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Abstract. Object detection and recognition are classical problems in
computer vision, but are still challenging without a priori knowledge of
objects and with a limited user interaction. In this work, a semiautomatic
system for visual object learning from video stream is presented. The sys-
tem detects movable foreground objects relying on FAST interest points.
Once a view of an object has been segmented, the system relies on ORB
features to create its descriptor, store it and compare it with descriptors
of previously seen views. To this end, a visual similarity function based
on geometry consistency of the local features is used. The system groups
together similar views of the same object into clusters relying on the
transitivity of similarity among them. Each cluster identifies a 3D object
and the system learn to autonomously recognize a particular view assess-
ing its cluster membership. When ambiguities arise, the user is asked to
validate the membership assignments. Experiments have demonstrated
the ability of the system to group together unlabeled views, reducing the
labeling work of the user.

1 Introduction

In this work, a user assisted clustering system for online visual object recognition
is presented. Our approach enables a single smart camera to learn and recognize
objects exploiting change detection in the scene: given the evolution of the scene
during time, the system incrementally builds a knowledge that can be exploited
for the subsequent recognitions of the object when reappear on the scene. The
user is queried when ambiguities cannot be automatically resolved.

Object detection is carried out by a local feature based background subtrac-
tion method [1] which distinguishes the foreground local features of the image
from the background ones and segments new objects in the scene relying on
FAST interest points. Each detected object, together with its extracted ORB
local features, is maintained in a local database forming the knowledge base for
object recognition. All the views of detected objects are incrementally organized
in clusters based on the similarity among them. A similarity function between
two object views is defined relying on local features matching and geometry con-
straints on their positions. The main goal of the system is to maintain gathered
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views in clusters where each cluster contains only views of the same 3D object,
even if it has been observed under different poses or illuminations (see Figure 1).
Clusters can be labeled anytime by the user and object recognition is performed
assessing the membership of a view to a particular cluster.
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Fig. 1: Visualization of the system goal: online clustering of detected objects as recog-
nition task.

The system has not been designed for a particular smart camera platform in
mind, but it has been tested on the Raspberry Pi platform equipped with a Pi
Camera module. Experiments have been made using the Stanford 3D Objects 1

[9] public available dataset in order to evaluate the ability to build a knowledge
base for object recognition.

The rest of the paper is organized as follows: Section 2 describes the main
features of some studied object recognition methods. Section 3 presents our
method, describing the similarity function we have defined between detected
objects. Section 4 describes the strategy used for similar object clustering. Sec-
tion 5 reports the experiments performed and the metrics used to evaluate our
method. Conclusive remarks are addressed at the end of this paper.

2 Related Work

Many solutions have been proposed to the problem of 3d object model learning
for recognition task, starting from different 2d views of the object of interest.

Murase and Nayar [7] model each object as a manifold in the eigenspace
obtained compressing the training image set for that object. Given an unknown
input image, it is projected on the eigenspace and labeled relying on the manifold
it lies on. Moreover, the exact point of the projection gives a pose estimation of
the input object. However, only batch training is possible and the training set
must be composed by a large number of normalized images with different poses
and illuminantion and uncluttered background.

1 http://cvgl.stanford.edu/resources.html
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More recent studies address object modelling relying on local features of
training images.

Weber et al. [10, 5] developed a method to learn object class models from un-
labeled and unsegmented cluttered scenes. The authors combine appereance and
shape in the object model using the constellation model. In this model, objects
are represented as flexible constellations of rigid parts (features). Most robust
parts are automatically identified applying a clustering algorithm to parts de-
tected from the training set. An expectation-maximization algorithm is applied
to tune the parameters of a joint probability density function (pdf) on the shape
of the constellation and the output of part detectors. An enhanced version of this
method using Bayesian parameter estimation is proposed by Fei-Fei et al. [4] for
the purpose of scale-invariant object categorization capable of both batch and
incremental training. However, this approach performs poorly with few training
images and is more suitable to the modeling of classes of objects rather than
individual 3D objects. Moreover it does not cope with multi-pose 3D object
recognition.

The work in this paper follows the approach of Lowe [6], who addresses the
problem of view clustering for 3D object recognition using a training set of
images with uncluttered background. Each view is described by its SIFT local
features and adjacent views are clustered together relying on feature matching
and similarity transformation error. The presented method relies on a different
geometric consistency check based on homographies which is capable of relating
views under different perspectives with low false positive rates.

3 Object Extraction and Matching

A specialized local feature based background subtraction method [1] has been
implemented to segment stable foreground objects from a video stream relying
on their FAST keypoints. A 2-level background model is created and updated us-
ing temporal statistics on the positions of the keypoints. The first level is trained
to segment keypoints in background and foreground, while the second level seg-
ments the foreground keypoints in moving or stationary keypoints. Stationary
foreground keypoints are used to extract views of stable foreground objects from
the video removing the part of the image containing keypoints coming from the
cluttered background.

The system ciclycally a) updates the background model untils it is steady, b)
waits for stable new objects to be detected in the scene, c) extracts the view of
the detected object, d) compares it to already collected views and e) organizes
cluster of views.

Each extracted view oi is described by a) Ki, the set of the positions of its
local features (keypoints) and b) Di, the set of their extracted ORB descriptors.
ORB is a rotation invariant version of the BRIEF binary descriptor based on
binary tests between pixels of the smoothed image patch [8]. It is suitable for
realtime applications since it is faster than both SURF and SIFT but it has
similar matching performance and is even less affected by image noise [2].



4

3.1 Observations Matching

A similarity function S : (o1, o2) → [0, 1] is defined on a pair of object views
(o1, o2), representing the quality of the visual match between them. The similar-
ity value among two views is computed in steps shown in Figure 2 and described
below.

(a) (b) (c)

(d) (e)

Fig. 2: Example of similarity computation among two different views (a) and (b) of
the same 3D object. The homography relating the matching keypoints is shown in (d).
The view (a) is transformed using the found homography in (c) and all matching steps
are reapplied: the second homography found (e) confirms the match. The computed
similarity value is 0.48.

Feature Matching Let K1,K2 be the sets of keypoints of the compared views
and D1, D2 their sets of corresponding descriptors.

A preliminary list L of descriptor matches is created finding for each descrip-
tor in D1 its nearest neighbor in D2 using the bruteforce method. Distances
between descriptors are computed using the method suggested by the authors
of the descriptor. In case of ORB, Hamming distance between the binary repre-
sentation of the descriptors is used.

Matches in L are then filtered keeping only the ones having distance between
descriptors below Tm. We chose Tm = 64 as suggested by Rublee et al. [8] despite
not being the most stringent value to filter bad matches, but we preferred high
recall of matches rather than high precision at this step.

If there are less than 4 matches left in the list, the following steps cannot be
applied and the similarity value is set to 0.
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RANSAC Filtering of Matches Bad matches in L are filtered out checking
whether the points that match are geometrically consistent.

Two images of the same planar surface in space are related by a homography
[3]. A homography is a invertible transformation represented by a 3 × 3 real
matrix that maps the 2D coordinates of points in a image plane into the 2D
coordinates in another plane.

H =

h11 h12 h13

h21 h22 h23

h31 h32 1


Let K?

1 ,K
?
2 be the sets of keypoints corresponding to the descriptors belong-

ing to L. In order to find the homography that relates correctly the most of the
points in K?

1 and K?
2 , RANSAC is applied [3]. RANSAC is an non-deterministic

algorithm to estimate parameters of a mathematical model from a set of ob-
served data which contains outliers. RANSAC algorithms iteratevly executes
the following steps:

1. takes 4 matches (couples of points) at random from K?
1 and K?

2 ,
2. computes the homography H relating those points,
3. counts the number of other matches that are correctly related by H (inliers).

After a certain number of iterations, the matrix H which gave the maximum
number of inliers is returned.

Using the homography found by the RANSAC algorithm (Figure 2d), we
can further filter the matches in L, keeping only the inliers of the perspective
transformation.

Quasi-degenerate and flipping homographies can be detected analizing the
homography matrix. Three checks are done:

– flipping homographies can be discarded checking if det(H) < 0.
– very skewed or prospective homographies can be discarded if det(H) is too

small or too big: given a parameter N , H is discarded if det(H) > N or
det(H) < 1

N .
– homographies transforming the matching keypoints bounding box in a con-

cave polygon can be filtered out with a convexity check.

In those cases, it is very unlikely that the views under analysis are really
related by this perspective transformation, therefore the system assumes there
is no similarity between them and returns a similarity value of 0.

Second Stage RANSAC Some views may pass the homography matrix check
even if the perspective transform described by H is very unlikely to be observed.
In order to filter out false positives homography matrices, the image of the first
view o1 is transformed in ô1 using the homography to be validated (Figure 2c)
and the similarity computation steps are repeated considering the views ô1 and
o2. Features are re-detected and re-extracted from ô1, matched with o2 and a
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second RANSAC is executed to estimate a new homography Ĥ describing the
prospective transformation among ô1 and o2 4. If the original views o1 and o2
were really different views of the same object, Ĥ should be very near to the
identity transformation (Figure 2e), otherwise the similarity between o1 and o2
is set to 0.

Similarity Output After the system found a good homography relating the
views, the ratios r̂1, r2 among the number of inliers and the total number of
detected features are computed for each view:

r̂1 =
I

|K̂1|
, r2 =

I

|K2|

where I are the number of inliers of the homography estimated between views
ô1 and o2, |K̂1| and |K2| are respectively the number of detected keypoints in
ô1 and in o2. The similarity value among original views under analysis S(o1, o2)
is defined as the harmonic mean between r̂1 and r2 (Figure 3):

S(o1, o2) =
2r̂1r2
r̂1 + r2

(a) (b) (c) (d)

A B C D

A 1 0 0 0.63

B 0 1 0.57 0

C 0 0.62 1 0

D 0.68 0 0 1

(e)

Fig. 3: Values of similarity among object views (a-d) reported in table (e).

4 Online Object Clustering

Everytime a new view of an object is gathered from the video stream, the system
a) assigns it to a cluster and b) maintains clusters of views that potentially
represent the same 3D object (Figure 4).

Each cluster is identified by a label assigned to views. The system puts a new
view in a cluster relying on the similarity it has with other already clustered
views, following an agglomerative clustering approach. The new view can bring
informations useful to cluster reorganization: for example, let c1 and c2 be two
clusters of views representing the same 3D object viewed from two different
poses. An intermediate view of the 3D object could suggest the system to merge
c1 and c2 in a unique cluster (see Figure 5).

Given a new view ô, a list Ls of similar views is generated scanning the local
database. For each object view oi the similarity value si = S(ô, oi) is computed
and if it is above a similarity threshold Ts, oi is inserted in Ls.

When trying to label ô, the following scenarios can occur:
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(a) table calendar

(b) poetry book

Fig. 4: Example of two object view
clusters (a) and (b).

(a) side view cluster

(b) frontal view cluster (c)

Fig. 5: Example of cluster merging: The
new view (c) is similar to both clusters and
can lead to a cluster merge.

1. ô does not match with any views, hence a new cluster is created and a new
label is assigned to ô.

2. ô matches with one or more views all belonging to the same cluster, hence
the system assigns the corresponding cluster label to ô.

3. ô matches with more than two views beloging to different clusters. Many
actions may be taken by the system in this situation:
(a) the clusters containing the views similar to the new one are merged

together in a unique bigger cluster to which the new view will belong
(Figure 5).

(b) the new view is inserted into only one among the candidates clusters.
(c) a new cluster is created containing only the new view.

Up to now, the system does not decide automatically in the third scenario
and asks the user which action should be taken. Interaction between multiple
cameras and similarity values between views and clusters may be exploited to
take the correct action automatically, but are not discussed in this paper and
are left to future work.

In the case a new view is incorrectly put in a new cluster instead of being
grouped with the other views representing the same object, the agglomerative
cluster algorithm can eventually build a unique cluster if intermediate views of
the same object will be collected by the system.

5 Experiments

The presented system autonomously groups object views into clusters without
knowing their labels, but cannot recognize them before the user labels at least
some of them, hence the system cannot be compared with traditional trained
classifiers. Instead the ability of the system to build good and easy to label
clusters is measured.

To do so, the publicly available 3D Objects dataset [9] has been used. This
dataset is composed by images of 10 object categories. For each category, 9-10
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Fig. 6: Object learning and recognition in a test video sequence: objects are added, moved
and removed from the scene. The system segments objects from the background and
incrementally creates clusters of similar object views. An object is recognized assessing
the membership of its current view to a pre-existent cluster.

objects are present and for each object, several images are reported in which the
specific object is shown in different poses. Each image comes with a foreground
mask which denotes exactly in which part of the image the object is located.
Images are taken from 8 different angles using 3 different scales and 3 different
heigths for the camera, leading to around 5500 labeled images of 100 specific
objects (see Figure 7).

Category Object Views

cellphone cellphone 1 . . .

. . . . . .

cellphone 9 . . .

mouse mouse 1 . . .

. . . . . .

toaster toaster 1 . . .

. . . . . .

Fig. 7: Excerpt from the Stanford “3D Objects” dataset: only some views of some objects
of some classes are reported.

Let O = {(o1, l1), (o2, l2), . . .} the set of labeled views. The entire dataset O is
randomly shuffled and splitted in training set Otrain (90%) and testing set Otest

(10%): training views are presented to the system as coming from the output of
the foreground extraction stage. The system builds clusters of views while they
are processed. In the case a supervised clustering is needed, the test code uses
the groundtruth labels of involved views to simulate user interaction applying
Algorithm 1.

Once the clusters are built, they must be labeled to produce a labeled training
set. Since the user usually does not want to waste time in cleaning clusters or
labeling singular objects, the test code simulates a labeling technique based on
major voting : an entire cluster is labeled with the label of the most frequent
object present in it.

The training set thus labeled is used for training a k-NN classifier. The cluster
k-NN classifier finds the k most similar views (the ones with the higher value
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Algorithm 1 Clustering algorithm simulating user interaction used for evalua-
tion tests

for all (oi, li) ∈ Otrain do
find the set Os of views similar to oi, Os = {oj ∈ Database : S(oi, oj) > Ts}
if |Os| = 0 then

put oi in a new cluster
else if |Os| = 1 or (all views in Os belong to the same cluster) then

put oi in the cluster of the similar views
else . simulate user interaction

find set Cs of all clusters to which the similar views belong
for all c ∈ Cs do

find the majority groundtruth label of c (the label appearing the most in
the cluster)

end for
create a new cluster merging together all clusters having its majority label

equal to li (the label of oi)
put oi in the newly created cluster

end if
end for

of similarity S) and assigns a score for each label of those views. The winning
label is assigned to the processed test view. Another k-NN classifier is trained
using the training set with correct labels and another labeling of the test set is
generated in the same way.

Test set labelings are evaluated extracting precision, recall and F-score for
each 3D object and then aggregating them using macro- and micro-averaging
techniques defined as follows:

micro-avgd macro-avgd

precision pmicro =
∑n

i=1 TPi∑n
i=1(TPi+FPi)

pmacro =
∑n

i=1 pi

n

recall rmicro =
∑n

i=1 TPi∑n
i=1 Pi

rmacro =
∑n

i=1 ri
n

f-score Fmicro = 2pmicrormicro

pmicro+rmicro
Fmacro = 2pmacrormacro

pmacro+rmacro

where n is the number of object classes, TPi the true positives, FPi the false
positives, Pi the total number of views, pi the precision, ri the recall and Fi the
F-score of the object i.

Macro-averaged metrics tends to give the same weight to each class, while
micro-averages metrics takes into account possible biases introduced by each
class and gives a more accurate global performance index. Another measured
metric is the number of interactions the system must have with the user in
order to label the training set: the groundtruth k-NN classifier needs the user to
label each training view individually, which corresponds to a number of query
to the user equal to the number of views in the training set. The cluster k-NN
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classifier needs to interact with the user a) when a cluster merging can not be
resolved automatically during the online clustering and b) when a cluster has to
be labeled.

6 Conclusions

In Figure 8, the performance of the two classifiers for various similarity thresholds
Ts are reported.

It can be seen that for Ts around 0.2, the cluster k-NN classifier has almost
the same performance of the groundtruth k-NN classifier, having only around
half the interactions with the user.
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Fig. 8: Comparison of the performance of the recognition task, solved by a k-NN classi-
fier trained with the groundtruth training set (blue lines with circle markers) and by a
k-NN classifier with training set made by cluster labeling (red lines with cross markers).
Solid and dashed lines indicate respectively micro- and macro-averaged metrics.

However, performance degradation of the cluster k-NN classifier is due to
the fact that we simulated a unique user interaction after the training phase
which used major voting paradigm to label all clusters at once. Since the sys-
tem is incrementally building richer and richer clusters, this is not the best
way to interact with the user asking for labels: user interaction may be proac-
tively requested only when big homogeneous clusters are involved, maximizing
the amount of information collected. Moreover, smarter techniques than major
voting may be implemented to simulate a more precise user labeling session. In
the performed tests, many singleton or small clusters are present at the end of
the training phase, raising the number of queries to the user needed to label the
entire training set.
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