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Abstract

Our everyday life is pervaded by the use of a number of heterogeneous sys-
tems that are continuously and dynamically available to interoperate in the
networked environment to achieve some goal. The evolving nature of this
environment with no a-priori knowledge of the systems, requires automated
solutions as means to achieve interoperability with the needed level of flexi-
bility. We already investigated and proposed an approach to the automated
synthesis of Connectors (or mediators) between heterogeneous Networked
Systems (NSs) for their functional interoperability at application layer.

In this paper we propose (i) an approach to enhance the Connectors
taking into account performance and dependability aspects spanning pre-
deployment time and run-time and (ii) a Connector adaptation process,
related to the performance and dependability aspects and (iii) a stochastic
model-based implementation of the performance and dependability analy-
sis. By reasoning on systems’ specification, during the pre-deployment phase
the approach produces a mediator that satisfies the functional, performance
and dependability requirements. At run-time, if a performance or depend-
ability violation occurs, an adaptation is triggered: by reasoning on the new
specification, the approach identifies the proper mechanism to solve the prob-
lem and updates the Connector accordingly. In addition, we implemented,
analysed, and critically disussed a case study.

Keywords: Connector synthesis, Dependability, Performance,
Interoperability
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1. Introduction

An always increasing number of heterogeneous Networked Systems (NSs)
pervades our everyday life. Nowadays, we use more and more systems that
are dynamically available in the networked environment and that, by inter-
operating with other systems, allow us to reach some goal. The goal can be
about both functional and/or non functional aspects and has to be satisfied
in order for two systems to interoperate. Abstractly, some of these heteroge-
neous applications could interact, since they have compatible functionalities
and similar interaction protocols. Nevertheless, their ability to seamlessly in-
teroperate may be undermined by mismatches in their protocols (e.g., inter-
actions order or input/output data formats) and non functional requirements.
Solving such mismatches and meeting the non functional requirements, asks
for applications’ adaptation through a Connector. Further, in this evolv-
ing environment, there is no a-priori knowledge of the systems until they are
discovered in the network and possibly learned, and automated solutions ap-
pear to be the most effective way to enable composition and interoperability
of applications with the needed level of flexibility.

We already investigated and proposed an approach to the automated syn-
thesis of Connectors between heterogeneous NSs for their functional inter-
operability at application layer [1, 2], i.e., referring to functional properties
and aiming at allowing NSs to communicate and correctly coordinate. How-
ever, effective interoperability also requires that the Connected system, i.e.,
networked systems and Connector, provides non functional interoperabil-
ity, i.e., the required non functional properties, during their interoperation.
In particular, in this work with non functional properties we refer to issues
arising from the execution environment due to the initial uncertainties about
the knowledge of the environment itself and its unpredictable evolution.
Thus, to support both functional and non functional interoperability, a suit-
able adaptive framework is required that provides a solution to both.

In this paper, we present a new approach for the synthesis of connectors
addressing functional and (some) non functional interoperability in conjunc-
tion. In summary, the main contributions of this paper are the following:
(i) an approach to enhance the functional Connectors taking into account
performance and dependability aspects spanning pre-deployment time and
run-time; (ii) a Connector adaptation process to preserve the Connector
adequacy with respect to non functional requirements along the system life-
time; (iii) a stochastic model-based implementation of the performance and
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dependability analysis. These main contributions are shown through the
implementation, analysis, and critical disussion of a case study.

By reasoning on systems’ specification, during the pre-deployment phase
the approach produces a mediator that satisfies the functional, performance
and dependability requirements. At run-time, when a performance or de-
pendability violation occurs, an adaptation is triggered: the approach, by
reasoning on the new specification, identifies the proper mechanism to solve
the problem and properly update the Connector.

The rest of the paper is organized as follows. Section 2 presents the
considered context, the process followed by our approach, and background
notions. Section 3 depicts a case study used for explanation and experi-
mentation purposes. Section 4 provides the description of the proposed ap-
proach for an automated procedure to provide dependability and performance
stochastic model-based analysis as a support for the synthesis of dependable
Connector, both a pre-deployment time and run-time. Section 5 and 6
provide a critical discussion and related work respectively. Finally Section 7
concludes the paper.

2. Setting the Context

A number of heterogeneous networked systems, e.g., tablet, desktop,
smartphone, laptop, and robots, are dynamically available in the networked
environment. NSs heterogeneity spans many aspects and we focus on ap-
plication layer heterogeneity. In the following we describe an example of
heterogeneous applications that will be detailed and extended in Section 3.

The laptop in Figure 1 runs a client application represented by the gray
icon Appl1 that is suited to directly interoperate, with some performance and
dependability requirements, with a server application represented by the gray
icon Appl1s owned by the Unmanned Ground Vehicle (UGV). Instead, Appl1
is not able to directly interact with the server application represented by the
gray icon Appl2, owned by and running on the Unmanned Aerial Vehicle
(UAV). Appl1 and Appl2, despite some protocol discrepancies and non func-
tional concerns, might be compatible through a Connector C mediating
their differences.

We consider that the NSs and their applications are black box and that,
for each application, NSs expose in their interface: the description of the
interaction behavior and non functional properties, and possibly the non
functional requirements on potential interactions with other NSs. Thus, the
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Connector is the only locus where we can act to make the Connected
system satisfy both functional and non functional interoperability concerns.

From a functional standpoint, we build a Connector such that it makes
the NSs behaviors compatible through a proper interaction with them. For
instance, if a NS sends data with a finer granularity with respect to another
NS, the mediator has to collect all the data information and then to send
them properly to the other.

From a non functional perspective, to make the Connected system sat-
isfy the requirements, we suitably enrich the Connector behavior. For in-
stance, in the described scenario, a performance concern arises because Appl1
wants to interoperate with Appl2 in a way such that the latency between the
sending of a command (by Appl1 ) and the reception of the corresponding ac-
knowledgment sent by Appl2, must be under a given threshold (performance
requirement).

In the following we overview our approach to synthesize Connectors,
developed as part of the Connect project [3], that meet both functional
and non functional concerns, including also the description of our adaptation
process (which are detailed in Section 4).

2.1. Our Approach

Our approach takes place both at pre-deployment time and run-time.
During the pre-deployment time, it takes as input applications’ specification
(see À in Figure 1). By reasoning on all of them, a mediator is automatically
synthesized solving discrepancies and enabling the functional interoperation

Figure 1: Our approach (from À to Æ) and adaptation process (cycle Ä-Å-Æ)
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among them (Connector Synthesis module). By taking as input the syn-
thesized mediator (see Á in Figure 1), and the non functional requirements,
stochastic model-based analysis assesses the desired non functional proper-
ties, and feedback is provided to the Connector Synthesis module (see Â in
Figure 1) about how the system is expected to operate and how to possibly
enrich the behavior of the previously synthesized mediator if the non func-
tional requirements are not satisfied (Connector Analysis module). In order
to solve, if possible, the problem/violation arising from the execution envi-
ronment, the Connector Analysis module identifies a proper mechanism to
improve performance and/or dependability choosing among retry, majority
voting, probing, error correction [4]. We assume that the NSs populating
the environment are able to manage the mechanisms mentioned above that
we use to enrich the Connector. The output of this collaborative com-
putation at pre-deployment time is a Connector C satisfying functional,
performance, and dependability requirements (see Ã in Figure 1).

At run-time the applications and the synthesized mediator, also equipped
with probes to monitor the Connected system [5], are deployed and run-
ning on some devices. When a performance or dependability violation occurs
(see Ä in Figure 1), due to problems arising from the execution environment,
it is identified by the probes and the adaptation process is triggered. By
reasoning on the new systems specification, that is the input systems specifi-
cation modified through their run-time observation, the Connector Analysis
module acts similarly to what it does at pre-deployment time. It identifies a
proper mechanism to improve performance/dependability in order to solve,
if possible, the problem/violation choosing among retry, majority voting,
probing, error correction. Subsequently, the Connector Analysis module
triggers the Connector Synthesis module by providing the needed informa-
tion (see Å in Figure 1) to properly enrich the behavior of the previously
synthesized Connector with the identified mechanism. The output of this
collaborative computation at run-time, given some violation occurrence, is a
new Connector satisfying the functional, performance, and dependability
requirements (see Æ in Figure 1). This concludes one cycle of the adaptation
process (Ä, Å, and Æ in Figure 1). It is worth to notice that the run-time
cycle of our approach is repeated each time a new violation is detected, while
the pre-deployment time activities are done only once.
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2.2. Background Model

In the following, we recall notations to describe the NSs.

2.2.1. Networked Systems’ applications specification

We use Labeled Transition System (LTS) to model applications’ protocol
and refer to ontologies to conceptualize their actions and input/output data,
and to reason on them.

Specifically, we consider what we call enhanced Labeled Transition Sys-
tems (eLTS) that is a quintuple (S, L,D, F, s0) where: S is a finite non-
empty set of states; L is a finite set of labels describing actions with data;
D ⊆ S × L × S is a transition relation; F ⊆ S is the set of final states;
s0 ∈ S is the initial state. The eLTS’ labels are of the form <op, In, Out>
where: op is an observable action referring to an ontology concept or is an
internal action denoted by τ ; an action can have output/input direction de-
noted by an overbar on the action, e.g., act or act. In, Out are the sets of
input/output data that can be produced/expected, whose elements refer to
ontology elements. We are able to describe the following actions with data:
(1) output action with outgoing parameters and incoming return data <op,
In, Out>, where In is produced, while Out is expected; (2) input action
with incoming parameters and outgoing return data <op, In, Out>, where
In is expected, while Out is produced. One at a time In or Out might be
empty because no input/output data is expected/produced. This leads to 4
variants of the actions, two for (1) and two for (2)1.

Between protocols, we assume synchronous communications on comple-
mentary actions. Actions <op1, In1, Out1> and <op2, In2, Out2> are com-
plementary iff op1 = act and op2 = act and In2 ⊆ In1 and Out1 ⊆ Out2 (and
similarly with exchanged roles of op1 and op2). Moreover, we consider finite
traces by assuming a bound on the number of cycles execution.

Ontologies describe domain-specific knowledge through concepts and re-
lations, e.g., the subsumption: a concept C is subsumed by a concept D in a
given ontology O, noted by C v D, if in every model of O the set denoted
by C is a subset of the set denoted by D [6]. We assume that each NS action
and datum refer to some concept of an existing domain ontology so that we
can reason on them in order to find a common language between protocols.

1Note that (1) (<op, In, Out>) can be equivalently described by the two following
actions: <op, In, −> and <op, −, Out>. This applies similarly to (2) (<op, In, Out>
can be described as <op, In, −> and <op, −, Out>).
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2.2.2. Non functional concerns: properties, requirements, mechanisms

The NSs dependability and performance model and required properties
are expressed as metrics and guarantees. Metrics are arithmetic expressions
that describe how to obtain a quantitative assessment of the properties of
interest of the Connected system. They are expressed in terms of states
and transitions of the eLTS of the NSs. Guarantees are boolean expressions
that are required to be satisfied on the metrics.

In order to enrich the Connector, the four mechanisms that we can
leverage on and apply singly or in combination are: retry, majority voting,
error correction, and probing that have been presented in [4]. The Retry,
Majority Voting and Error Correction mechanisms are specifically applied if
the metric to be analysed is related to dependability aspects. These mecha-
nisms can be applied when the metric under analysis is a function of failure
probabilities of all the communications/actions between the Connector and
the NSs and there are soft or no timing constraints on the application. The
Probing mechanism is applied when the metric to be analyzed is related to
performance aspects under generic constraints, in particular related to timing
aspects. In general this mechanism allows to exploit the most performable
communication channels available for transmission, selecting for the use the
most efficient one. In the following we briefly describe the application of the
four mechanisms to the Connector.

Retry mechanism. The Connector sends again its request n times if a
confirmation/ACK is not received back from a NS. The sent messages must
have a sequence ID in order to identify them.

Majority voting mechanism. A portion of the Connector needs to run
on each NS. On the sender side, the Connector needs to access the data in
order to send it on several channels. On the receiver side, the Connector
has to choose the correct data to be passed to the NS based on a voting
policy.

Error correction mechanism. A portion of the Connector needs to run
on each NS. On the sender side, the Connector needs to access the data
to be sent and to know extra information necessary for the error detection
and reconstruction in order to send them over two channels. On the receiver
side, the Connector has to receive the data and the extra information from
two channels, in case of error a correction is applied to deliver correct data
to the NS.

Probing mechanism. A portion of the Connector needs to run on each
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NS. On the sender side, the Connector checks the performance of redundant
channels in order to send the data over the better one. On the receiver side,
the Connector has to receive from either channels and pass the data to the
NS.

2.2.3. Synthesis and DePer Enablers

An Enabler is intuitively a networked entity that includes some intelli-
gence and logic2. To enable a required connection it is needed the collabora-
tion of several enablers.
-Synthesis- In [1] and [2] is proposed an approach for the automated synthe-
sis of mediators that overcomes interoperability issues between two heteroge-
neous emerging protocols, given the applications model, the ontology describ-
ing the domain-specific knowledge and a bound on the number of executions
of cycles making the traces finite. Figure 2 shows our synthesis methodology.
Our emergent mediator is automatically elicited and synthesized. It makes
the communication and correct coordination between heterogeneous proto-
cols possible despite a set of mismatches that we characterized in [7] together
with their related mediating connector patterns. The approach consists of
three phases: identification of the common language, behavioral matching,
and mediator synthesis. The Identification of the Common Language (Ab-
straction) (À in Figure 2) takes as input the applications models and the

2Connect EU project- http://connect-forever.eu/

Identifying the 
Common Language 

Mediator 
Synthesis 

Behavioral 
Matching 

1 

2 

3 

Appl-k Appl-j 

Abstract CONNECTOR Model Ontologies 

Figure 2: Synthesis Approach
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Figure 3: DePer Architecture

subset of the domain ontology they refer to, and identifies the applications
common language through the ontologies. The common language makes ap-
plications behavior comparable to reason on them. The Behavioral Matching
(Matching) (Á in Figure 2) checks the applications behavioral compatibility,
e.g., two applications can synchronize at least on one trace reaching one of
their respective final state. This step identifies possible mismatches to be
reconciled [8]. Finally, the Mediator Synthesis (Synthesis) (Â in Figure 2)
produces a (intermediary) mediator that addresses the identified mismatches
between the two applications.
-DePer- This enabler performs dependability and performance analysis through
a stochastic model-based approach. DePer is composed by five modules:
Builder, Analyser, Evaluator, Enhancer and Updater [9]. Figure 3 shows its
architecture.

The Builder module takes as input the specification of the Connected
system. This specification is given as eLTS annotated with non-functional
information necessary to build the dependability and performance model of
the Connected system. The model is built up using the Stochastic Ac-
tivity Networks (SAN) formalism [10]. The Analyser module extends the
model developed by the Builder with reward functions suitable to quanti-
tative assessment of the dependability and performance properties required
by the NSs. For the assessment purpose, this module exploits the Möbius
tool [11]. The Evaluator module is in charge of checking whether the anal-
ysis results match with the properties required by the networking systems
willing to communicate, or not. The Enhancer module is activated when the
dependability and/or performance requirements are not satisfied, both at

9



pre-deployment and at run-time, and tries to enhance the Connector with
dependability mechanisms in order to satisfy the requirements. The issue of
how to select both the proper dependability mechanism, and the elements of
the Connector where to include the mechanism, have been tackled in [12],
where a method has been described, which is out of the scope of this paper.
Finally, the Updater module is in charge to update the values of model pa-
rameters used in the analysis [13], on the basis of the data related to real
executions of the Connected system as gathered through a monitoring in-
frastructure. Keeping the analysis model updated is very important in the
Connect context, to cope with evolution of NSs and possible inaccurate in-
formation known at pre-deployment time. Based on the monitored data, this
module may trigger a new analysis by reactivating the cycle on the Builder,
Analyser and Evaluator.

3. GMES Case Study: the Forest-fire Emergency

In order to show how Synthesis and DePer work in an integrated way,
this section describes our scenario based on the Global Monitoring for En-
vironment and Security (GMES) European Programme3. The GMES emer-
gency management service covers several catastrophic events, e.g., floods,
earthquakes, fires.
Scenario. We concentrate on the management of a forest-fire emergency
situation [14] close to a border village and a factory between Country A and
Country B.

The scenario is shown in Figure 4. Country A’s Command and Control
center (C2-A) is in charge of forest monitoring and forest fire management.
During a forest fire, the fire goes wider and there is a real threat to the vil-
lage and the factory. Thus, Country A asks Country B to provide support.
Country B supplies reinforcement resources to be used by the C2-A of Coun-
try A. Such resources have the same aim with respect to similar resources
of Country A, (e.g., to provide high quality images or weather information
of the area of the fire), but use different application protocols. Thus, it is
needed to synthesize a mediator to allow Country A to exploit them dur-
ing the emergency. The applications we consider in the scenario are: i) the
C2-A application of Country A -Appl1 ; ii) an Unmanned Aerial Vehi-
cles (UAVs) application of Country B -Appl2 - equipped with various Video

3http://www.gmes.info
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Figure 4: The Forest-fire Emergency case study

Cameras to get a better view of the fire front close to the village; iii) the
Weather Service application of Country B -WES - in order to continuously
get information about temperature, humidity and wind of the affected area.

Country B provides to Country A applications UAVs and WES that
in principle are compatible with some applications that Country A already
owns. However, due to some protocol discrepancies and non functional con-
cerns, the applications of Country A cannot seamlessly interoperate with
the ones of Country B and a Connector that mediates their differences is
needed in between.

In the described scenario, a performance concern arises because when
C2-A sends an order to move to a robot (e.g., UAV) it requires to receive an
acknowledgment within a certain time (latency). The latency requirement,
specified by C2-A, is to receive an acknowledgment within 5 time units. A
dependability issue arises when considering the Weather Service and con-
cerns the percentage of weather data that C2-A correctly receives from the
Weather Service (coverage). The coverage requirement specified by C2-A is
to correctly receive at least the 90% of the required weather data. In order

11



to meet the above mentioned non functional requirements, a proper Con-
nector is needed for the Connected system. In the following we describe
the behavior of NSs involved in our scenario.

3.1. Command and Control Center of Country A

Figure 5 shows the eLTS of the Command and Control Center (C2-A)
including actions to interact with both the WES and the UAV.

To get weather information of an area, C2-A simply sends a getWeather
message with the relative zipCode, and receives back weatherInfo from the
Weather Station including: temperature, humidity, and wind condition. C2-
A can also get a weather forecast of the area in a specific period through
a getForecast message. To access the resources operating in the field and
equipped with one or more video cameras (e.g., the UGVs or UAVs), C2-A
first needs to authenticate with the resource by sending a getToken message
and receiving back the token. Then, it can instruct the resource to move
forward, backward, left or right, by sending the proper message and receiving
back a response message about the movement. Then, C2-A can choose a

<getToken, {operatorName}, {token}> <move, {token, distance}, {response}>

<selectCamera, {cameraId}, {}>

<exit, {token}, {result}>

<getForecast, {zipCode, operatorName, period}, {weatherInfo}>

5
1

0 4

<selectCamera, 

{cameraId}, {}>

2

6

7

<getForecast, {zipCode, operatorName, period}, {weatherInfo}>

3

<getWeather, {zipCode}, {weatherInfo}>

8

<exit, {operatorName}, {result}>

<getWeather, {zipCode}, {weatherInfo}>

<selectCamera, {cameraId}, {}><getVideo, {cameraId, level}, 

{videoStream}>
9

<selectCamera, {cameraId}, {}>

<getVideo, {cameraId, level}, {videoStream}>

10

<exit, {token}, {result}>

11

<move, {token, distance}, {response}>

<move, {token, distance}, {response}>

Figure 5: eLTS of the Command and Control Center where the action move (<move,
{token, distance}, {response}>) represents four alternative commands to move: backward,
forward, left, and right respectively.
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0

3

<getTemperature, {zipCode}, {temperature}>

<getForecast, {zipCode, period}, {weatherData}>

<getHumidity, {zipCode}, {humidity}>

<getWind, {zipCode}, {windSpeed, windDirection}>

1

2

<getTemperature, {zipCode}, {temperature}>

<getHumidity, {zipCode}, {humidity}>

<getWind, {zipCode}, {windSpeed, windDirection}> 4

5

<getForecast, {zipCode, period}, {weatherData}>

Figure 6: Behavior of the Weather Service

camera (selectCamera) installed on the resource and receive the video stream
(getVideo) with a specified zoom level.

3.2. Weather Service of Country B

Figure 6 shows the eLTS of the Weather Service (WES). The WES expects
to receive either a weather forecast request (getForecast) about a specified
area of interest (zipCode) in a certain period of time, or the current weather
information (getTemperature, getHumidity, getWind). In the case study the
user is interested to know the current weather information.

3.3. UAV and integrated Video Cameras of Country B

Figure 7 shows the eLTS representing the UAV and its integrated Video
Cameras. The UAV first receives an identification request (getIdentifier) for
which it gives back an identifier followed by a takeOff request for which a
response is sent back. After the takeOff, the UAV expects to receive either a
request to land and then to quit or to move (left, right, forward, backward,
up or down). For each movement order the UAV sends back a response
message. Moreover, during the flight, the UAV can receive a chooseCamera
request and it sends back to the requester the real time video stream taken
from the chosen video camera. The chooseCamera can be followed by any
number of zoomIn and/or zoomOut requests until the reception of a request
to land and then to quit.
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0

2

1
<land, {identifier}, {response}>

<takeOff, {identifier}, 

{response}>

3

<move, {identifier, distance}, 

{response}>

<move, {identifier, 

distance}, {response}>

5

4

<getStream, {camIdl}, 

{stream}>

<chooseCamera, 

{camId}, {}>

<chooseCamera, {camId}, {}>

<move, {identifier, distance}, {response}>

<move, {identifier, distance}, 

{response}>

6<chooseCamera, 

{camId}, {}>

<land, {identifier}, 

{response}>

<land, {identifier}, {response}> 7

<quit, {identifier}, 

{result}>

<chooseCamera, {camId}, {}>

<getIdentifier, {userData}, 

{identifier}>
<zoomOut, {camId, 

zoomLevel}, {stream}>

<zoomIn, {camId, 

zoomLevel}, {stream}>

Figure 7: Behavior of the UAV and its integrated Video Cameras, where the action move
(<move, {identifier, distance}, {response}>) represents four alternative commands to
move: backward, forward, left, right respectively).

4. Our Approach to the Enhanced Connector Synthesis

In the following we detail our approach for the synthesis of enhanced
Connectors to address functional, performance, and dependability aspects
leveraging on the forest fire case study. We first investigate a scenario consid-
ering black box NSs and applications. Then, by relaxing this assumption, we
consider another scenario where NSs trust and authorize the Connector to
access them in order to apply some mechanisms that enhance the synthesized
Connector.
Our preliminary study conducted in [5], shows the identified collaboration
among the Synthesis, DePer and Monitor Enablers in order to provide on-
the-fly dependable mediation between heterogeneous NSs. In the following
we focus on the cooperation between DePer and Synthesis Enablers and
provide a detailed description of an approach that is part of the high level
vision provided in [5].

4.1. Our Approach @ Pre-deployment Time

The approach (illustrated by Figure 1) takes as input systems’ specifi-
cation, i.e., Command and Control Center, UAV with Video Cameras, and
Weather Service, including: the applications behavior (as enhanced Labeled
Transition System) in terms of actions and input/output data, the applica-
tion domain ontology and sub-ontologies of the applications describing the
meaning of their actions and data, a bound on the number of executions of
cycles in the applications behavior.
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Figure 8: Some Ontological Correspondences

The first computation is done by the Synthesis module [1] by reasoning
on the input and following the three phases described in Section 2.2.3, i.e.,
identification of the common language, behavioral matching, and mediator
synthesis. First, the common language among the actions and data of Appl1,
Appl2, and WES is identified by classifying their respective sub-ontologies
into the GMES application domain ontology through an ontology reasoner
revealing the correspondences (see Figure 8 for some examples). Then, the
behavioral matching checks the behavioral compatibility on the eLTSs of
Appl1, Appl2, and WES, i.e., it checks that the applications can synchronize
at least on one trace reaching one of their respective final states by properly
reconciling possible mismatches through a mediator. Finally, the mediator
synthesis automatically produces a Connector that addresses the identi-
fied mismatches/discrepancies between the applications thus enabling their
functional interoperation.

Considering our case study, this step takes as input: the eLTSs of C2-
A (Figure 5), Weather Service (Figure 6), UAV with its integrated Video
Camera (Figure 7); the GMES domain ontology and its sub-ontologies de-
scribing the applications actions and data to identify their common language
(Figure 8). The output of this step is the mediator shown in Figure 9.

After, DePer automatically builds the dependability and performance
model of the Connected system, through the Builder module, as described
in Section 2.2.3. It takes as input: the eLTS of the intermediate mediator
synthesized during the previous stage, the annotated non functional data of
the NSs (i.e., the time to complete, the firing and failure probability of each
labeled transition), and the dependability and performance requirements in
terms of metrics and guarantees. DePer automatically builds the Con-
nected system model in terms of SAN models [10], as shown in Figure 10.
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<getVideo, {cameraId, level}, ->

15

34

0

<getToken, {operatorName}, ->
1

<getToken, -,  {token}>

<getIdentifier, {userData}, {identifier}>
2

3
<getForecast, -, {weatherInfo}>

29

<getForecast, {zipCode, operatorName, period}, ->

<getForecast, {zipCode, period}, {weatherData}>

30

31

<getForecast, -, {weatherInfo}>

32
<getForecast, {zipCode, operatorName, period}, ->

<getForecast, {zipCode, period}, {weatherData}>

33

<exit, {operatorName}, {result}>

16

17

<selectCamera, {cameraId}, {}>

<chooseCamera, {camId}, {}>

<getVideo, -, {videoStream}>

18

19

<getStream, {camId}, {stream}>

<zoomOut, {camId, zoomLevel}, {stream}>

<zoomIn, {camId, zoomLevel}, {stream}>

<getWeather, -, {weatherInfo}>

<getWeather, {zipCode}, ->

20

21

<getTemperature, {zipCode}, {temperature}>

<getHumidity, {zipCode}, {humidity}>

<getWind, {zipCode}, {windSpeed, windDirection}>

23

22

24

<getWeather, {zipCode}, ->
<getTemperature, {zipCode}, {temperature}>

<getHumidity, {zipCode}, {humidity}>

<getWind, {zipCode}, {windSpeed, windDirection}>

25 26

28
27

<getWeather, -, {weatherInfo}>

4

<move, {token, distance}, ->

6
<move, {identifier, distance}, {response}>

<move, -, {response}>

5

7

<takeOff, {identifier}, {response}>

<move, {token, distance}, ->

8

9

10

<move, {identifier, distance}, {response}>

<move, -, {response}>

<exit, {token}, ->

<land, {identifier}, {response}>

<quit, {identifier}, {result}>

11

12

13

<exit, -, result>

<selectCamera, {cameraId}, {}>

<chooseCamera, {camId}, {}>
14

<exit, {token}, ->

<move, {token, distance}, ->

<selectCamera, {cameraId}, {}>

Figure 9: Behavior of the Mediator, where the action move (<move, {identifier, distance},
{response}>) represents four alternative commands to move: backward, forward, left,
right (<backward, {identifier, distance}, {response}>, <forward, {identifier, distance},
{response}>, <left, {identifier, distance}, {response}>, <right, {identifier, distance},
{response}> respectively).

Regarding the forest fire scenario, we recall that the input eLTSs are:
the intermediate mediator of Figure 9, the C2-A in Figure 5, the UAV of
Figure 7, and the Weather Service in Figure 6. Further, we recall that the
non functional requirements are: latency as a performance indicator, mea-
sured from when C2-A sends one of the possible movement order (<move,
{token, distance}, −>) to when it receives an acknowledgment (<move, −,
{response} >); coverage as a dependability indicator, given by the percenta-
ge of weather data that C2-A correctly receives from the Weather Service.

In order to assess the desired non functional properties, DePer performs
a stochastic model-based analysis through the Analyser module. The results
are then verified, by the Evaluator module, to check whether they meet or not
the NSs requirements of the Connected system. At this point, two different
events may occur: (i) the dependability and performance requirements are
satisfied or (ii) the analysis results do not meet the requirements. In both
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cases DePer provides to the Synthesis module feedback about the outcome
of the analyses. In case of unsatisfied requirements, the Enhancer module is
in charge of selecting one of the existing mechanisms and of proposing how
to enhance the Connector.

Considering our case study, the analysis, performed by DePer, returns as
output a positive feedback on the performance requirement (the Connected
system satisfies it); while it returns a negative feedback on the dependabil-
ity requirement that is not satisfied. Hence, an enhancement is needed to
properly enrich the mediator to let the Connected system satisfy also the
dependability requirement (if possible).

The output of this collaborative computation between Synthesis and De-
Per at pre-deployment time, given the initial knowledge of the systems, is
an enhanced Connector satisfying functional, performance, and depend-
ability requirements. Regarding the case study, the output of this stage is
the enhanced Connector including the Majority Voting mechanism (see
Figure 11) as indicated by DePer through the analysis of the Connected
system, as detailed in the next subsection. Figure 12 shows the eLTS of the
Connector enhanced with the majority voting mechanism on the portions
highlighted by the small ellipses.

The big ellipse shows the portion of eLTS representing the majority voting
mechanism enhancement that describes all the possible interleavings of a
message sent over three channels (X1 that is message X sent over channel
1, X2 over channel 2, and X3 over channel 3). This behavior is contained
in each small ellipse where Xi, the generic message X over channel i, is
instantiated with the proper message. From the initial state of the eLTS, the

Figure 10: SAN model of the Connector

17



Figure 11: SAN Connector model highlighting the portion where to integrate the Ma-
jority Voting mechanism (represented inside the big ellipse)

Figure 12: Enhanced Connector model with majority voting mechanism. The enhance-
ments are highlighted by the ellipses

mechanism is applied to: (i) < getTemperature, − , {temperature} > where
Xi = Ti meaning that X1 = T1 = < getTemperature, − , {temperature}
>CH1, X2 = T2 = < getTemperature, − , {temperature} >CH2, and X3 =
T3 = < getTemperature, − , {temperature} >CH3; (ii) < getHumidity, −
, {humidity} >, and (iii) < getWind, − , {windSpeed, windDirection} >.

Figure 13 shows an example of mediated interaction between C2-A and
UAV.
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Analysis on the Forest Fire Case Study. Based on the above de-
scribed scenario, we performed through Möbius [11] the analyses on the Con-
nected system in order to check if the synthesized Connector satisfies the
dependability and performance requirements (namely coverage and latency).

The first analysis is related to dependability issues and is intended to
assess the measure of coverage, i.e., the percentage of data that the C2-A
correctly receives from the Weather Service. The results obtained from the
pre-deployment analysis are shown in Figure 14, where the trend of the cov-
erage is plotted (on the y axis) at increasing values of failure probability of
the communication channel (on the x axis), and the coverage threshold is
shown at the value of 0.90 (i.e., the 90% of all the sent data is correctly
received), as specified in the C2-A requirement. By observing the results
in the figure, we note that the synthesized Connector does not satisfy the
dependability requirement for any value of failure probability. An enhance-
ment is performed on the intermediate Connector by properly including a
Majority Voting mechanism [4] (as shown in Figure 11) and a new analysis
is performed. The results obtained on the enhanced model are also shown

Figure 13: An interaction between C2-A and UAV
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in Figure 14. Specifically, for values greater than 0 and less or equal than
0.2, the synthesized Connector allows the Connected system to satisfy
the dependability requirement being over the threshold. For values of failure
probability greater than 0.2 the Connector does not satisfy the coverage
requirement. Note that the use of this dependability mechanism allows to
satisfy the coverage requirement when the failure probability is less than 0.2.

4.2. Our Approach @ Run-time

At run-time the applications and the synthesized mediator, also equipped
with probes to monitor the Connected system [5], are deployed and run
on some devices. The probes, encoded into the Connector, monitor the
messages exchanged among the NSs involved into the communication and
related to the metrics of interest. Figure 15 shows our approach at run-time
on the case study.

The dynamism, evolvability, and poor knowledge characterizing the con-
text we are considering, might cause a violation of the performance and de-
pendability requirements at run-time. In our scenario, the Updater module
of DePer identifies a latency (performance) violation through the probes.
By reasoning on the new systems specification, according to some internal
predefined policies [12], DePer selects the Probing mechanism. Allow-

Figure 14: Coverage assessment as a function of failure probability of the communication
channel
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ing the Connector to continue operating, the Builder module updates the
model by including the selected enhancing mechanism and new analyses are
triggered by the Analyser module to verify through new analysis on the en-
hanced Connector whether it fulfills the dependability and performance
requirements. When the employed mechanism is able to contrast the prob-
lem/violation, DePer triggers the Synthesis by providing it the needed in-
formation to properly enrich the previously synthesized Connector with
the suggested mechanism, thus producing a new Connector. It is impor-
tant to observe that the time required for the analysis depends on the specific
system under analysis, thus varying according to the extent of the problem.
Details on timing with respect to the specific case study adopted are provide
in Section 5. Interesting issues to be investigated as future work are the
compositional synthesis of the Connector enhancements and the run-time
management of the system enhancement, i.e., how to safely pause and restart
the Connected system execution, while the overall system is running, in a
way such that the intervention is as less intrusive as possible with respect to
the ongoing interaction.

Analysis on the Forest Fire Case Study. Considering our case study,
the analysis, performed by DePer, returns feedback about the latency re-
quirement that is not satisfied, and hence an enhancement is needed also at
this stage. We recall that the measure of latency we are focusing on, is related

Figure 15: Our Approach at Run-time
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to the communication efficiency of the channels between the Connector and
the networked systems.

Specifically, based on the given definition of latency, and on the charac-
teristics of the scenario, we have to highlight that the first movement order of
C2-A is performed by the UAV after the takeOff operations, thus increasing
the latency.

Once the Updater module updated the model with real value of the Con-
nected system executions, as gathered through the monitoring system, a
new analysis is needed at run-time. Figure 16 shows the results obtained
through the analyses on latency at varying the transmission rate of the com-
munication channel between 0.1 and 1 (on the x axis).

The analysis results show that the requirement, set to the value 5 time
units, is never satisfied during the take off phase, while during the flight
phase it is not met for values of distribution rate less than 0.5. Through a
generic strategy for automating the selection of an appropriate dependability
and performance mechanism, which is fully detailed in [12], we identify that
candidate mechanism to improve the Connected system with respect to the
timing constraints, is the Probing mechanism (briefly described in Section 2).

The results obtained when employing the mechanism are also shown in

Figure 16: Latency assessment at varying of the rate of the distribution
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Figure 17: SAN Connector model highlighting the portion where to integrate the Probing
mechanism (represented inside the big ellipse)

Figure 16. We note that, for values of distribution rate greater than 0.8, the
Connected system is able to satisfy the requirement also during the take
off phase. Figure 17 shows the SAN model of the Connector with the zoom
where Probing has been employed. Similarly, the eLTS of the Connector
is enhanced by Synthesis through the mechanism indicated by DePer, as
already shown for the pre-deployment case in Section 4.1.

5. Discussion

The architectural structure described in this paper constitutes an im-
portant step towards the definition of an automated procedure to provide
dependability and performance analysis, as a support for the synthesis of
dependable connectors, and to implement the feedbacks obtained from the
analysis into an enhanced synthesized connector meeting functional and non
functional requirements. The adaptation process, realized through the syn-
ergic cooperation between Synthesis and DePer, that allows continuous
adaptation of the synthesized connector during its lifetime, has been defined
and detailed through a case study in the GMES context. However, there are
various aspects that still need to be investigated to fully reach the ambitious
goal of automated cooperation between connector’s synthesis and analysis,
especially at run-time.

Among the open issues that need further investigations we mention: anal-
ysis optimization, compositionality of the proposed solutions, and scalability
aspects.
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1. How to optimise the analysis in order to respect time constraints.
The definition and solution of dependability and performance models may
become a significant time consuming process depending on the complexity
of the NSs and applications involved. For the case study involving the UAV
and integrated video camera, the analyses performed by DePer took around
25 seconds on a Quad core processor like Intel Core i7-3770T, and even less
for the Weather service case, since the resulting model was smaller. Given
that the synthesis of the Connector is an on-the-fly activity, which is per-
formed once the interoperability willingness has been manifested by one or
more NSs, efficient methods need to be put in place to make the Connect
support infrastructure valuable and applicable in practice. Approaches re-
lying on compositional modeling as well as compositional solution methods
would therefore be highly desirable. Currently, the DePer prototype is
not equipped with such optimization features and, when at run-time vio-
lation of non functional properties is revealed, a new analysis is performed
by Analyser with the updated model parameters as re-determined through
the on-line observations. An improvement, which seems to be easily accom-
modable in the current implementation, would be to have parametric timing
and reliability expressions attached to each dependability mechanism model,
to be directly used in the Connected model as compact parameter val-
ues instead of enriching the Connector by including the whole mechanism
model. Specularly, also optimisation of the synthesis process would be highly
recommended.

2. Compositional solution methods for both the dependability and per-
formance model and the synthesis process, when the Connector is derived
as specialisation of an already synthesized and analyzed Connector. This
would be beneficial for the whole chain between DePer and Synthesis, by
properly reusing and adapting template models, thus gaining on efficiency
of all the service chain supporting heterogeneous and dynamically evolving
interoperability.

3. Scalability aspects. Both synthesis and analysis do not have limita-
tions to address Connected systems made up of a potentially huge number
of NSs, e.g., in the order of hundreds or thousands, unless those limitations
characterizing the model-based stochastic analysis and synthesis domains
(e.g., due to explosion of the states until resolution is no more affordable).
Of course, scaling the number of components involved is paid by a higher com-
plexity of the process and time to produce a suitable Connector. Improving
on optimization features surely goes in the direction of favoring scalability
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at a more affordable price.
Given the extremely high challenges we had to face, we have approached

our research in steps of increasing degree of complexity, and the studies per-
formed so far were primarily directed to consolidate a feasibility study of
the proposed approach, without focusing deeply on efficiency aspects. This
is a strong future exploration area. Towards this direction, we will finalize
the implementation of the overall approach, including the actions towards
all the actors involved in the Connected system in execution. The point
is that, when a violation on non functional properties is detected at run-
time, actions need to be taken about the ongoing executions of the Con-
nected system. As already discussed in the previous section describing our
approach at run-time, DePer gathers on-line information to update and re-
fine the analyses performed at pre-deployment time, to cope with degrees of
uncertainties about, and evolution of, the NSs behaviors. During the period
of data acquisition from monitoring and internal processing of the gathered
data, possibly triggering a new analysis, executions of Connected system
instances involving the Connector under observation are carried on. As
soon as conditions change leading to violation of required properties and a
new analysis establishes that adaptation of the currently used Connector
is required through its enhancement by a dependability mechanism, or that
no enhancement is possible through the available options, the Connector
in place needs to be stopped and adjustments at synthesis level is required (a
complete new synthesis could be necessary). After deployment, the adapted
(or newly synthesized) Connector becomes operative again. From this de-
scription, interaction and integration with other units of the Connect en-
vironment need to be addressed, as well as implementation details to realize
the involved steps.

6. Related Work

A big effort has been devoted in the literature to the investigation of the
interoperability problem in the form of supervisory control synthesis [15],
discrete controller synthesis [16], component adaptors [17], protocol conver-
sion [18], [19], [20], converter synthesis [21] to mention few.

The theory of mediator, on which we build upon, is closely related to
the seminal paper by Yellin and Strom on protocol adaptor synthesis [22].
They propose an adaptor theory to characterize and solve the interoperabil-
ity problem of augmented interfaces of applications. The authors formally

25



define the checks of applications compatibility and the concept of adapters.
Furthermore, they provide a theory for the automated generation of adapters
based on interface mapping rules, which is related to our common language
of protocols found through the domain ontology.

In more recent years an increasing attention has been paid in the Web
Service area where many works are related to our synthesis of mediators.
Among them, papers [23, 24] propose a formal model to describe services
and adapters and to automatically generate adapters. The work [25] presents
an approach to specify and synthesize adapters based on domain-specific
transformation rules and by using existing controller synthesis algorithms
implemented in the Marlene tool4. The paper [26] on behavioral adapta-
tion proposes a matching approach based on heuristic algorithms to match
services for the adapter generation taking into account both the interfaces
and the behavioral descriptions. Moreover, the Web services community has
been also investigating how to actually support service substitution to en-
able interoperability with different implementations of a service (e.g., due
to evolution or provision by different vendors). Based on the assumption
that providing semantic annotations through the use of ontologies can facil-
itate the utilization of services more accurately, the authors in [27], aim at
highlighting the negotiation process between agents and Web services by in-
troducing a middleware based approach along with the ontologies to describe
the semantic annotations thus resulting in the automation of service discov-
ery to service invocation. Our mediator synthesis work relates, for instance,
to [28] by sharing the exploitation of ontology to reason about interface map-
ping and the synthesis according to such mapping. Their approach can be
seen as an instance of ours.

In recent years, the Connect EU project5 aimed to allow seamless inter-
operability between heterogeneous protocols at various levels. The project
adopted an approach for the on the fly synthesis of emergent Connectors
[1] via which Networked Systems (NSs) communicate. The emergent Con-
nectors (or mediators) are system entities synthesized according to the be-
havioral semantics of protocols run by the interacting parties at application
and middleware layers. The synthesis process is based on a formal founda-
tion for Connectors, which allows learning of NSs, reasoning about NSs and

4http://service-technology.org/tools/marlene
5Connect Web Site - http://connect-forever.eu/
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adapting the interaction behavior of NSs at run-time through Connectors.
We conducted preliminary studies about functional and non functional

interoperability in conjunction and preliminary results are presented in [29],
[5], and [30].

In particular, papers [29] and [5] mainly focus on understanding the
needed collaborations among different systems - in order to properly realise
that. Specifically: the work in [29] briefly sketches an embryonic idea of com-
bining functional and non functional interoperability; this idea is realized in
this paper while [29] focuses on the collaboration between the synthesis ap-
proach and a monitoring system.
The work in [5] presents first thoughts on the interplay among the synthe-
sis approach, a monitoring system, and the dependability and performance
analysis system. This paper deeply investigates the interplay between the
synthesis approach and the dependability analysis and proposes concrete so-
lutions.
Paper [30], instead, proposes an automated solution for the synthesis of self-
adaptive connectors. Specifically: the work in [30] focuses on user perfor-
mance requirements: the synthesised connector is self-adaptive with respect
to run-time changes in the user performance requirements. This paper is
significantly different from the one presented in [30]: the work in [30] prunes
the connector in order to satisfy user performance requirement changes, while
this paper takes into account completely different non functional issues and
enhances the functional connector with proper mechanisms.

Several works have been done in recent years that relate to our connector
adaptation process with respect to performance and dependability aspects
proposed in this paper. For instance, paper [31] describes a method for the
specification of self-adaptive software systems using a UML based modeling
language where at design time is possible to check properties like adaptation
rule set stability and deadlock freedom.

Concerning combined approaches taking into account both functional and
non functional issues, we can mention papers [32], [33], and [34]. This latter
proposes an approach to automatically derive adaptors in order to assemble
correct by construction real-time systems from COTS. The approach takes
into account interaction protocols, timing information, and QoS constraints
to prevent deadlocks and unbounded buffers. The synthesized adaptor is
then a component that mediates the interaction between the components it
supervises, in order to harmonize their communication. The purpose of our
approach is similar to that in [34] since we both aim at synthesizing a me-
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diator reconciling protocols, but our setting is quite different with respect
to their. Indeed, our focus is mainly on solving protocols discrepancies to
allow protocols synchronization also satisfying performance and dependabil-
ity requirements, while they focus more on timing and deadlock issues while
composing COTS real-time components.

Spitznagel and Garlan in their work [33] present an approach to formally
specify connector wrappers as protocol transformations, modularizing them,
and reasoning about their properties, with the aim to resolve component
mismatches. In their vision a wrapper is new code interposed between com-
ponent interfaces and communication mechanisms and its intended effect is
to moderate the behavior of the component in a way that is transparent to
the component or the interaction mechanism. Instead, our connector is a
wrapper that addresses issues related to communication and compatibility
including things such as changing the way data is represented during commu-
nication, the protocols of interaction, the number of parties that participate
in the interaction, and the kind of communication support that is offered
for monitoring, error handling, security, and so on. Their approach is to
formally specify connector wrappers by means of a process algebra as a set
of parallel process (one for each connector’s interface and one for the glue).
Protocol transformations may include redirecting, recording and replaying,
inserting, replacing, and discarding particular events yielding benefits like
composability and reusability.

Moreover Spitznagel in her Ph.D. thesis [35] illustrates a set of patterns
of basic connector’s transformations, i.e., enhancements. She also shows how
these patterns can be compositionally applied to simple connectors in order to
produce a number of more complex connectors. In particular she shows how
to select and to apply such transformations in the domain of dependability
and proposes a prototypal tool to semi-automatically derive new connectors
as enhancements.

Another architectural approach is presented in [36] that proposes an ab-
straction based on exception handling for structuring fault-tolerant software
systems. The aim of the work is to tolerate, during run time, architectural
mismatches deriving from the integration of untrusted software components
that were not originally designed to interact with each other.

Stochastic model-based approaches for quantitative analysis of perfor-
mance and dependability aspects have been largely developed along the last
decades and documented in a large literature review on this relevant issue.
A survey of the most popular ones can be find in [37, 38]. Commonly, the
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choice of the most appropriate model, to be used for this purpose, depends
on several factors including the complexity of the system to be analyzed,
the measures, the attributes and the measures to be evaluated, the accuracy
required, and the resources available for the study. In this work the perfor-
mance and dependability model of the Connected system is specified with
Stochastic Activity Networks (SANs), a generalization of Stochastic Petri
Nets introduced and define in [10, 39].

In the last decade, a large number of studies addressed the problem of au-
tomated dependability analysis through the transformation of models. Auto-
matic/automated methods from system specification languages to modeling
languages amenable to perform dependability analysis has been recognised
as an important support for improving the quality of systems. The paper [40]
explores the state-of-the-art in engineering self-adaptive systems and identify
potential improvements in the design process, pointing out that in designing
self-adaptive systems, the feedback loops that control self-adaptation must
become first-class entities. In [12] the authors introduce an approach for au-
tomating the identification of system’s elements to be reinforced, the selection
of dependability and performance mechanisms, and how to apply them on
a model of the system, in order to meet given non-functional requirements.
In [41] the authors present a development of an integrated environment to
support the early phases of system design, where design tools based on the
UML are augmented with transformation-based validation and analysis tech-
niques. The work presented in [42] propose a method that provides an auto-
matic and compositional means for predicting reliability of a service oriented
application based on its architecture specification. The authors in [43] use
a multi-formalism approach to model complex systems, by composing and
integrating sub-models defined by different modeling formalisms. The work
presents a particular workflow to improve the efficiency of the solution pro-
cess by automatizing the process to be enforced to solve a complex model.
The authors of [44] propose a workflow for the automatic assembly of large
stochastic models, based on template model libraries and composition pat-
terns. The approach is based on a Template Models Description Language
(TMDL) useful to define in formal way libraries of template models and then
to apply them to different system configurations and generate the related
analysis model.

A modeling framework allowing the generation of dependability-oriented
analytical models from AADL (Architecture Analysis and Design Language)
models is described in [45].
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Several tools have been developed to support the definition of model-
based transformations. The Viatra tool [46] automatically checks consis-
tency, completeness, and dependability requirements of systems designed us-
ing UML. The Genet tool [47] allows the derivation of a general Petri net
from a state-based representation of a system. The ADAPT Tool supports
model transformations from AADL Architectural Models to Stochastic Petri
Nets [48]. However, in terms of enhancing the model-transformation envi-
ronment with template models of basic fault tolerance mechanisms to allow
automated assessment of enhanced, fault tolerant designs, it seems a rather
new research direction.

7. Conclusions

Diversity characterizing heterogeneous systems dynamically available in
the networked environment is a richness. Being able to gain from it, requires
to be able to cope with interoperability problems without a-priori knowledge
of the systems, and with a degree of flexibility. We already proposed as solu-
tion an approach to the automated synthesis of Connectors, or mediators,
between heterogeneous Networked Systems for their functional interoperabil-
ity at application layer.

In this paper, we presented a new approach for the synthesis of con-
nectors addressing functional and (some) non-functional interoperability in
conjunction. The proposed solution includes the following contributions: an
approach to enhance the functional Connectors taking into account perfor-
mance and dependability aspects, a Connector adaptation process, related
to the performance and dependability mechanisms, spanning pre-deployment
time and run-time, and a stochastic model-based implementation of the per-
formance and dependability analysis. In addition, we implemented, analysed,
and critically disussed a case study.

Future investigations we plan to do concern: the study of techniques to
apply on the system at run-time when a violation is detected; a more exten-
sive validation of the approach on a number of case studies to precisely outline
the typology of systems and problems we are able to manage automatically;
a complete implementation of the overall approach.
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