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Abstract

Typical Collective Adaptive Systems (CAS) consist of a large number of interacting objects
that coordinate their activities in a decentralised and often implicit way. The design of such
systems is challenging. It requires scalable analysis tools and techniques to check properties of
proposed system designs before they are put into operation. A promising technique is Fast Mean-
Field Approximated Model-checking. In particular, the FlyFast model-checker uses an on-the-fly
algorithm for bounded PCTL model-checking of selected individuals in the context of very large
populations whose global behaviour is approximated using deterministic limit techniques. Recently,
specific modelling languages have been proposed for CAS. A key feature of such languages is the
attribute-based interaction paradigm. In this paper we present an attribute-based coordination
language as a front-end for FlyFast. Its formal probabilistic semantics is provided and a translation
to the original FlyFast language is presented and proved correct. Application examples are also
provided.

1 Introduction and Related Work

Collective Adaptive Systems (CAS) consist of a large number of entities with decentralised control
and varying degrees of complex autonomous behaviour. CAS are at the core of the envisioned smart
cities of the future and encompass systems like smart urban transport and smart grids. The pervasive
nature of CAS and thus their impact on society implies that it is extremely important to develop
reliable rigorous design models as well as a priori analysis techniques of such models—covering all
relevant aspects of their behaviour, including quantitative and emergent ones—before they are put
into operation1.

Model-checking has been widely recognised as a powerful approach to the automatic verification
of concurrent and distributed systems. It consists of an efficient procedure that, given an abstract
model of the system, decides whether the model satisfies a logical formula, typically drawn from
a temporal logic. Unfortunately, traditional Model-checking suffers from the so called state-space
explosion problem which hampers scalability of the approach. In particular, its application to very
large models, like those typical of CAS, is infeasible. In [16, 14] Latella et al. presented a scalable
Mean-field model-checking procedure for verifing bounded PCTL (Probabilistic Computation Tree
Logic) [10] properties of selected individuals in the context of systems consisting of a large number of
similar, but independent, interacting objects; a limited form of global system properties can be treated
as well. The procedure can be used with huge population sizes, as typical of analysis techniques
based on mean-field approximation; the average behaviour of the population is approximated using a
population DTMC convergence result [19] and is used for representing the context in which the selected
individuals operate (see [19, 16, 14] for details). The model-checking procedure is implemented in the

1See, e.g. www.focas.eu/adaptive-collective-systems and www.quanticol.eu
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tool FlyFast as an instantiation of a probabilistic on-the-fly model-checker; the latter is parametric on
(the semantic model of) the modelling language [15, 14].

FlyFast comes with simple modelling language. An agent2 is a finite state process, a generic state
C of which is specified by a state defining equation like C := a1.C1 + . . .+ar.Cr. Intuitively, the above
notation defines state C of the agent and postulates that there are r outgoing transitions from C,with
action aj labelling a transition going from C to Cj . A probability value is assigned to each action a
by means of a probability function definition a :: E, where the actual probability is given by the value
of expression E evaluated in the current occupancy measure vector m. Assume a system is composed
of N instances of the agent and that the states of the agent are C1, . . . CS . The occupancy measure
vector at the current time is the vector (m1, . . . ,mS) s.t. mj yields the fraction of agents currently in
state Cj over the total number N of agents. A system specification is a triple composed by an agent
specification—given as a set of state defining equations—a set of probability function definitions, and
an initial global state. Finally, FlyFast provides the user with formula declarations which allow for the
interpretation of bounded PCTL atomic propositions in the model at hand. The computational model
is clock-synchronous; at each step each agent must perform an independent step (which may be an
idle self-loop) so that the global state probabilities are given as the product of agent step probabilities,
and a new occupancy measure vector can be computed. The global system behaviour is thus a DTMC
as well as the stochastic process given by the occupancy measure vector. Notably, for N sufficiently
large, the latter can be approximated deterministically, i.e. by a function of time. This brings to a
dramatic decrease in size of the global state space: at each step, the total number of potential next
states drops from SN to S, which makes bounded PCTL model-checking of very large population
systems possible (the interested reader is referred to [16, 14, 19] for details).

Recently, modelling and programming languages have been proposed specifically for autonomic
computing systems and CAS [8, 3, 11]. Typically, in such frameworks, a system is composed of a
set of independent components where a component is a process equipped with a set of attributes
describing features of the component. A classical example of attribute is the component location. An
additional environment is often used for the specification of common or global features. The attributes
of a component can be updated during its execution so that the association between attribute names
and attribute values is mantained in the dynamic store of the component. Attributes can be used
in predicates appearing in language constructs for component interaction. For instance a component
may broadcast a message to all those components satisfying a given predicate; similarly a component
may wait for a message from any of those components satisfying a given predicate.

In the present paper, we propose an extension of the FlyFast front-end modelling language for deal-
ing with components and predicate-based interaction. The extension has been inspired by Carma [3];
components are expressed as pairs process-store and actions are predicate based multi-cast output and
input primitives3. Associated to each action there is also an (atomic) probabilistic store-update. For
instance, assuming components have an attribute named loc which takes values in the set of points of
a space type, the following action models a multi-cast via channel α to all components in the same lo-
cation as the sender making it change location randomly: α∗[loc = my.loc]〈〉{loc← randomLoc(loc)},
where randomLoc is assumed to be a random generator of points in the space—multi-cast interaction
is denoted using the ∗ notation, as in Carma. The computational model is again clock-synchronous,
at the component level. In addition, each component is equipped with a local outbox. The effect
of an output action α∗[πr]〈〉σ is to deliver output label α〈〉 to the local outbox, together with the
predicate πr, which receiver components will be required to satisfy, as well as the current store γ of
the component executing the action; the current store is updated according to update σ. Note that
output actions are non-blocking and that successive output actions of the same component rewrite
its outbox. An input action α∗[πs]()σ by a component will be executed with a probability which is

2In the context of FlyFast we use the words agent, process and object as synonyms.
3For the sake of notational simplicity, in this paper we present a non value-passing version of the FlyFast front-end;

the complete, finite value-passing approach is described in [7].
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proportional to the fraction of all those components whose outboxes currently contain the label α〈〉,
a predicate πr which is satisfied by the component, and a store γ which satisfies in turn predicate πs.
If such a fraction is zero, then the input action will not take place (input is blocking), otherwise the
action takes place, the store of the component is updated via σ, and its outbox cleared. Thus, as in the
original FlyFast language, component interaction is probabilistic but now the fraction of the compo-
nents satisfying the relevant predicates plays a role in the computation of transition probabilities. We
provide the formal probabilistic semantics of the extended language and a translation to the original
FlyFast language which makes the model-checker support the extended language. The translation is
proved correct.

Related Work. As we mentioned before, this work has been inspired by Carma [3], which in turn
shares features with SCEL [8]. There are several aspects of either languages that are not present in our
proposal. The main reason for the absence of most of them is the fact that this work is intended as a
proof of concept rather than the realisation of a ready-to-use tool for reasoning about CAS. So we aim
at keeping the language minimal and focussing only on attribute-based interaction in the context of
stochastic and mean-field semantics/model-checking. A feature of Carma we do not consider here is
the notion of global environment, since it represents a singularity point that does not fit well with limit
approximation techniques. Finally, we point out that the stochastic semantics of Carma are based on
time inhomogeneous CTMCs, due to the fact that action parameters may be time dependent, while
we use DTMCs as semantic basis. The notion of the outbox is reminiscent of the notion of the ether
in PALOMA [9] in the sense that the collection of all outboxes together can be though of as a kind of
ether. On the other hand, such a collection is intrinsically distributed among the components so that
it cannot represent a bottleneck in the execution of the system neither a singularity point in the deter-
ministic approximation. Fluid model-checking for continuous time systems is addressed in [4] where a
global model-checking procedure for the Continuous Stochastic Locic (CSL, [2]) is given which is based
on a continuous limit approximated semantics model. Predicate-/attribute-based inter-process com-
munication has been originally proposed in [17] where several variants of predicate-/attribute-based
communication primitives—including blocking / non-blocking, bounded / unbounded—are discussed
in the context of a study on high-level language constructs for distributed systems with decentralised
control (see for instance [20]). The notion of predicate-/attribute-based interaction is central in the
definition of SCEL [8] where its synchronous-communication variant has been given formal semantics.
Asynchronous-communication variants have been defined for stochastic versions of SCEL [18]. An
attribute-interaction based calculus is proposed in [1] where broadcast communication links among
components are dynamically established on the basis of the interdependences determined by predi-
cates over attributes. A reduction semantics approach is adopted where each transition involves the
group composed of both sender and receivers. Attribute π-Calculus has been proposed in [13] and
extended to Imperative π-Calculus in [12]; in both calculi, which inherit the classical point-to-point
communication paradigm of the π-Calculus, as opposed to multi-cast, attributes are related to mes-
sages rather than to processes. None of the above mentioned works on predicate-/attribute-based
languages addresses mean-field approximated model-checking so, to the best of our knowledge, the
present paper is the first proposal on the subject.

2 Attribute-based Coordination Language and Logic

In this section we define an attribute-based population description language and related logic. A system
is defined as a population of N identical interacting components4 in a clock-synchronous fashion. Each

4In practice, the fact that the components are identical is not a strong limitation since each component may consist
of several different sets of states, with each state in a given set being unreachable from states of other sets. Each such a
set of states can be seen as a component with a different behaviour.
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component is equipped with a finite set of attributes; the current store γ ∈ Γ of the component maps
each attrribute name to an attribute value.

2.1 Syntax

A component specification is a pair (∆, F ) where ∆ is a finite set of state-defining equations, one for
each state of the component and F is a set of auxiliary function definitions5. We let S, ranged over by
C,C ′, C1, . . . denote the (denumerable, non-empty) set of all states which can be used in equations.
Each equation defines the transitions from the state to other states of the component; each transition
is labelled by the action the component performs when the transition takes place. The general format
of a state defining equation is: C := [g1]P1 + . . .+ [gr]Pr where each guard [g] is a predicate π defined
according to the following grammar: π ::= > | ⊥ | e1 ./ e2 | ¬π | π1 ∧ π2.
> (⊥, resp.) stands for the truth value true (false resp.), while ./ ∈ {≥, >,≤, <}; we let ./∈ {>,<}.
An expression e can be an attribute name a, or my.a referring to the value of a in the component
where it occurs, or a value v in given set V. In defining equations as above, we abbreviate [>]Pj
with Pj and we omit summands of the form [⊥]Pj . Each Pj in a state defining equation as above is
of the form pj :: actj .Cj , where pj is a probability expression, i.e. an expression with value in [0, 1],
built from constants v ∈ [0, 1] and the special operator frcC, combined using standard arithmetics
operators; for state C, frcC returns the fraction of the components that are currently in state C,
over the total of N components. Clearly, the use of the frc operator allows action (and, ultimately,
transition) probability to depend on the global state of the system. Actions actj can be output actions
α∗[π]〈〉σ or input actions α∗[π]()σ. We assume a countable set of action types A, with α ∈ A. The
effect of an output action α∗[π]〈〉σ is a broadcast to all those components satisfying predicate π and
which are willing to accept the interaction. This is achieved by means of delivering α〈〉, together with
some additional information, to the outbox of the component executing the action, as we will discuss
in detail in Sect. 2.2. In addition, the store of the component executing the action is updated according
to the update σ, which is a function from Γ to the class of probability distributions over Γ—i.e., in the
general case, the update may be probabilistic. Similarly, an input action α∗[π]()σ is used to receive an
α-message sent by a component satisfying predicate π. More specifically, the probability of executing
the input action will be proportional to the fraction of components which have sent the α-message
while satisfying predicate π and requiring a predicate which is satisfied by the component executing
the input action. Also input actions are provided with a store update σ whereas the component
outbox is cleared as (a side) effect of their execution. In the sequel, we shall call address predicates
the predicates [π] used for identifying the partners in input/output actions. For updates, we use
the following notation: {a1 ← eγ1 , . . . , at ← eγt } where eγj is an expression which may also include
functions—the definition of which are to be provided in F—which may depend on the component
store and produce random results, as we shall see below. Attributes different from a1, . . . , at are left
unchanged by the update. We require that any attribute name a occurring in a guard [g], or in the
expressions eγ1 , . . . , e

γ
t , must appear in the form my.a (thus referring to the value of the attribute in

the local store of the component). An attribute name a may appear both with and without the my.
prefix in the address predicate π. Intuitively, equation C := [g1]P1 + . . . + [gr]Pr defines state C of
the component at hand and postulates that there are r potential outgoing transitions from C, with
action actj labelling a transition going from C to Cj . The actual transitions will be determined by the
value of the guards and the action probabilities. Note that it may happen that the current cumulative
probability value of the enabled transitions is less than 1; for this reason, the language provides the
construct rest :: α[π]〈〉σ.C, where rest is defined as the residual probability; it is required that there
is at most one rest-branch (typically the last one) in every state defining equation. Only output
actions are allowed in rest-branches; this ensures that the residual probability is not affected by the
fraction of those components in the system satisfying the address predicate. Obviously, in a given

5The specific syntax of auxiliary function definitions is irrelevant and left out here.
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Jump(`) := [pH(`) :: `; pN(`) :: N(`); pS(`) :: S(`); pE(`) :: E(`); pW(`) :: W(`)]

S := h :: inf∗[loc = my.loc](){my.loc← Jump(my.loc)}.E +

mN :: inf∗[loc = N(my.loc)](){my.loc← Jump(my.loc)}.E +

mS :: inf∗[loc = S(my.loc)](){my.loc← Jump(my.loc)}.E +

mE :: inf∗[loc = E(my.loc)](){my.loc← Jump(my.loc)}.E +

mW :: inf∗[loc = W(my.loc)](){my.loc← Jump(my.loc)}.E +

ext :: ext∗[⊥]〈〉{my.loc← Jump(my.loc)}.E +

sr :: rec∗[⊥]〈〉{my.loc← Jump(my.loc)}.R +

rest :: nsc∗[⊥]〈〉{my.loc← Jump(my.loc)}.S

E := ei :: act∗[⊥]〈〉{my.loc← Jump(my.loc)}.I +

er :: rec∗[⊥]〈〉{my.loc← Jump(my.loc)}.R +

rest :: nsc∗[⊥]〈〉{my.loc← Jump(my.loc)}.E

I := ii :: inf∗[>]〈〉{my.loc← Jump(my.loc)}.I +

ir :: rec∗[⊥]〈〉{my.loc← Jump(my.loc)}.R +

rest :: nsc∗[⊥]〈〉{my.loc← Jump(my.loc)}.I

R := rs :: loss∗[⊥]〈〉{my.loc← Jump(my.loc)}.S
rest :: nsc∗[⊥]〈〉{my.loc← Jump(my.loc)}.R

Figure 1: A spatially distributed SEIR model

component specification there is exactly one defining equation for each state of the component. We
let S∆ denote the finite set of states defined by ∆. Similarly, Γ∆, A∆ and Π∆ denote the sets of stores
associated to ∆, and the action types and predicates occurring in (the equations of) ∆. Finally, we
let V∆ denote the set of values which be taken by the attributes of a component specified by ∆. Note
that we assume V∆ is a finite set—thus also Γ∆ is finite; model finiteness is a common assumption for
modelling languages supported by automatic analysis and verification tools.

Example 2.1 (A spatially distributed Computer Epidemic Model). As a model for space we use the
bi-dimensional Regular GRID [6], where for each point ` the following specific operators are defined,
with the usual North, South, East, West meaning: N(`),S(`), E(`),W(`). Each component is equipped
with a position attribute, named loc, which is always yielding the current position (i.e. point) in space
of the component and is the only attribute of the component. Note that, given the abstract nature
of the bi-dimensional Regular GRID, such a “point” could be a physical point is space, but also a
specific region (or patch) in a patched representation of space. We will implicitly refer to the second
interpretation in the sequel. In the model, given in Fig. 1, the purpose of auxiliary function Jump

is twofold: (i) it defines a function from positions to discrete probability distributions which, given
position `, characterizes a probability distribution which assignes probability pN(`) to N(`), probability
pS(`) to S(`), and so on and (ii) defines a random position generator which, given position `, randomly
returns a new position according to the specified probabilities. Note that the probabilities are themselves
functions of the position and they are assumed being declared as additional auxiliary functions. In the
equation for S in Fig. 1, probability constants h,mN , . . . ,mW are factors in [0, 1] with cumulative value
at most 1, each to be multiplied by the actual probability of the associated (input) action. The latter
will be computed as the fraction of the local states which satisfy the required predicate. The resulting
values, when taken all together, will characterize a probability sub-distribution; the residual probability
will be associated to a rest-self-loop. Similar considerations apply to the probability constants in the
definition of other states (e.g. i in the figure). We assume h > mN ≈ mS ≈ mE ≈ mW . In other
words, an agent has higher probability to get the infection from agents in the same place than from
agents in adjacent places; the probability drops to zero in all other cases. •

A system is modelled as a population of N instances of a component, so a system specification Υ is
a triple (∆, F,Σ0)(N) where (∆, F ) is a component specification and Σ0 is the initial (system) global
state, which will be discussed below. In the sequel we will often write ∆ instead of (∆, F ).

QUANTICOL 5 Feb. 24, 2016
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2.2 Probabilistic Semantics

In order to model component interactions within a system, each component is equipped with a local
outbox. Let ΛO∆ be the set ΛO∆ = {α〈〉|α ∈ A∆}. An outbox-state O ∈ O∆ = {〈〉} ∪ (Γ∆×Π∆×ΛO∆) is
either empty or a triple (γ, π, α〈〉). A component-state Σ is a triple Σ = (C, γ,O) ∈ S∆ × Γ∆ ×O∆ =
Ω∆, where C, γ,O are the current state, store and outbox-state of the component, respectively. If
the component-state is the target of a transition modelling the execution of an output action, then
O = (γ′, π, α〈〉), where γ′ is the store of the (component-state) source of the transition, π is the
predicate used in the action—actualized with γ′—and α〈〉 the actual message sent by the action.
If, instead, the component-state is the target of a transition for an input action, then O = 〈〉, i.e.
the empty outbox. The idea is that, whenever a component executes an output action, the related
information will be available in the component’s outbox only during the next clock tick; in the next
state, (other) components will be able to get the message by means of corresponding input actions.
After such a tick, the outbox will be empty or filled with the information generated by a subsequent
output action of the component. A global state is a tuple Σ = ((C1, γ1, O1), . . . , (CN , γN , ON )) ∈ ΩN

∆

where Σ[j] = (Cj , γj , Oj) is the component-state of the j-th instance in the population for j = 1 . . . N .
We say that N is the population size of the system. In the sequel, we will omit the explicit indication
of the size N in (∆, F,Σ0)(N), and elements thereof or related functions, writing simply (∆, F,Σ0),
when this cannot cause confusion. In summary, a system specification can be thought of as process
algebraic clock-synchronous parallel composition of N processes. The probabilistic behaviour of a
system can be derived from its specification (∆, F,Σ0)(N). We remind that Ω∆ is finite, since so are
sets S∆,Γ∆ and O∆. Assume Ω∆ = {Σ1, . . . ,ΣS} and let USbe the set {m ∈ [0, 1]S |

∑S
i=1 m[i] = 1};

we can assume, w.l.o.g. that there is a total ordering on Ω∆ so that we can unambiguously associate
each component mj of a vector m = (m1, . . . ,mS) ∈ US with a distinct element Σj of {Σ1, . . . ,ΣS}.
With each global state Σ(N) an occupancy measure vector M(N)(Σ(N)) ∈ US is associated where

M(N)(Σ(N)) = (M
(N)
1 , . . . ,M

(N)
S ) with M

(N)
i = 1

N

∑N
n=1 1{Σ(N)

[n]
=Σi}

for i = 1, . . . , S and the value of

1{α=β} is 1, if α = β, and 0 otherwise. So, for Σi = (Ci, γi, Oi), M
(N)
i is the fraction, in the current

global state Σ(N), of the component instances which are in state Ci, have store γi and outbox Oi, over
the total number N . We assume semantic intepretation functions EL[[·]] and ER[[·]] for the local, remote
respectively, intepretation of expressions and predicates and a function EP[[·]] for the interpretation
of probability expressions. EL[[e]] (ER[[e]], respectively) takes a local (remote, respectively) store γ as
an argument, whereas EP[[p]] takes an occupancy measure vector m as an argument. We note that
EL[[a]]γ = a,EL[[my.a]]γ = γ(a), ER[[a]]γ = γ(a), and EP[[frcC]]m =

∑S
i=1{m[i]|Σi = (C, γi, Oi)};

moreover, ER[[my.a]]γ , EP[[tt]]m, EP[[ff]]m, EL[[frcC]]γ , and ER[[frcC]]γ are undefined as are, for the
sake of simplicity, EP[[a]]m, EP[[my.a]]m. The definition of the above semantic interpretation functions
on composition terms can be given recursively on the structure of the terms and is left out here.
In particular, we assume them extended to tuples. Similarly, we assume standard techniques and
machinery for auxiliary functions in store updates the semantics of update σ in the current store γ
will be denoted by EU[[σ]]γ , that is a probability distribution over stores6.

Let Λ∆ be defined as Λ∆ = ΛO∆ ∪ ΛI∆, with ΛO∆ as above, and ΛI∆ = {α()|α ∈ A∆}. A compo-
nent specification (∆, F ) characterises the (component) transition probability matrix as a function of
occupancy measure vectors m, K(N) : US × Ω∆ × Ω∆ → [0, 1] such that K(N)(m)Σ,Σ′ is the prob-
ability of a one step jump from component-state Σ to component-state Σ′, given (that the global
system state induces) occupancy measure vector m. K(N)(m)Σ,Σ′ is computed by making use of

a transition relation (C, γ,O) λ,p−−−→ (C ′, γ′, O′) over the space of component-states Ω∆, with transi-
tion labels drawn from Θ∆ ⊂ Λ∆ × [0, 1]. More specifically, The transition relation is the relation

−→ ⊆ Ω∆×Θ∆×Ω∆ such that (C, γ,O) λ,p−−−→ (C ′, γ′, O′) iff C :=
∑

j∈J [gj ]pj :: actj .Cj is the defining

6In this paper, for the sake of simplicity, updates do not depend on the current occupancy measure vector, i.e. the
frc operator cannot occur in their specification.
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C :=
∑
j∈J [gj ]pj :: actj .Cj k ∈ J EL[[gk]]γ = tt

actk = α∗[π]〈〉σ p = EU[[σ]]γ(γ′)

(C, γ,O)
α〈〉,p·EP[[pk]]m−−−−−−−−−−−−→ k(Ck, γ′, (γ,EL[[π]]γ , α〈〉))

(1)

C :=
∑
j∈J [gj ]pj :: actj .Cj k ∈ J [gk]pk = rest

actk = α∗[π]〈〉σ p = EU[[σ]]γ(γ′)

(C, γ,O)
α〈〉,p·(1−

∑
j∈(J\{k}) EP[[pj ]]m)

−−−−−−−−−−−−−−−−−−−−−−−−→ k(Ck, γ′, (γ,EL[[π]]γ , α〈〉))
(2)

C :=
∑
j∈J [gj ]pj :: actj .Cj k ∈ J EL[[gk]] = tt

actk = α∗[π]()σ p = EU[[σ]]γ(γ′)

f =
∑S
i=1{m[i]|Σi = (C′i, γ

′
i, (γ

′′
i , π
′
i, α〈〉) ∧

ER[[π′i]]γ = ER[[EL[[π]]γ ]]γ′′i
= tt}

(C, γ,O)
α(),p·EP[[pk]]m·f−−−−−−−−−−−−−→ k(Ck, γ′, 〈〉)

(3)

Figure 2: Probabilistic Semantics Rules

equation for C and p =
∑

k∈J{p̄k|(C, γ,O) λ,p̄k−−−→ k(C
′, γ′, O′)}, where λ,p̄k−−−→ k is the least relation

induced by the rules in Fig. 2. The component transition matrix function K(N)(m)Σ,Σ′ is defined as

follows: K(N)(m)Σ,Σ′ =
∑

(λ,p)∈Θ∆
{p|Σ λ,p−−−→Σ′}. Note that all the above summations are finite under

our assumption that so is V∆. The behaviour of the system is the result of the parallel-synchronous
execution of the N instances of the component. Thus, the probabilistic behaviour of the system is
characterised by the DTMC X(N)(t) with initial probability distribution δΣ0 and one step probability

matrix P(N) defined by the following product: P
(N)
Σ,Σ′ = ΠN

n=1K
(N)(M(N)(Σ))Σ[n],Σ

′
[n]
. Of course, the

‘occupancy measure’ view of the evolution in time of stochastic process X(N)(t) is again a DTMC,
namely the occupancy measure DTMC, which is defined as expected: M(N)(t) = M(N)(X(N)(t)).

2.3 Bounded PCTL

We recall that, given a set P of atomic propositions, the syntax of PCTL state formulas Φ and path
formulas ϕ is defined as follows, where ap ∈ P and k ≥ 0: Φ ::= ap | ¬Φ | Φ ∧ Φ | P./p(ϕ) where
ϕ ::= X Φ | ΦU≤k Φ. PCTL formulas are interpreted over state labelled DTMCs, which are pairs
(M, L) whereM is a DTMC and L is a mapping from the set of states ofM to 2P ; for each state s,
L(s) is the set of atomic propositions true in s7. For the purposes of FlyFast bounded PCTL model-
checking, our system specifications are enriched with the declaration of three different kinds of atomic
propositions. A declaration of the form ap atC associates atomic proposition ap to state C ∈ S∆.
Thus ap must be included in the set L(Σ) for each global state Σ = ((C1, γ1, O1), . . . , (CN , γN , ON ))
such that C1 = C (recall here that FlyFast performs model-checking of the first object in the context
of the global system). A declaration of the form ap def (my.a ./ v) associates atomic proposition ap to
all component-states (C, γ,O) s.t. attribute a is ./ v. So, ap must be included in the set L(Σ) for each
global state Σ = ((C1, γ1, O1), . . . , (CN , γN , ON )) such that EL[[my.a ./ v]]γ1 = tt. Finally, a limited
form of global atomic predicate is provided by means of a declaration of the form ap def (frcC ./ v);
in this case, ap must be included in the set L(Σ) for each global state Σ s.t. the fraction in Σ of the
component states (C, γ,O), for any γ and O, is ./ than v ∈ [0, 1].

3 A Translation to FlyFast

In this section we define a translation I such that, given system specification Υ = (∆Υ, FΥ,Σ0)(N),

I(Υ) = 〈∆, A,C0〉(N) is a FlyFast [14, 16] system specification preserving probabilistic semantics. The
attribute-based FlyFast front-end is then completed with a simple translation at the PCTL level, also
provided in this section. We map every component state of Υ to a distinct state of I(Υ) by means of a

7We refer to [10] for the formal definition of PCTL and to [16, 14] for the details of its instantiation in FlyFast.
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For each state equation C :=
∑
j∈J [gj ]pj :: actj .Cj in ∆Υ:

1. For each output action α∗[π]〈〉σ = actk with k ∈ J , and γ ∈ Γ∆Υ
, let Jα,σ,γ be

the largest subset of J s.t. there is C′ ∈ S∆ s.t. for all j ∈ Jα,σ,γ Cj = C′,
T (actj) = α, EL[[P (actj)]]γ = EL[[π]]γ , and EU[[U(actj)]]γ = EU[[σ]]γ . For each
γ′ ∈ Γ∆Υ

, with ξ = IA ((C, γ), α〈〉, (C′, γ′, (γ,EL[[π]]γ , α〈〉))), the following action
probability function definition is included in A: ξ :: EU[[σ]]γ(γ′) ∗ SUM{pj |j ∈
Ĵα,σ,γ}, where Ĵα,σ,γ = {j ∈ Jα,σ,γ |[gj ]pj 6= rest ∧ EL[[gj ]]γ = tt}. Moreover,
for each outbox O ∈ O∆Υ

, the following summand is added to the equation in ∆
for state IS (C, γ,O): ξ. IS (C′, γ′, (γ,EL[[π]]γ , α〈〉));

2. For each input action α∗[π]()σ = actk, with k ∈ J , and γ ∈ Γ∆Υ
, let Jα,σ,γ

be the largest subset of J s.t. there is C′ ∈ S∆ s.t. for all j ∈ Jα,σ,γ
Cj = C′, T (actj) = α and EU[[U(actj)]]γ = EU[[σ]]γ . For each γ′ ∈ Γ∆Υ

,
with ξ = IA ((C, γ), α(), (C′, γ′, 〈〉)), the following action probability function def-

inition is included in A: ξ :: EU[[σ]]γ(γ′) ∗ SUM{(pj ∗ Φj)|j ∈ Ĵα,σ,γ}, where

Ĵα,σ,γ = {j ∈ Jα,σ,γ |[gj ]pj 6= rest ∧ EL[[gj ]]γ = tt} and term Φj is:

SUM{frc IS ((C̃, γ̃, (γ̄, π̄, α〈〉)))|ER[[π̄]]γ = ER[[EL[[πj ]]γ ]]γ̄ = tt}. Moreover, for each
outbox O ∈ O∆Υ

, the following summand is added to the equation in ∆ for state
IS (C, γ,O): ξ. IS (C′, γ′, 〈〉);

3. If there exists k ∈ J s.t. [gk]pk = rest, and actk = α∗[π]〈〉σ, let Ā be the set
of probability function definitions which has been constructed in steps (1) and (2)
above; note that for every ζ :: p∗q ∈ Ā, q is either a probability constant pj occurring
in a branch [gj ]pj :: actj .Cj of the defining equation for C, or it is a term of the form
SUM{(ph ∗Φh)|h ∈ H}, for some index set H. We define p̄ = (1−SUM{q|ζ :: p∗ q ∈
Ā}) and, for all γ′ ∈ Γ∆Υ

, with ξ = IA ((C, γ), α〈〉, (Ck, γ′, (γ,EL[[π]]γ , α〈〉))), the
following action probability function definition is included in A: ξ :: EU[[σ]]γ(γ′) ∗
p̄. Moreover, for each outbox O ∈ O∆Υ

, the following summand is added to the
equation in ∆ for state IS (C, γ,O): ξ. IS (Ck, γ

′, (γ,EL[[π]]γ , α〈〉));

4. No other action probability function definition and transition is included and the
initial state C0 of I(Υ) is defined as C0 = IS (Σ0).

Figure 3: The translation algorithm

total injection IS : Ω∆Υ
→ S. The mapping of actions is a bit more delicate because we have to respect

FlyFast static constraints and, in particular, we have to avoid multiple probability function definitions
for the same action. To that purpose, we could distinguish different occurrences of the same action
in different transitions, characterized by their source and target states in Ω∆Υ

. In practice, since an
action of a component cannot be influenced by the current outbox of the component, it is sufficient
to use a total injection IA of the following type (S∆Υ

× Γ∆Υ
)× Λ∆Υ

× Ω∆Υ
→ A for the mapping of

actions. In the sequel we show how to build I(Υ) = 〈∆, A,C0〉(N) from Υ = (∆Υ, FΥ,Σ0)(N). The
translation algorithm is given in Fig. 3, where for action act ∈ {α∗[π]〈〉σ, α∗[π]()σ} we let T (act) = α,
P (act) = π, and U(act) = σ. SUM{t|cond(t)} denotes the syntactical term representing the sum
of terms t ∈ {t|cond(t) = tt}, i.e. t1 + . . . + tn, if {t|cond(t) = tt} = {t1, . . . , tn} 6= ∅ and 0 if
{t|cond(t) = tt} is the empty set. Finally, by t ∗ t′ we mean the syntactical term representing the
product of terms t and t′. Output actions are dealt with in step 1. Consider for example action
ext∗[⊥]〈〉{my.loc← Jump(my.loc)} in the definition of state S in Fig. 1. Suppose the possible values
for locations are A,B,C,D, so that stores are functions in {loc} → {A,B,C,D}. The algorithm
generates 12 actions (diagonal jumps are not contemplated in the example). Let us focus on the action
ξ associated to local position A (i.e. γ = [loc 7→ A]) and possible next position B (i.e. γ′ = [loc 7→ B]);
the algoritm will generate probability function definition ξ :: pW(A)∗ext as well as a transition leading
to (a state which is the encoding, via IS , of) the component state with E as (proper) state, store
γ′, and outbox (γ,⊥, ext〈〉). Since the action is not depending on the current outbox, in practice a
copy of such a transition is generated for each component state sharing the same proper state S and
the same store γ. In the general case, in a defining equation for a state C there might be multiple
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occurrences of the same action, bringing to the same next state C ′; the algorithm takes care of this
and collects them in order to generate a single transition; the appropriate probability is expressed by
means of the SUM{. . .} term. The translation scheme for input actions is defined in case 2 and is
similar, except that for each term pj in the SUM{. . .} expression one has also to consider the sum Φj

of the fractions of the possible partners. The translation of the rest case is straighforward.

Let K
(N)
I(Υ) : US ×IS(Ω∆)×IS(Ω∆)→ [0, 1] be the step probability function associated to I(Υ) by

the FlyFast language probabilistic semantics definition (see [14, 16] for details) and K
(N)
Υ : US ×Ω∆×

Ω∆ → [0, 1] be the step probability function for Υ as defined in Sect. 2.2. It is easy to see that:

Theorem 3.1. For all N > 0, occupancy measure vector m ∈ US and Σ,Σ′ ∈ Ω∆ the following holds:

K
(N)
Υ (m)Σ,Σ′ = K

(N)
I(Υ)(m)IS (Σ),IS (Σ′).

Proof (sketch). We first observe that, by definition,

K
(N)
Υ (m)(C,γ,O),(C′,γ′,O′) =

∑
(λ,p)∈Θ∆

{p|(C, γ,O) λ,p−−−→ (C ′, γ′, O′)}

which, by definition of −→ , is equal to∑
(λ,p)∈Θ∆

{p|p =
∑

k∈J{p̄k|(C, γ,O) λ,p̄k−−−→ k(C
′, γ′, O′)} ∧

C :=
∑

j∈J [gj ]pj :: actj .Cj is the def. eq. of C in Υ}.
Consider the outer summation and suppose (α〈〉, p) be the index of a summand. Without loss of
generality, assume there is only one instance of such a summand and there is only one k ∈ J such

that the following transition is derived using the rules of Fig. 2: (C, γ,O)
α〈〉,p̄k−−−−→ k(C

′, γ′, O′). So, we

have K
(N)
Υ (m)(C,γ,O),(C′,γ′,O′) = p̄k such that (C, γ,O)

α〈〉,p̄k−−−−→ k(C
′, γ′, O′), where C :=

∑
j∈J [gj ]pj ::

actj .Cj is the defining equation for C. Suppose [gk]pk 6= rest, so that Rule (1) of Fig. 2 has been
used for generating the transition. This implies that EL[[gk]]γ = tt, p̄k = EU[[σ]]γ(γ′) · EP[[pk]]m,
C ′ = Ck, and O′ = (γ,EL[[π]]γ , α〈〉). Under the above conditions, by definition of the translation
algorithm, the action ξ = IA((C, γ), α〈〉, (C ′, γ′, O′)) and related action probability function definition
ξ :: EU[[σ]]γ(γ′)∗SUM{pk} are included in the FlyFast model. Moreover, the summand ξ. IS(C ′, γ′, O′)
is added in the equation for state IS(C, γ,O) in the FlyFast model. Using the semantics definition of
the FlyFast language [14, 16], we get that the probability assigned to ξ is EU[[σ]]γ(γ′) ·EP[[pk]]m, that

is, exactly p̄k. Thus K
(N)
Υ (m)Σ,Σ′ = K

(N)
I(Υ)(m)IS (Σ),IS (Σ′).

The proof for all the other cases is similar. •
The translation of atomic proposition declarations into FlyFast formula declarations is the obvious

one and is shown in Fig. 4 where OR{e|cond(e)} denotes the syntactical term representing the disjunc-
tion of expressions e ∈ {e|cond(e) = tt}, i.e. e1| . . . |en, if {e|cond(e) = tt} = {e1, . . . , en} 6= ∅ and ff,
if {e|cond(e) = tt} is the empty set.

atomic prop. decl. FlyFast formula declaration

ap atC ap : OR{IS((C ′, γ, O))|(C ′, γ, O) ∈ Ω∆Υ
∧ C ′ = C}

ap def (my.a ./ v) ap : OR{IS((C, γ,O))|(C, γ,O) ∈ Ω∆Υ
∧ γ(a) ./ v}

ap def (frcC ./ v) ap : SUM{frc IS((C ′, γ, O))|(C ′, γ, O) ∈ Ω∆Υ
∧ C ′ = C} ./ v

Figure 4: Translation of atomic proposition declarations. The translation is not defined whenever
OR{t|cond(t)} = ff or SUM{t|cond(t)} = 0.

4 Epidemic Example Revisited

We return to the distributed Epidemic example of Fig. 1 where, for the sake of simplicity, we consider
a simple patched space, consisting of the usual four quadrants A,B,C,D in the Cartesian Plane, as
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in Fig. 5 (left). We model a ‘flow’ from quadrant C to quadrant A by defining the jump probabilities
as in the table in Fig. 5 (right)8, where l = 0.6 and s = 1− l, so that l > s.

A	B	

C	 D	

pH pN pS pE pW
A l 0 s/2 0 s/2

B s/2 0 s/2 l 0

C s l/2 0 l/2 0

D s/2 l 0 0 s/2

Figure 5: The Cartesian quadrants (left) and the jump probabilities (right).

We consider a model in which initially there are 10.000 components in state S in quadrant C and 100
in state S in quadrant A. The non-zero values of the parameters are the same for each quadrant, defined
as follows: h = 0.2, ext = 0.1, ei = 0.4, ii = 0.8, ir = 0.2, rs = 0.1,mN = mS = mE = mW = 0.05.

Fig. 6 shows the fast-simulation results9 for the model for each of the four quadrants. This
functionality is built in in the FlyFast tool. In the figure, the fractions of numbers of the componets in
each of the four states at each of the four locations are shown. Note that these fractions correspond
to appropriate predicates on standard atomic propositions; for instance the fraction of components
in state S at quandrant A is captured by s ∧ a, assuming the following declarations: s at S and
a def (my.loc = A). The simulation of single elements, taken as the average over 10 runs shows a very
good correspondence with the fast-simulation results. The results also show good correspondence to
the original SEIR model [5] when the probability to move between quadrants is set to zero and in
the initial state the total population is in state S and in one specific quadrant in the former model.
Besides fast simulation, that gives an idea of the average global behaviour of the system, we can also
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Figure 6: Fast simulation for each of the four quadrants.

8We assume: N(A) = N(B) = S(C) = S(D) = E(A) = E(D) = W(B) = W(C) = undefined, with
[loc = undefined] = ⊥ for all loc .

9Experiments have been performed using the FlyFast on-the-fly mean field model checker on a PC with an Intel Core
i7 1.7GHz, RAM 8Gb.
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analyse the behaviour of a single component in the context of the overall behaviour. We consider two
example properties as illustration. Let us first consider a component initially in state S and located
in A and let atomic propositions i and c be declared as follows: i at I and c def (my.loc = C). The
following formula (P1) states that the probability is greater than p that that the component ends up
infected in quadrant C by time t: P>p(ttU≤t (i ∧ c)). FlyFast allows to study the dynamics of the
actual probability as a function of t, by means of the notation P=?(ttU≤t (i ∧ c)) and the resulting
graph, for the above initial conditions and for the first 70 time units is shown in Fig. 7 (left). For
comparison, the formula for an agent starting in C and ending up in A and being infected is shown as
well in the same figure. The results for a more complicated, nested, formula (P2) are shown in Fig. 7
(right). P2 expresses the probability, over time, of a component reaching a situation in which it is
neither infected and located in A nor exposed and located in A, and from which it can reach a state in
which it has a probability higher than 0.25 to be infected and located in C within the next 5 time units,
with e at E: P=?(tt U≤t ((¬(i∧a)∧¬(e∧a))∧P>0.25(tt U≤5 (i∧c)))). The formula has been considered
for a component which is initially in A and in state S; the figure shows also a similar formula, where
the role of A and C is exchanged.
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Figure 7: Model checking results for properties P1 (left) and P2 (right).

For both types of properties a considerable difference in the probabilities can be observed for an
agent that is initially located in A or in C, due to the flow of movement that has been introduced.
This illustrates a clear dependence of the results on the dynamically changing spatial distribution
of components. The total number of states, actions and transitions for the resulting FlyFast object
specification is 52, 114 and 468 respectively, while the number of states of the global approximated
model which have been generated for the analysis of formula P2 is 2.323 (2.185 when A and C are
swapped). The model checking time for the more complicated nested formula P2 and for all values of t
(70) is 10.343 (9.921 when A and C are swapped) ms, ≈ 148 (141)ms per checking session, for a model
with a total population of 10.100 objects. A well-known feature of mean-field model checking is that
the model checking time is independent of the size of the population, however, further experimentation
with more extended spatial models and more attributes, that do effect this time, is planned as future
work.

5 Conclusions

The attribute-based interaction paradigm is deemed fundamental for agent interaction in the context
of Autonomic or Collective Adaptive Systems [8, 18, 3, 1, 11]. In this paper we have presented a
attribute-based coordination modelling language as a front-end for FlyFast, an on-the-fly mean-field
model-checker for bounded PCTL. The language extends the original FlyFast modelling language by
replacing its actions with input (output, respectively) actions where senders (receivers, respectively)
are specified by means of predicates on dynamic attributes on system components, where a component
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is a process/attribute-store pair. A translation to the standard FlyFast language has been presented,
its correctness has been showed as well as an example of its application to a simple case study.

It should be noted that the introduction of attributes in a process model is an intrinsic source
of complexity in terms of component state-space size. Such an increase, in the worst case, goes with
|V∆||Att∆| · (|AO∆| + 1), where Att∆ is the set of attributes of the component, V∆ is the set of values
they can take, and AO∆ is the set of output actions occurring in the component specification (which
may appear in its outbox). The obvious consequence of this is that one has to carefully ponder the
importance and necessity of each and every new attribute used in a model, although, it must be kept in
mind that the real source of state-space explosion is the size of the system, and this issue is addressed
by Mean-Field approximation. A first optimisation consists in considering only reachable component
states as well as eliminating actions with constant zero probability and simplifying booloean combina-
tions of FlyFast atomic propositions in the translation. A possible additional line of investigation is the
study of techniques for DTMC minimization to Mean-field analysis, so that the number of difference
equations can decrease as a consequence, in a similar way as for CTMCs and the number of differential
equations in fluid flow analysis [21].
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