UVC); through the UVC API, it is then possible to configure all the parameters available. 

 

1.5.2 The networking board 

For the realization of the networking board, it has been decided to use a microcontroller-based device with a 32bit 

architecture. For radio communication, a transceiver compliant with IEEE 802.15.4 has been required in line with 

modern approaches to IoT. For what regards the software, it has been decided to adopt Contiki [32] as operating 

system. Contiki provides the uIPv6 stack, which deals with IPv6 networking. The IPv6 stack also contains the 

6LoWPAN header compression and adaptation layer for IEEE 802.15.4 links. Therefore the operating system is well 

capable of supporting an event based middleware for VSN. An analysis of the boards available on the market has 

shown that there exist devices satisfying all the above requirements. In particular, the Evidence SEED-EYE board 

[33] has been selected, which is particularly suited for implementing low-cost multimedia WSN.  

 

1.5.3 The sensor 

For the integration of a camera sensor on the vision board, some specific requirements were defined in the design 

stage for providing easiness of connection and to the board itself and management through it, and capability to have 

at least a minimal performance in difficult visibility condition, i.e. night vision. Thus the minimal constraints were to 

be compliant with USB Video Class device (UVC) and the possibility to remove IR filter or capability of Near-IR 

acquisition. Moreover, the selection of a low cost device was an implicit requirement considered for the whole 

sensor node prototype. Among a very large list of UVC compliant devices [34], an easy-to-buy and cheap camera 

was selected (TRUST SpotLight Webcam [35]). Moreover the camera is equipped with an IR filter, designed to 

reduce the noise from IR light sources, which is easily removable for our purposes of acquiring images even in low 

light conditions. 

 

1.5.4 Energy harvesting and housing 

The previously described boards and camera are housed into an IP66 shield. Another important component of the 

node is the power supply and energy harvesting system that controls charging and permits to choose optimal energy 

savings policies. The power supply system includes the lead (Pb) acid battery pack and a module for harvesting 

energy through photovoltaic panel. 

In Figure 1.4, the general setup of a single node with the electric connections for the involved components is shown. 

Notice that, in order to implement energy savings policies, the vision board has also been used to measure the 

charging status of the batteries. To this end, an ADC Conditioning module has been used to adapt the voltage level 

of the power supply system to the voltage range of the vision board ADC input. 

 

 

Figure 1.4 General setup of the VSN sensor node prototype with energy harvesting system. 
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1.5.5 The board layout 

After having introduced the main features of the selected hardware, this section presents the layout of the vision 

board. Indeed the creation of a vision board having the basic features as previously described has required the design 

of a schematic in which to allocate and organize all modules and components required for its operation. As a result, 

in Figure 1.5 the layout of the vision board is shown, respectively through a 3D rendering of the board and a printed 

sample of the board. 

  

Figure 1.5 The 3D rendering of the vision board and a printed sample of the board. 

1.6 Application scenarios and experimental results 

Nowadays most of the available sensors for traffic monitoring are usually focused on structured environments and 

are based on tethered sensors. Moreover, their cost usually prevents their massive use for covering large areas, since 

the ratio cost/benefit is not favourable. The proposed and developed embedded system and low-cost camera sensor, 

make possible to conceive sensor-based pervasive intelligent systems centred on image data. Following this concept 

the application scenarios identified for an urban area case study are capable of covering several different situations 

that typically occur in this kind of area: restricted traffic area, ecological area, intermodal node services, intermodal 

parking, car sharing services, electric vehicle charging stations. In particular, different scenarios for the evaluation of 

both parking lots and traffic flow have been set-up. For the parking lot scenario the set-up consists in a set of VSN 

nodes equipped with cameras having partially overlapping field of views. The goal was to observe and estimate the 

availability and location of parking spaces. A basic assumption was made on the geometry of the parking: each 

camera knows the positions of the parking slots under its monitoring. In addition, we assume that a coordinator node 

knows the full geometry of the parking lot as well as the calibration parameters of the involved cameras, in order to 

properly aggregate their outcomes. 

For the traffic flow, the set-up consists in a smaller set of VSN nodes, which are in charge of observing and 

estimating dynamic real-time traffic related information, in particular regarding traffic flow and the number and 

direction of the vehicles, as well as giving a rough estimate about the average speed of the cars in the traffic flow. 

Regarding the experimentation results, first data from the parking lot are presented and analysed, in Figure 1.6 an 

example of parking lot image is reported and then in Figure 1.7 the differences between the sensor values and the 

ground-truth recorded for a sample parking slot acquisition is presented, showing the good separation obtained 

between different events. 

Regarding the traffic flow monitoring, two versions of the algorithm were implemented on the VSN. In the first, the 

solutions used three different frames (using frame differencing) to obtain a binary representation of the moving 

objects in the reference frame. Analysing the connected components, blobs are detected, and then it is verified 

whether these can be referred to objects moving through (i.e. traffic flow) a predefined RoI [25]. The final was 

designed to eliminate the analysis of connected components, using the algorithm presented in Section 1.4.  
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Figure 1.6 Car detection and analysis of parking lot occupancy status. 

 

Figure 1.7 Data collected for a parking slot on the case study site. Sensor confidence values are shown in blue, 

while the ground-truth recorded is shown in red with circles representing change-event. 

In the following Figure 1.8 a sample of the acquired and processed images for traffic flow analysis is reported and 

then, in Table 1.1 the results of the traffic flow case study are reported, showing the improvement in performance 

between the preliminary version and the final implemented solution. 

 

 

Figure 1.8 Detection of vehicles on an urban road for traffic flow analysis. 
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Table 1.1 Traffic flow performance comparison between preliminary (V1) and final (V2) versions. 

 Sequence Hit Miss False 

Positive 

Total real 

events 

Sensitivity 

rate 

False 

positive rate 

V1 

S1 204 24 9 228 89.0% 4.0% 

S2 234 2 10 236 99.2% 4.2% 

TOTAL 438 26 19 464 94.3% 4.1% 

V2 

S1 226 2 3 228 99.1% 1.3% 

S2 234 2 2 236 99.2% 0.8% 

TOTAL 460 4 5 464 99.1% 1.1% 

 

1.7 Conclusions 

In this chapter a scalable technological solution has been introduced for supporting ITS-related problems in an urban 

scenario. The survey mainly addressed embedded solutions for the realization of smart cameras that can be used to 

detect, understand and analyse traffic-related situation and events thanks to the integration of on-board vision logics. 

Such embedded solutions can be elements of a broader VSN with each node equipped with an image sensing device. 

Several issues suggest moving from a centralized solution to a distributed intelligence one, from processing speed to 

available bandwidth for transmission, and from capabilities of redundancy in a distributed solution to the autonomy 

granted to each distributed node. In such nodes, artificial intelligence and computer vision algorithms are able to 

provide autonomy and adaptation both to internal as well as to external conditions. 

The smarter part is that these nodes are not just gatherers of information from the cameras, but they can extract 

significant and compact descriptors of the scene from the data acquired in the video stream. We then show that 

currently available techniques are not suitable to be used in those networks of vision due to the complexity of the 

algorithms and to the excessive hardware requirements; thus ad hoc algorithms needed to be designed and 

implemented. 

After introducing the developed embedded vision node, the implementation of computer vision algorithms for smart 

cameras (in a VSN) has been addressed. In particular, the two sample ITS applications, for the analysis of traffic 

flow status and parking lot monitoring, were described. Lately the designed and realized smart camera prototype 

was presented and the envisaged application scenarios described with the promising results obtained. 
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