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Abstract. With the huge number of services that are available online,
requirements analysts face a paradox of choice (i.e., choice overload)
when they have to select the most suitable service that satisfies a set
of customer requirements. Both service descriptions and requirements
are often expressed in natural language (NL), and natural language pro-
cessing (NLP) tools that can match requirements and service descrip-
tions, while filtering out irrelevant options, might alleviate the problem
of choice overload faced by analysts. In this paper, we propose a NLP
approach based on Knowledge Graphs that automates the process of
service selection by ranking the service descriptions depending on their
NL similarity with the requirements. To evaluate the approach, we have
performed an experiment with 28 customer requirements and 91 service
descriptions, previously ranked by a human assessor. We selected the top-
15 services, which were ranked with the proposed approach, and found
53% similar results with respect to top-15 services of the manual ranking.
The same task, performed with the traditional cosine similarity ranking,
produces only 13% similar results. The outcomes of our experiment are
promising, and new insights have also emerged for further improvement
of the proposed technique.

Keywords: Service Selection, Requirements Engineering, Knowledge
Graphs, Natural Language Processing.

1 Introduction

Software as a service (SaaS) o↵ers reusability and flexibility for developing soft-
ware while reducing time and costs for the developers [16]. However, this style of
development has introduced new challenges, especially for analysts, when they
have to find the best matching service for the requirements of all concerned
stakeholders, while making a trade-o↵ between cost, functional and quality re-
quirements [5]. Identifying and selecting the adequate service is the most crucial
step in service oriented software development [12]. It is considered a challenging
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task due to various reasons, as, e.g., mismatch in the level of abstraction and
granularity of customer requirements and service descriptions, lack of context
in services, and, in particular, overchoice (i.e., choice overload [18]), due to
the large number of available services with similar characteristics [5]. Indeed,
over the last decade, the number of third party services provided over the inter-
net has increased substantially. This has exacerbated the situation for analysts
when they have a huge set of services to evaluate, and select one that best
serves the customer’s requirements [3]. A significant amount of solutions have
been proposed (e.g., [12, 21, 24]) that employ a variety of techniques for service
identification, such as guidelines, patterns, business process models, and value
analysis. However these approaches require application of formal methods to
identify the adequate service for the requirements, and work only with a small
and manageable number of services.

In this paper, we present a natural language processing (NLP) approach
that uses Knowledge Graphs (KG) [9, 10] for dealing with the problem of over-
choice [4]. The proposed approach has been evaluated in an experiment with a
realistically large number of service descriptions – i.e., 91 descriptions retrieved
from the Web. The approach was compared with a manual evaluation, and with
a more traditional information retrieval approach based on cosine similarity [19].
The KG-based approach substantially outperforms the one based on cosine simi-
larity in selecting the most relevant services, after filtering out irrelevant options.

The major contributions of this research are twofold: (a) a novel NLP method
for substantially decreasing the number of available services found by search en-
gines that match a set of requirements, and (b) supporting requirements analysts
in reducing the time and e↵ort needed for optimal service selection.

This paper is organized as follows. Sect. 2 provide pointers to related works.
Sect. 3 provides an overview of the service selection task to be addressed, as
well as the automated techniques employed in this paper. Sect. 4 presents the
experimental evaluation performed and Sect. 5 discusses the results achieved,
while Sect. 6 provides comments concerning the threats to validity that might
have a↵ected our work. Finally, Sect. 7 concludes the paper.

2 Related Works

Over the last decade, a significant amount of research has been conducted in pro-
viding tools, techniques and methods to deal with the task of service selection [14,
16], and various researchers have proposed to automate the service identification
process. Among these works, the SeCSE project [23] has the aim to create free
and open source methods, tools and techniques for system integrators and ser-
vice providers. Their main objective is to provide a mechanism where discovered
services can be used for improving and refining the initial requirements and thus
bringing better alignment of requirements and business needs to the services and
vice versa. IBM has proposed the SOMA [2] approach, which is an end-to-end
software development method for service oriented solutions. The SENSORIA [22]
project had the aim to develop a new approach for service oriented software engi-
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neering with existing theories, techniques and methods for ensuring correctness
of the procedure and allowing a semi-automatic design process. The usage of
business process (BP) models for service identification is another relevant line
of research. Jamshidi et al. [13] focus on the service-oriented development with
BP models, while Adam et al. [1] propose to use BPs for identifying the services
at the right level of abstraction and granularity. These approaches make the as-
sumption that the BP models will have complete details of their corresponding
processes, which is hard to achieve. These existing approaches require a certain
degree of formalism (e.g., XML, UML, BP models) for comparing the require-
ments and service specifications and do not operate with specifications in NL
and with overload of choice. With a considerably huge number of available ser-
vices, conversion of service specifications to formal notations is a time consuming
task. Our proposed KG approach reduces the sample of available services to a
manageable size without e↵ort of formalisation, and within a short time span.

3 Computing Similarity

The “paradox of choice” in the case of service selection is due to the presence of
too many service options among which the requirements analyst can choose to
satisfy his/her requirements. To address this problem, our goal is to automat-
ically discard those service options that are less relevant for the requirements,
and present a reduced list of services, which can be browsed by the analyst to
perform a selection within a more manageable set of choices. To this end, we wish
to provide an automated technique that ranks the services according to their de-
gree of satisfaction with respect to the set of requirements. Once a ranked list of
services has been automatically produced, the analyst can discard the services
that have lower ranking. The idea of the approach is that automated ranking
can be performed by computing the similarity among the NL content of the re-
quirements and the NL descriptions of the services. The underlying assumption
is that if a requirement and a description of a service are semantically similar in
terms of NL content, the service is likely to satisfy the requirement.

More formally, given a set of requirements R = {r0, . . . , rm}, and a set of
descriptions of services S = {s0, . . . , sl}, we wish to rank the services according
to their degree of matching with respect to the requirements. To this end, we
compute the similarity � of a requirement ri with respect to a service description
sj . The overall ranking K of a service description sj with respect to a set of
requirements R is given by:

K(sj , R) =
mX

i=0

�(ri, sj).

Given |S| service descriptions, we can compute the ranking K of each ser-
vice, and order the services according to K. Then, the analyst can discard the
k services that have lower ranking, and manually analyse the |S| � k services
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with higher ranking. In this paper, �(ri, sj) will be implemented by two func-
tions, namely the Knowledge Graph similarity function, and the classic cosine
similarity [19] function, which are described in the following sections.

3.1 Knowledge Graph Similarity

A Knowledge Graph [10] is a representation of a document set D in the form of
a directed weighted graph KG = {V,E,w}, where V are nodes, E are edges and
w is a weighting function. In our context, the set of documents D is composed
of those documents that give the definitions of the concepts included in the
requirements. For example, if – as in our experimental evaluation (Sect. 4) –
the requirements concern an SMS gateway service, the documents in D will
include a NL definition of what a SMS gateway is, a description of the standard
protocols considered in the requirements (e.g., HTTP, SOAP), as well as other
documents describing relevant concepts mentioned in the requirements. For a
precise definition of E, V and w, the reader should refer to [10]. Here, we give
the essential information required to understand the rest of the paper.

Nodes. Each node v 2 V in the KG is labeled with the morphological root
of a relevant term contained in D. The relevant terms are those terms that are
not part of the so-called stopwords, i.e., words which are common in English such
as pronouns, prepositions, articles and conjunctions. The use of morphological
roots (also called stems) implies that terms such as “communication” and “com-
municator” are both represented by the same node “communic”. We call T the
stems of the unique terms in D that are not stopwords.

Edges. Each directed edge in the graph is associated with the co-occurrence
of two terms in the document set. We say that two terms co-occur when they
appear aside each other in a sentence. Co-occurrence normally indicates semantic
proximity among concepts [20], and therefore we use it to represent concepts
relationships. The nodes of our graph are not labeled with terms, but with
stems. Hence, the concept of co-occurrence is in this case related to stems. The
edges e = (vi, vj) 2 E in our graph are all those couples of nodes such that
the corresponding labels of the nodes co-occur in D. The direction of each edge
represents the order in which the stems connected by the edge can appear in a
sentence of the document set.

Weighting function. Each edge is labeled with a real positive number ac-
cording to the weighting function w. The weighting function w : E ! [0, 1] is the
inverse function of the semantic relatedness of two stems. The more two stems
connected by an edge co-occur in D, the lower the value returned by w.

An example excerpt of a KG extracted from the Wikipedia document for the
term “SMS” is presented in Fig. 1. We see that the weight of the edges is lower
for those stems that frequently occur together in the document (e.g., for e =
(‘text’, ‘messag’), w(e) = 0.058), and have a tighter semantic connection in the
domain. Higher weights (e.g., e = (‘protocol’, ‘SMS’), w(e) = 0.5) or no edge
(e.g, between ‘mobil’ and ‘short’) occur when the semantic connection in the
domain is weaker.
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Fig. 1. Excerpt of a Knowledge Graph

KG-expansion. Given a term, we wish to expand it with the set of concepts
associated to such term in the KG. To this end, we define the term-expansion
function I : T ⇥ KG(D) ! 2T as the function that associates the stem of a
term to all the stems that are directly connected to such stem in the KG. More
formally, given a stem t in T , we define the term-expansion function as:

I(t,KG(D)) = {s 2 T : 9e 2 E, e 2 {(t, s), (s, t)}, w(e)  ✏} [ t

The value ✏ 2 [0, 1] is used to discard the stems connected with low semantic
proximity. If we apply such function to the term “SMS”, we consider the KG
in Fig. 1, and we set ✏ = 0.4 such function will return the set (‘SMS’, ‘messag’,
‘text’, ‘send’, ‘use’, ‘gateway’). The term-expansion function can easily be ex-
tended to the sets of non-stopwords stems q = {q1, . . . , q|q|} of a generic input
document q. We call this function KG-expansion function I, defined as:

I(q,KG(D)) =

|q|[

j=1

I(qj ,KG(D))

Given a requirement or the description of a service – which can be both
regarded as documents q – these can be represented through the sets of their
stems. Stopword removal can be applied to represent them as q. Afterwards,
such sets can be expanded through the KG-expansion function, which basically
extends the concepts included in the service description or requirement with the
associated concepts in the KG.

KG-similarity. The KG-similarity function aims to compute the similarity
between a requirement ri and a service description sj with the support of the KG.
Such similarity function is a Jaccard similarity metric [19] based on the expansion
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of both the requirement and the service description through the function I. We
define the KG-similarity function between ri and sj as:

�KG(ri, sj) =
|I(ri,KG(D)) \ I(sj ,KG(D))|
|I(ri,KG(D)) [ I(sj ,KG(D))|

In a sense, this similarity metric measures the proportion of stems that the
extended version of a requirement and the extended version of a service descrip-
tion have in common, and it assumes that the greater is the number of shared
stems, the higher is the chance of the requirement to be satisfied by the service
description.

3.2 Cosine Similarity

Vector Space Model. In information retrieval [15], it is typical to represent
documents according to the vector-space model [17], which has been also em-
ployed in requirements engineering to support the computation of the similarity
among requirements [6, 8]. With this model, a natural language document q is
regarded as a sparse vector q = {qu0 , . . . , quh}, where each vector component qu
is associated to a term u in the vocabulary of the vector space. Such vocabulary
is made of all the terms included in the documents to be evaluated. In our case,
the vocabulary is made of all the terms in the service descriptions.

The value of a component qu is 0 if the term u does not appear in q, and is
included in (0, 1] if the term appears in q. The value of qu scores the relevance
of the term for the document q. Such relevance is normally computed by means
of the tf � idf score [15].

COS-similarity. The cosine similarity function aims to compute the simi-
larity between a requirement ri and a service description sj within the vector
space, whose vocabulary is made of all the terms included in the service descrip-
tions. Each ri and each sj are first represented according to the vector space
model as ri and sj . Then, their similarity is evaluated according to the cosine
similarity function �COS defined as:

�COS(ri, sj) =
ri · sj
|ri||sj |

Such similarity measures the cosine of the angle between the two vectors,
and it assumes that the more relevant terms the requirement and the service
description have in common, the higher is the chance of the requirement to be
satisfied by the service description. In our implementation we have discarded
stopwords and we have employed stems instead of terms in our vector space
model. Therefore, in the definitions given above, each term u shall be considered
a non-stopword stem u.

4 Experimental Evaluation

The data used for the experiment was reused from the previously conducted
case study on service selection [4]. The case was about an SMS gateway ser-
vice selection, which enables Websites to send and receive text or multimedia
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Table 1. Excerpt of the requirements set adopted in our experiments (top), and ex-
cerpts of two service descriptions (bottom).

ID Requirement

0 Service supports outgoing text messages in Australia
1 Service should not have any hardware or SIM requirements
2 Service should be highly reliable with 99.9% message delivery
... ...
22 SMS transmission delay should be between 3 to 7 seconds
23 Service should o↵er contacts management
24 Service supports retrieval of send messages record
25 Service shows message delivery message
26 Service shows message delivery failure notification
27 Service should provide schedule message delivery

Messente
Send SMS online, SMS gateway API
Easiest group SMS messaging in the universe
Start sending SMS to your customers anywhere
in the world within 60 seconds
Send SMS to 200+ countries
No fees
...

Intel Tech
Why Choose Us?
Cloud Services
Lightening Fast Delivery Times
Amazing 24/7 Support
Reliable 100%
Uptime SLA
...

messages with simple invocation of the remote service API while hiding all the
underlying technical and infrastructure details. Online searches resulted in 91
eligible options providing the SMS gateway services, which were to be evaluated
against the 28 requirements in [4] (an excerpt is shown in Table 1 - top). The list
of 91 services along with the links to their descriptions are available online at
http://goo.gl/CcguZM. Two representative excerpts of NL service descriptions
(according to their Websites at the time of the experiments) are reported at the
bottom of Table 1.

The goal of this experiment was to evaluate to which extent the KG-similarity
function and the COS-similarity function could be employed to discard the less
relevant services, and therefore address the problem of overload of choice by
reducing the list of service options that a requirement engineer has to evaluate.

4.1 Design and Execution

The experiment was carried out separately by the first and second author, re-
ferred in the following as subject 1 and subject 2, respectively. Fig. 2 shows
the di↵erent approaches that have been applied in the experiment. The input of
the experiment – equivalent for both subjects – was composed of the set of NL
requirements R = {r0, . . . , r27}, and the links to the main Web-page of the 91
services. The NL content of these Web-pages represented our service descriptions
S = {s0, . . . , s90}.

Subject 1 performed the service ranking task manually (approach M), and
subject 2 performed the ranking task by first applying the KG-similarity func-
tion (approach KG), and then the COS-similarity function (approach COS).
Approach KG includes a manual set-up approach, where the domain documents
D have been retrieved and selected. Approach COS does not include a manual
set-up and it is fully automatic. For simplicity, we refer to both approaches as
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Requirements R Services S

Approach M

Service 
Scoring Ranking

Ranked List
LM

Service 
Retrieval

Service 
Navigation

KG Creation Distance 
Evaluation

Service 
Retrieval

Documents
Retrieval

Documents
Selection

Service 
Expansion

Requirement 
Expansion

Ranking
Ranked List

LKG

Score Sum

Approach KG

Approach COS
Ranked List

LCOS
Service 

Retrieval
Vector Space 
Construction

Distance 
Evaluation Ranking

INPUT OUTPUT

Fig. 2. Overview of the di↵erent treatments applied. Double-lined ellipses indicate
manual activities.

“automated approaches”. The result of each approach was an ordered list of
services, ranked according to their degree of satisfaction with respect to the re-
quirements. The ranking provided by means of approach M has been regarded
as a ground-truth against which the automated approaches (KG and COS) have
been tested in terms of ability in discarding the less relevant services.

Approach M. In approach M, subject 1 browsed through all the online
service descriptions (Service Retrieval in Fig. 2) and gave a score to the ser-
vices against each requirement (Service Scoring). Whenever the content of the
main Web-page of the service description was not giving enough information to
evaluate the degree of satisfaction with respect to the requirements, subject 1
navigated the Web-links provided in the main Web-page to gather more informa-
tion about the service (Service Navigation). In a sense, the strategy followed
by subject 1 was to use the content of the Web-pages (i.e., S = {s0, . . . , s90}),
and extend such content with additional information that could be found within
the Web-links. For each requirement, a service was scored with three values
i.e. 0= requirement not satisfied; 0.5= requirement partially satisified; 1= re-
quirement completely satisfied. Then, the scores obtained by the service on each
requirement were summed up to obtain a ranking score K for the service (Score
Sum).The output of approach M was a ranked list of services LM (Ranking),
with associated a ranking score K computed according to the scoring schema
described above. The overall time required to perform the evaluation with ap-
proach M was two weeks.

Approach KG. In approach KG, subject 2 automatically retrieved the
NL content of the Web-pages of the services to compare such content (i.e.,
S = {s0, . . . , s90}) with the requirements (Service Retrieval). Then, subject
2 selected a set of documents D to build the knowledge graph. Such set was se-
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lected by automatically downloading the textual content of the Wikipedia pages
that were associated to the terms included in the requirements (Documents
Retrieval). More specifically, for each term in the requirements, the Wikipedia
page associated to that term was downloaded, when available. The downloaded
documents were briefly reviewed to discard irrelevant pages (e.g., the Wikipedia
page for “soap” was referring to the cleaning soap and not to the SOAP proto-
col). Additional domain documents were included in D for those technical terms
that were considered more relevant, namely “HTTP”, “PHP”, “SMS gateway
service”, “SMS”, “SOAP”. In total, D included 28 documents, 23 automatically
selected and 5 manually added. These two activities are referred in Fig. 2 with
the task named Documents Selection. Finally, subject 2 performed the ex-
periments with a Python implementation of the approach described in Sect. 3.1,
which consists in building a knowledge graph from the documents (KG Cre-
ation), and then expanding requirements and services by means of the knowl-
edge graph (Requirement Expansion and Service Expansion, respectively).
The KG extracted from the documents resulted in |V | = 6683 nodes (i.e., in-
dividual stems) and |E| = 37253 edges (i.e., co-occurrences). Evaluation of the
KG-similarity (Distance Evaluation) has been performed with ✏ = 0.5, hence
all the edges with weight 1 – i.e., associated to single co-occurrences – have
been discarded. The output of the experiment was a ranked list of services LKG

(Ranking), with associated ranking score K computed by summing-up the con-
tributions of the KG-similarity function on each requirement. The overall time
required by approach KG was 25 minutes.

Approach COS. In approach COS, subject 2 used the service descriptions
already retrieved with approach KG (Service Retrieval). Then, subject 2 per-
formed the ranking task with a Python implementation of the approach described
in Sect. 3.2, which consists in building the vector space (Vector Space Con-
struction) and in evaluating the distance between services and requirements
through the cosine similarity metric (Distance Evaluation). The output of the
experiment was a ranked list of services LCOS (Ranking), with associated rank-
ing score K computed by summing-up the contributions of the COS-similarity
function. The overall time required by approach COS was 2 minutes.

4.2 Results

To evaluate the results of the experiments, we measured the “degree of cor-
respondence” between the ranking of the ground-truth (approach M) and the
rankings of approach KG and COS, in terms of services that have been consid-
ered less relevant – and therefore discarded – by the three approaches. The index
adopted to evaluate such “degree of correspondence” is the accuracy, which, in
our context, will be referred as filtering accuracy. Given the ranked list LM of
approach M, and given the ranked list LA of one of the automated approaches,
let OM be the set of services discarded by approach M, and let OA the set of
services discarded by one of the automated approaches. Moreover, let k be the
number of services discarded in both approaches (i.e., k = |OA| = |OM |). The
filtering accuracy is:
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↵ =
|OM \OA|

k
.

The value of ↵ has been computed by varying k in [1, |S|], with |S| = 91,
for our experiments. The idea of such evaluation is: if the requirements engineer
discards the k less relevant services form LA, how many of the services discarded
belong to the k less relevant services of LM? Since LM comes from a human
evaluation, high values of ↵ gives confidence on the fact that the automated
approach discards the same services that would be discarded by a human.

Moreover, we have also computed an index of accuracy that considers how
many relevant services are retrieved by the automated approaches. We call this
index selection accuracy, and we define the index as follows (Also in this case,
we evaluate ⇢ by varying k in [1, |S|]):

⇢ =
|(LM \OM ) \ (LA \OA)|

|S|� k
.

0"

0.1"

0.2"

0.3"

0.4"

0.5"

0.6"

0.7"

0.8"

0.9"

1"

0" 10" 20" 30" 40" 50" 60" 70" 80" 90" 100"

Accuracy"COS"

Accuracy"KG"

Fig. 3. Results for the filtering accuracy.

Fig 3 plots the filtering accuracy for approach KG and approach COS (↵KG

and ↵COS , respectively), for increasing values of k. Let us now suppose that the
analyst wishes to filter out the 90% of the irrelevant services (top-right part of
Fig. 3). We see that, to have ↵KG > 0.9 (i.e., a 90% filtering accuracy), we must
have k > 75. This implies that the analyst can focus on the top-16 services, being
confident that 90% of the irrelevant services have been correctly filtered. Slightly
lower performances are achieved for ↵COS . Indeed, the filtering accuracy is above
0.9 only for k > 82, which implies that the analyst has to discard 82 services from
the ranked list, to be sure to filter out the 90% of irrelevant services. However,
as visible by looking at the top-right part of Fig. 3, the ability of filtering the
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Fig. 4. Results for the selection accuracy.

irrelevant services for high values of k can be considered comparable for the two
methods. It is also worth noting that, for low values of k, the filtering accuracy
of approach COS is considerably higher than that of approach KG (see left
part of Fig. 3). We argue that this might be due to an inclusive tendency of
the KG-expansion function. Indeed, such function expands the concepts of a
service description with additional concepts, and even though the description
is rather poor in terms of requirement coverage, it could become richer thanks
to the additional concepts included in its KG-based expansion. However, such
inclusive nature appears to have a negative e↵ect only for lower values of k.
For high values of k (i.e., if we consider only the top-ranked services), the e↵ect
of such inclusive nature appears to be negligible with respect to the positive
e↵ect in providing contextual concepts, which seems to provide a more accurate
requirement-to-service matching. Let us now consider the selection accuracy.
Fig 4 plots the selection accuracy for approach KG and approach COS (⇢KG

and ⇢COS , respectively), for increasing values of |S| � k. From the plot, we see
that, given a set of 15 top-ranked services (local maximum on the left part of
the graph), approach KG is able to identify 53% of the relevant services, while
approach COS identifies only the 13% of the relevant services. To assess the
e↵ectiveness of the approaches, it is useful to compare the selection accuracy
on the top-15 results with a random predictor model. Such a model assumes
to randomly select k = 15 items among the |S| = 91 items: the accuracy for
such a model is k/|S| = 0.16. Hence, the selection accuracy is 16% for the
random predictor, 53% for approach KG and 13% for approach COS. Therefore,
approach KG outperforms the random predictor by 37%, while for approach
COS the accuracy is even lower by 3% with respect to the random predictor.
Note that having a local maximum of accuracy for k = 15, is an encouraging
result in practical terms. Indeed, given a ranked list of results, as occurs for
search engines, people tend to focus on the first page of the results (see, e.g.,
https://chitika.com/google-positioning-value), which normally displays
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10 to 15 items. We conjecture that, for an analyst, 15 items can be considered
a manageable set also in the case of service selection. To have a clear view of
this result, it is useful to look at the tables of the top-15 services of the three
approaches.

Table 2 (left) reports the top 15 services together with their rank according
to the manual assessment, while Table 2 (center) reports the top 15 services
obtained with approach KG. The 8 services in common in the two lists are high-
lighted in bold. The tangible results presented in Table 2, can give us confidence
on the e↵ectiveness of the method: if we consider a requirements analyst who
searches for the best service that satisfy a set of requirements, he/she can have
confidence that the top results of the approach will be likely to be suitable for
its needs. Then, he/she can manually review the top results to select the best
service.

Instead, the top-15 results obtained with approach COS (Table 2 (right))
show that only two of these results appear in Table 2 (left). Therefore, in a
practical scenario, the analyst would have gone through the top-15 services, and
found that really few of them were in line with his/her requirements.

Table 2. Ranking for approach M (left), KG (center), and COS (right).

Service K
Intel Tech 27.5
Skebby 27.5
Direct SMS 27
Via SMS 27
Messente 26.5
Ready to SMS 26
Click Send 25
Bulk SMS 24.5
Clock Work SMS 24.5
Red Oxygen 24.5
Clickatell 24
SMS Broadcast 24
SMS Global 23.5
Essendex 23.5
Nexmo 23.5

Service K
Messente 7.58
One API 4 SMS 6.25
Red Oxygen 5.84
Intel Tech 5.82
Click Send 5.75
Wave Cell 5.74
Cdyne 5.62
Budget SMS 5.61
Plivo 5.47
Clock Work SMS 5.46
SMS Global 5.35
M4U 5.25
TXT Nation 5.25
Nexmo 5.16
Bulk SMS 5.09

Service K
Text Impact 2.45
Text Anywhere 2.42
SMS Roaming 2.35
Vodafone Multitext SMS 2.33
Developer Garden 2.31
Oventus 2.20
Free SMS Craze 2.19
SMS Country 2.15
Text Marks 2.10
Carousel SMS 2.07
Essendex 1.98
Text Local 1.91
Ausie SMS 1.89
Ready to SMS 1.82
GSMA 1.68

5 Discussion and Improvements

The major contribution of the study is the automation of the process of match-
ing requirements against a big set of service descriptions by means of the KG
approach. The KG approach has yielded 53% selection accuracy, and 90% fil-
tering accuracy within a manageable reduced list of services. We argue that
the accuracy of the results may have been a↵ected by the procedure for service
browsing. The KG approach only used the first page of the Websites for service
description to match them against the requirements. Whereas in manual evalu-
ation, the researcher went through further to seek more information to score the
services (i.e., a Service Navigation task was introduced). A similar technique
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can be implemented in the KG approach to traverse the relevant links on the
first page to retrieve further information.

Another issue to be addressed in the KG approach is associated to its coarse-
grained similarity computation. Indeed, requirements and services might include
relevant fine-grained constraints. Consider the excerpt of the “Messente” service
description in Table 1, with respect to requirement 22: “SMS transmission de-

lay should be between 3 to 7 seconds”. From the description, which tells “Start

sending SMS to your customers anywhere in the world within 60 seconds”, we
see that the service is able to send messages within 60 seconds. Therefore, it is
likely to fail in satisfying requirement 22. Nevertheless, the “Messente” service
is evaluated as the top-service for the KG approach. This result is due to two
factors: (1) summing-up the values of the contributions of the di↵erent require-
ments to provide an overall ranking might hide those requirements for which
the service is not the best; (2) our measure of similarity among a requirement
and a description focuses on the “topic” of a requirement (e.g., the transmission
delay), and does not consider the lower-level semantic dimension (e.g., the actual
temporal constraint). The first issue can be easily addressed, by considering the
similarity of the single requirement (i.e., the KG-similarity) with respect to the
whole service, and avoiding to sum-up the contributions of each requirement.
Therefore, the approach already include a way to spot out outliers, i.e., require-
ments not fully satisfied. Instead, to address the second issue, and achieve a finer
grain similarity measure, specific heuristics have to be defined and integrated in
the methodology.

A final aspect to discuss is the time required by the KG approach. Though
25 minutes are acceptable, it is still a rather high amount of time for an au-
tomated approach. The bottleneck of the approach is the Service Expansion
task, which, in our experiments, required 17 minutes. Besides code-level opti-
mization, given the higher e�ciency of the COS approach, which required only
2 minutes in total, we argue that the two approaches could be combined as fol-
lows. The COS approach could be used for lower values of k, where its filtering
accuracy is even higher than the KG approach. Then, the KG approach can be
employed only on the pages that received higher ranking according to the COS
approach. The computation of the exact threshold for the usage of one approach
and the other (i.e., from which threshold value of k is preferable to use the KG
approach) requires further studies with multiple data-sets.

6 Threats to Validity

In our experiments, we have used two treatments, namely approach KG and ap-
proach COS, to compare to a manual service selection treatment (approach M),
considered as a reference baseline. As shown in Fig. 2, the input of each treat-
ment was the same (i.e., requirements and services), and the treatments were
evaluated according to a comparable output (i.e., a ranked list). Two perfor-
mance measures have been employed to evaluate the results, namely the filtering
accuracy and the selection accuracy. Moreover, we have also shown a human-
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understandable view of the results in the form of ranking tables. Therefore the
design of the experiment provides confidence on the results achieved by approach
KG. Concerning a possible researcher’s bias, it is worth highlighting that the two
researchers (subject 1 and 2) operated in parallel in two di↵erent institutions,
and produced their evaluations independently.

The confounding variables that can a↵ect the internal validity of the results
could be attributed to the di↵erence in the scoring procedure adopted by the
manual and automated approaches. Furthermore, the retrieval technique used
in the manual experiment was more comprehensive than that of the automated
ones because, as we mentioned, more Web-pages were traversed to retrieve rel-
evant information and has also impacted the results of the experiment. Though
these two confounding variables could in principle threat the internal validity of
our results, it is worth noting that, in the evaluation, the approaches were com-
pared according to their input and output, which, by experimental design, are
comparable. Hence, the e↵ect of such variables is mitigated by the design of the
experiment. The experiment design, data collection and execution are described
in su�cient details to make it repeatable. However, the service descriptions that
were retrieved from the online URL may change over time (e.g. in case of update
or new release of the Web-site). Therefore, in that scenario, the replication with
similar techniques may provide di↵erent results.

7 Conclusion

With increase in the number of services o↵ering similar functionality, analysts
face the problem of overchoice when they have to select one service against
requirements. In this paper we have presented an approach that automates the
process of matching requirements against service descriptions using Knowledge

Graphs [10, 9]. Though the approach is promising to address the challenges of
service selection, there is still room for improvement in the e�ciency of the
approach and accuracy of the results (see Sect. 5). Our future research will focus
also on comparing the performance of the KG-similarity metric with the other
existing approaches for computing NL requirements similarity (see, e.g., [7, 11]),
to assess their e↵ectiveness in the field of service selection.
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