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Abstract. Activity recognition plays a key role in providing activity assistance and care for users in smart homes. In this work,
we present an activity recognition system that classifies in the near real-time a set of common daily activities exploiting both the
data sampled by sensors embedded in a smartphone carried out by the user and the reciprocal Received Signal Strength (RSS)
values coming from worn wireless sensor devices and from sensors deployed in the environment. In order to achieve an effective
and responsive classification, a decision tree based on multisensor data-stream is applied fusing data coming from embedded
sensors on the smartphone and environmental sensors before processing the RSS stream. To this end, we model the RSS stream,
obtained from a Wireless Sensor Network (WSN), using Recurrent Neural Networks (RNNs) implemented as efficient Echo
State Networks (ESNs), within the Reservoir Computing (RC) paradigm. We targeted the system for the EvAAL scenario, an
international competition that aims at establishing benchmarks and evaluation metrics for comparing Ambient Assisted Living
(AAL) solutions. In this paper, the performance of the proposed activity recognition system is assessed on a purposely collected
real-world dataset, taking also into account a competitive neural network approach for performance comparison. Our results
show that, with an appropriate configuration of the information fusion chain, the proposed system reaches a very good accuracy
with a low deployment cost.
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1. Introduction

Activity Recognition (AR) is an emerging research
topic, which is founded on established research fields
such as ubiquitous computing, context-aware comput-
ing and multimedia, and machine learning for pattern
recognition. Recognizing everyday life activities is a
challenging application in pervasive computing, with a
lot of interesting developments in the health care do-
main, the human behavior modeling domain and the
human-machine interaction domain [1]. Inferring the
activity of the users in their own domestic environ-
ments becomes even more useful in the Ambient As-
sisted Living (AAL) scenario, where facilities provide

*Corresponding author. E-mail: filippo.palumbo@isti.cnr.it

assistance and care for the elderlies and the knowledge
of their daily activities can ensure safety and a success-
ful aging.

From the point of view of the deployment of ac-
tivity recognition solutions, we recognize two main
approaches depending on whether the solution adopts
wearable devices or not. The first kind of solutions
generally use sensors (embedding accelerometers, or
transducers for physiological measures) that make di-
rect measures about the user movements. For example,
a sensor placed on the user ankle may detect the num-
ber of steps based on the response of an embedded ac-
celerometer that is shaken with a specific pattern every
time the user makes a step. On the other hand, the dis-
advantage of this approach is that wearable devices can
be intrusive on the user, even if, with recent advances
in technologies of embedded systems, sensors tend to
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be smaller and smaller. Solutions that avoid the use of
wearable devices instead, are motivated by the need for
a less intrusive activity recognition systems. Among
these solutions, those based on cameras are probably
the most common [2]. However, even though this ap-
proach is physically less intrusive for the user, it suffers
from several issues: low image resolution, target oc-
clusion and time-consuming processing, which is still
a challenge for real-time activity recognition systems.
Furthermore, user privacy is also an important issue,
especially if cameras are used to continuously monitor
the user itself. More recently, a new generation of non
wearable solution is emerging. These solution exploits
the implicit alteration of the wireless channel due to
the movements of the user, which is measured by de-
vices placed in the environment and that measure the
Received Signal Strength (RSS) of the beacon packets
they exchange among themselves [3,4].

In this paper we propose an Activity Recognition
system based on Multisensor data fusion (AReM) that
makes use of both the approaches. Specifically, we use
wearable and environmental sensors and we base the
recognition of the user activity both on accelerometers
embedded on the wearable sensors and on the RSS of
the beacon packets exchanged between all the sensors
(both wearable and environmental).

From the algorithmic point of view, the need for
knowledge discovery of temporal patterns from poten-
tially large amounts of raw sensor data has recently
led to an increasing use of Machine Learning models
in activity recognition systems (see e.g. [5] for a re-
cent survey). In this context, the class of neural net-
works [6] provides an interesting range of models and
architectures that are able to effectively learn in se-
quential data domains, with characteristics of robust-
ness to noise and heterogeneity in the input sources
considered. Neural networks for learning in sequen-
tial domains are particularly appropriate to deal with
the characteristics of the tasks and the information in-
volved in activity recognition applications, including
methods based on windowing strategies, such as Time
Delay Neural Networks (TDNNs) and Input Delay
Neural Networks (IDNNs) [7,8], and methods based
on explicit feedback connections in the class of Re-
current Neural Networks (RNNs) [9,10]. In particu-
lar, RNNs are widely used to process and capture dy-
namic knowledge from sequential information, allow-
ing to provide predictions which depends on the tem-
poral history of the input signals. Based on the short-
term history of the signals received in input, RNNs
are used in the context of human activity recogni-

tion to produce output values that represent classifi-
cation labels/values corresponding to a target human
activity. In this paper, within the class of RNNs, we
take into consideration the efficient Reservoir Comput-
ing (RC) [11,12] paradigm in general, and the Echo
State Network (ESN) [13,14] model in particular. The
ESN model is supported by theoretical investigations
(see e.g. [15,16]) and by hundreds of relevant suc-
cessful experimental studies reported in literature (see
e.g. [17,12]). Recently, RC models have proved to
be particularly suitable for processing noisy informa-
tion streams originated by networks of heterogeneous
sensors, resulting in successful real-world applications
in tasks related to AAL and human activity recogni-
tion (see e.g. [18,19,20,21,22]), and allowing to suc-
cessfully build intelligent sensor networks tailored to
specific activity recognition contexts, as testified by
the recent successful results of the RUBICON Project
[23,24] and detailed in Section 2.

The proposed activity recognition process is real-
ized by the means of two layers of classification. The
first classification layer, represented by a custom deci-
sion tree algorithm, detects a subset of activities and
directs the flow of collected data to different Machine
Learning modules. These modules represent the sec-
ond layer of the processing chain, and are implemented
as ESNs. An important aspect of our work consists in
the use of common wireless sensor devices deployed
in the environment in combination with wearable sen-
sors embedding accelerometers, in order to increase
the performance of the activity recognition system.

In order to test the performance of our activity
recognition system, we presented a preliminary ver-
sion of AReM to the third edition of the EVAAL
(standing for Evaluating AAL Systems through Com-
petitive Benchmarking) international competition [25],
where state-of-the-art systems are presented in the ac-
tivity recognition track. We used the EVAAL oppor-
tunity not only to carry out a comparative study with
other novel solutions in the activity recognition field
presented by the competitors, but also to improve the
AReM system through an iterative refinement pro-
cess that, starting from the preliminary result obtained
in [21], uses the outcomes of the competition experi-
ence to arrive to the improved system presented in this
paper 1. A more in-depth performance assessment of

1This paper, based on ex-novo conducted experiments, extends
the preliminary investigations presented in the conference pa-
per [21], by proposing a more structured classification process and a
complete performance analysis on a larger set of user activities, eval-
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the proposed activity recognition system is presented
in this paper, using an activity recognition dataset col-
lected through measurement campaigns targeted on the
EVAAL activities, taking into account different pos-
sible settings based on the availability of sensor data
sources and also considering the IDNN as a competi-
tive approach for performance comparison.

The rest of the paper is organized as follows. In
Section 2 current trends and related works are pre-
sented, Section 3 describes the overall architecture of
the AReM activity recognition system, Section 4 de-
scribes the steps of the refinement process of the sys-
tem through the real test site experiences, and Sec-
tion 5 goes into the details of the refined system’s per-
formance focusing on ESNs outcomes. Finally, Sec-
tion 6 draws the conclusions.

2. Related Work

One of the main goals of AAL systems is the de-
tection of human activity. This can be achieved by
means of different tools and technologies spanning
from smart homes (regular homes augmented with var-
ious type of sensors, including cameras, and actuators),
mobile devices, and wearable sensors [26]. The activ-
ity itself can be represented and recognized at differ-
ent resolutions, such as a single movement, action, ac-
tivity, group activity, and crowd activity. The degree
of the resolution should be chosen properly, accord-
ing to the particular tool to be deployed. In the case
of tools assisting the elderly doing rehabilitation tasks,
a fine-grained resolution is needed in order to recog-
nize the particular movement performed. Such sys-
tems, even though present an higher level of obtru-
siveness (robotic tools [27]) or privacy issues (cam-
eras [28,29]), are normally accepted since they are
seen by the user as medical equipment with a precise
and temporary scope. Within the broader context of a
long-term monitoring AAL system, it is expected to be
up and running all day long and over long periods of
time in order to prevent cognitive or physical deterio-
ration of the user. In this scenario, a system able to rec-
ognize simple activities (e.g. lying, sitting, standing,
walking, bending, cycling, falling), instead of a single
movement or action performed, is a good compromise

uated under different settings of the activity recognition system, also
considering a competitive Machine Learning approach for perfor-
mance comparison. Furthermore, an improved communication in-
frastructure is also proposed.

between the possibility of inferring high-level activi-
ties (i.e. to infer activities of daily living) and the low
level of obtrusiveness required together with the lower
amount of data generated by the system. Furthermore,
it enables short-term tasks dealing with in-home emer-
gencies, like fall detection. In this field, solutions that
make use of wearable and mobile sensors are the more
established and studied [30,31,32]. Data are mostly
gathered from accelerometer and gyroscope sensors in
the form of time series. Simple actions such as walk-
ing, jogging, and running can be represented in the
form of periodic time-series patterns. Important issues
in these kinds of solution are the number of the devices
to be deployed and their position on the user’s body.
In [33], authors perform a study on how the position
of the used device (embedding a triaxial accelerometer
and a light sensor) influences the performance. They
demonstrate that some positions are better for partic-
ular activities but confirm that there is not a generally
valid position for all the possible activities to be rec-
ognized. Furthermore, in [34] authors suggest that for
some activities more sensors improve the recognition.
Also the use of ambient sensors has been deeply ana-
lyzed in the literature (e.g. [35,36,37]) in order to rec-
ognize more complex activities. In these solutions, a
network of ambient sensors is usually used to model
resident activities in the environment, as a sequence of
sensor events. The main issue here is that the assump-
tion of consistent predefined activities as a sequence
of events does not hold in reality. Due to several phys-
ical, cognitive, cultural, and lifestyle differences, not
all individuals perform the same set of tasks in similar
sequences [26]. In order to overcome the deployment-
related issues, we chose to use as primary data source
the RSS of the beacon packets exchanged among a
small set of wearable sensors (see Section 3.1 for the
setting used in the experimentation) and some environ-
mental devices placed in specific point of interests in
the house related to the particular activity to be recog-
nized (e.g. a device embedded in a stationary bike for
the cycling activity). When used to infer close prox-
imity and movements between near devices, the RSS
is not so much affected by the particular orientation of
the sensor’s antenna. Furthermore, the use of ambient
sensors keeps the number of worn sensors low and it
removes the constraint of predefined sequences of ac-
tivations since they are only used to infer proximity to
relevant point of interests.

Recently, Machine Learning techniques have found
wide applications in building human activity recogni-
tion systems based on data generated from sensors.
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Depending on the nature of the treated data, of the spe-
cific scenario considered and of the admissible trade-
off among efficiency, flexibility and performance, dif-
ferent Machine Learning methods have been applied
in this application area [5]. From a learning perspec-
tive, human activity recognition problems often in-
volve computational learning tasks characterized by
a sequential nature. In this sense, the various estima-
tions to be provided in relation to specific activities
can be considered to be discernible basing on spe-
cific patterns of activations/values from a typically het-
erogeneous set of possibly noisy sensor sources (with
potentially both continuous and discrete values), and
based on the temporal order of such series. Focus-
ing on supervised learning models for human activ-
ity recognition applications, a first example is rep-
resented by probabilistic-generative methods, includ-
ing the family of Naïve Bayes classifiers and Hidden
Markov Models (HMMs) [38] based classifiers, which
have been applied to problems of daily-life human ac-
tivity recognition (see e.g. [39,40,41]). However, the
class of probabilistic-generative models often results
to be severely limited in dealing with large amounts
of low-level heterogeneous and noisy sensor data (see
e.g. [42]). In this sense, discriminative methods of-
ten provide interesting approaches in terms of com-
putational effort and predictive accuracy. For instance,
the works in [43,44] make use of feed-forward neural
networks for recognition of human activities from an
accelerometer sensor placed on the waist of the user.
Other works in the area of human activity recognition
adopt Support Vector Machines (SVMs) [45]. For ex-
ample, in [46] SVMs are used to approach an activity
recognition problem considering a user in a smart en-
vironment with a variegate set of sensors. In [47,48,49]
SVMs are used for problems of activity recognition
using input from tri-axial accelerometer data. Some
approaches, instead, are based on the use of multi-
ple classification systems within a hierarchical activ-
ity recognition model (e.g. [50,51]). However, all these
aforementioned discriminative approaches are based
on learning models suitable for flat data domains, and
therefore they are often restricted in the processing
of sequential/temporal information. Other approaches
which are also limited in the processing of dynami-
cal information are based on decision tree models (e.g.
[31,33,52]), instance based learning (e.g. [53]) or lin-
ear discriminant analysis (e.g. [54]).
On the other hand, in the neurocomputing area, neu-
ral network models for sequential domains process-
ing represent good candidates for applications in hu-

man activity recognition problems, as they are charac-
terized by the ability to effectively learn input-output
temporal relations from a potentially huge set of noisy
and imprecise heterogeneous streams of sensed data.
In this context, delay neural networks are popular class
of models [9], which represent temporal context using
windowing/buffering techniques in conjunction with
feed-forward neural architectures. In this concern, the
IDNN model [7,8] represents a paradigmatic approach,
and it is therefore considered in this paper for perfor-
mance comparison with the proposed activity recogni-
tion system. Several works in literature report exam-
ples of applications of delay neural networks to prob-
lems in the field of human activity recognition, taking
into consideration temporal windows with length typ-
ically in the range of 2-10 seconds. For example, in
[55,56] delay networks are used to classify daily-life
activities from accelerometer data, whereas a similar
approach is used in [57] for human gesture recogni-
tion, and in [58] for recognition of workers activities.
In [59] a delay network based approach is used to rec-
ognize human postures and activities from data col-
lected by a smart-shoe device. More recently, in [60],
delay neural networks are used for daily activity mon-
itoring using accelerometer and gyroscope data gener-
ated by a smartphone. The versatility of IDNN based
approaches in this context is also testified by appli-
cations in the area of animal activity recognition, as
reported e.g. in [61,62,63]. Note, however, that win-
dowing strategies adopted in delay neural networks
may often imply several drawbacks, mainly related to
the fact that the window length is a fixed a-priori de-
fined parameter of the model, determining its mem-
ory length, i.e. the limit of the length of the longest
sequences that can be successfully discriminated. An
alternative approach is represented by RNNs architec-
tures [9,10] with explicit recurrent connections, which
are capable of dealing with sequential/temporal data
through recursive processing based on the presence
of feedback delay connections. As introduced in Sec-
tion 1, a particular efficient approach to RNN train-
ing is represented by RC [11,12] networks, and in par-
ticular by ESNs [13,14]. Recently, promising results
have been reported in applications of RC networks in
the fields of AAL and human activity recognition. In
this concern, the RC approach has been introduced
and successfully experimentally assessed in tasks re-
lated to robot localization [20] and indoor user con-
text localization in real-world environments from RSS
data streams [18,64,65,66]. A further application of
RC models for real-time user localization in indoor en-
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vironments is presented in [67], in which by adopt-
ing a hybrid approach, RC networks have been showed
to provide significant benefits to the accuracy of RSS-
based localization systems. It is also worth mention-
ing the recent results of the European FP7 Project RU-
BICON [23,24], whose goal was to design and de-
velop a self-learning robotic ecology made up of sen-
sors, actuators and robotic devices. Within the aims of
the RUBICON project, ESNs distributed on the low-
powerful nodes of a Wireless Sensor Network (WSN)
have been used to approach supervised computational
tasks in the field of AAL, and pertaining to the classi-
fication of human activities, using input data streams
coming from sensorized environments. In this context,
the work in [19] describes the application of ESNs to a
set of supervised tasks pertaining to the recognition of
user daily-life activities, within an AAL real-life test
bed scenario, including more than 50 sensors of differ-
ent types. Moreover, an application of ESNs to adap-
tive planning for context-aware robot navigation is pre-
sented in [22]. Further applications of ESNs in the area
of AAL are reported in [68], in which ESNs are used to
classify physical activities in equestrian sports from a
3-axis accelerometer, a gyroscope and a magnetic sen-
sor stripped to a horse rider wrist, and in [69], in which
standard ESNs are used to estimate people count from
multiple PIRs in indoor corridors at the Fraunhofer
IAIS facilities. Overall, the aforementioned applica-
tions of the RC approach to problems in the area of
AAL and human activity recognition show the poten-
tiality of this methodology, still deserving further in-
vestigations and deep experimental assessment, in par-
ticular in combination with already established tech-
niques in this specific application domain.

3. Overall Architecture

Following the recommendations of the technical an-
nex of the EVAAL competition and the considerations
made in Section 2, the main objective of the proposed
system is to implement an activity recognition system
(ARS) that identifies the following activities: Lying,
Sitting, Standing, Walking, Bending (both keeping the
legs straight and keeping the legs folded), Falling and
Cycling (using a stationary bike).

The proposed AReM activity recognition system
can be described as a chain of processing steps, where
each step is responsible for carrying out a particular
task. The first task is to collect the raw data com-
ing from the deployed wireless sensor network (WSN)

and the inertial system embedded in the smartphone
(Subsection 3.1). The data collected are forwarded to
the next computational step by means of dedicated
gateways exploiting the functionalities of the commu-
nication middleware (Subsection 3.2). Then the data
are processed to extract significant features (Subsec-
tion 3.3), a first classification layer based on a cus-
tom decision tree is applied (Subsection 3.4), and fi-
nally the filtered data and features are given as input to
dedicated learning modules, implemented by means of
ESNs, for the final classification layer to provide the
output activity (Subsection 3.5). The activity recogni-
tion chain presented in this paper is shown in Fig. 1.

We planned to use a sensor network that is partly
worn by the user and partly deployed in the environ-
ment together with a smartphone carried out by the
user. Specifically, we used four wearable (three part
of the WSN and a smartphone) and one environmen-
tal sensors. The sensors composing the WSN are ca-
pable of measuring the signal strength of the incom-
ing packets. The wearable sensors are placed on the
chest and on the ankles of the user, while the smart-
phone was placed in the user’s trouser pocket. Further-
more, the WSN wearable sensors, which are connected
in a clique, exchange among themselves beacon pack-
ets, with the purpose of measuring the respective RSS
among themselves. The environmental sensor filters
the beacon packets emitted by the wearable sensors to
receive only to the beacons emitted by the sensor on
the left ankle. The smartphone carried out by the user
is used to exploit the data coming from the embedded
inertial measurement system. All the data acquired by
the wearable sensors are collected by the gateway that
uses an instance of the communication middleware to
transmit data to the other modules of the distributed
system. The smartphone, instead, runs a mobile mid-
dleware instance.

The first classification layer is based on a custom de-
cision tree, this classification technique has been suc-
cessfully applied to activity recognition in numerous
previous works [70,71,55,72]. It uses state-of-the-art
techniques in order to discriminate a falling activity
[73,74,75], to recognize the proximity of the user to a
meaningful furniture in the environment [76], and to
understand if the user is in a horizontal or vertical po-
sition [56].

The final activity classification is performed by ESN
learning modules, which are dynamical neural net-
works able of directly processing temporal streams of
sensed data generated by the nodes of the WSN (see
Section 2). The internal parameters of the neural net-
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Fig. 1. The Activity Recognition multisensor processing chain.

works are adapted in a supervised fashion to the spe-
cific application by the means of learning on a suffi-
ciently sampled training set of data, including both in-
put data from the deployed sensors and ground-truth
information, resulting in the definition of a learning

task. Details on the ESN model can be found in Sec-
tion 3.5.

3.1. Data Collection

Recognizing human activities depends directly on
the features extracted for motion analysis. In our ac-
tivity recognition system we fuse information coming
from inertial sensor embedded in a smartphone carried
out by the user and the implicit alteration of the wire-
less channel due to the movements of the user, which
is given by wireless sensors placed in the environment
and on the user himself. These devices measure the
RSS of the beacon packets they exchange among them-
selves in the WSN [3].

We collect RSS data using IRIS nodes embedding
a Chipcon AT86RF230 radio subsystem that imple-
ments the IEEE 802.15.4 standard and programmed
with a TinyOS firmware. Three of them are placed on
the user’s chest and ankles, another one is placed on
a furniture in the environment representing a mean-
ingful place for a particular activity (i.e. a stationary
bike for cycling activity recognition). For the purpose
of communications, the beacon packets are exchanged
by using a simple virtual token protocol that completes
its execution in a time slot of 50 milliseconds [77]. A
modified version of the Spin [78] token-passing proto-
col is used to schedule node transmission, in order to
prevent packet collisions and maintain high data col-

lection rate. When an anchor is transmitting, all other
anchors receive the packet and perform the RSS mea-
surements. The payload of the transmitting packet is
the set of RSS values between the transmitting node
and the other sensors sampled during the previous cy-
cle. This packet has been received also by a sink node
along with the node’s unique ID. The sink collects all
the payloads for storage and later processing. The RSS
values are acquired for a given channel c for all the
nodes n = 1 . . . N in the network, i.e., when the last
node of the network has transmitted by using the chan-
nel c, the first sensor node starts with a new cycle by
using a new channel. The data collected from each sen-
sor pair (ai, aj), in the following called link, are for-
matted as a string with the following fields: the identi-
fier of the receiver (ID), the RSS values measured be-
tween the receiver and the others transmitting sensors,
the timestamp at which the string was acquired, and
finally the channel used for the acquisition.

We used the inertial system embedded in a Huawei
G510 smartphone to collect accelerometer data. The
smartphone inertial system worn by the user was
placed along its sagittal plane and the sampling rate
was set according to the SENSOR_DELAY_FASTEST

setting of the Android operating system that for the
particular model used has proved to be ≈ 70Hz.

3.2. Communication Middleware

The data collected through the WSN and the smart-
phone come from different hardware and communica-
tion protocols (i.e. the WSN sink running TinyOS, the
desktop gateway running Linux operating system, the
mobile gateway running Android system). In order to
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Fig. 2. The bus-based communication middleware integration.

hide this hardware and software heterogeneity, we ex-
ploited the GiraffPlus [79] middleware capabilities in
terms of service discovery and communication.

In GiraffPlus, the service discovery and communi-
cation functionalities are realized by intelligent buses,
namely the context, service and control buses. All
communications between services happen in a round-
about way via one of them, even if, physically, the ser-
vices are located on the same hardware node. Each of
the buses handles a specific type of message/request
and is realized by different kinds of topics. Topics
are realized exploiting the communication connector
interface based on the MQTT2 protocol, a machine-
to-machine (M2M) connectivity protocol designed as
an extremely lightweight publish/subscribe messaging
transport layer [80]. Figure 2 shows the main compo-
nents of the proposed system interacting with the mid-
dleware buses in our distributed scenario. We exploited
the adaptivity of the GiraffPlus middleware to integrate
new sensors and communication protocols (like in the
case of the 802.15.4-based TinyOS MAC protocol).

We integrated the inertial measurement system em-
bedded in the smartphone using the mobile version
of the GiraffPlus middleware running on Android de-
vices [81], while the WSN sink was integrated in the
system by means of the desktop version of the middle-
ware [82] through an OSGi TinyOS wrapper.

Finally, we developed the AReM module as a Gi-
raffPlus service that collects data exploiting the mid-
dleware context bus, processes the data extracting the
requested features for the next steps of computation

2http://mqtt.org/

Sample Data

% -------

% No. WSN nodes: 4 Time Slot [ms]: 50

% No. Inertial: 1 Time Slot [ms]: 14

% Step Time [ms]: 250

% M:Magnitude, Ax,Ay:Accelerations

% 1:Chest, 2:Left Ankle, 3:Right Ankle, 4:Bicycle

% -------

%

%timestamp,minM,maxM,Ax,Ay,P14,std14,P12,std12,P13,

%std13,P23,std23

%

1368548213503,0.97,0.98,2.33,3.70,25.75,23.50,0.50,18.00,

1.41,31.25,0.43

1368548213753,0.98,1.10,2.41,3.66,24.68,23.10,0.40,18.50,

0.40,30.80,0.50

1368548214003,0.95,1.20,2.44,3.55,23.52,22.50,0.50,18.50,

0.00,30.55,0.20

1368548214253,1.10,1.15,2.34,3.79,24.05,22.50,0.00,17.50,

0.50,31.25,0.80

1368548214503,0.96,1.05,2.34,3.76,23.89,23.50,0.50,18.00,

0.20,31.50,0.10

%...

Fig. 3. A sample output sequence of the sensor data processing
block.

(Subsection 3.3), applies the decision tree (Subsection
3.4), and activates the selected ESN (Subsection 3.5).

3.3. Sensor Data Processing

As a result of the previous step we obtain data sam-
pled at different frequencies with high dimensionality.
Furthermore, consecutive values of a time series are
usually highly correlated, thus there is a lot of redun-
dancy. In this step of the activity recognition chain we
extract the needed time-domain features to compress
the time series and slightly remove noise and correla-
tions. We choose an epoch time of 250 milliseconds
according to the EVAAL technical annex. In such a
time slot we elaborate 5 samples of RSS (sampled at
20 Hz) for each of the four couples of WSN nodes (i.e.
Chest-Right Ankle, Chest-Left Ankle, Right Ankle-
Left Ankle, Bicycle-Left Ankle) and approximately 17
readings of accelerometer values (sampled at ≈ 60
Hz). The time-domain features extracted from these
samples are shown in the Aggregate Values section of
Fig. 3. They include the mean value and standard devi-
ation for each reciprocal RSS reading from worn WSN
sensors, the mean and standard deviation of the RSS
between environmental node and left ankle worn sen-
sor, the mean value of x and y axis accelerometer data
and its max and min value magnitude over the 250
milliseconds time-slot. We consider the magnitude M
as root-sum-of-squares of the three signals from the
embedded tri-axial accelerometer sensor streaming ex-
pressed in g (9.80665 m/s2):

M =
√

x2 + y2 + z2 (1)
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Based on these features, the decision tree system and
the ESN makes a prediction about the user activity.

3.4. Decision Tree

Starting from the output given by the sensor data
processing block of the proposed activity recognition
chain, we arrive to the decision of the user activity out-
put applying to each time-slot data a first layer of clas-
sification using a custom decision tree classification al-
gorithm. The decision tree is used to discriminate the
sub-group of activities to be recognized by the specific
ESN module (see Section 3.5) in the second layer of
classification. The advantages of custom decision trees
include low computation requirements, a simple im-
plementation, and a good understanding of the classi-
fier’s structure. The structure of the custom decision
tree constructed is depicted in Fig. 4. The tree has three
binary decision nodes and four leaf nodes, the latter
representing the ESN to use except for the first one
representing the falling activity.

The first decision node uses the magnitude M of the
tri-axial accelerometer data to decide if a falling activ-
ity is happening. As proved in [75] the magnitude is a
good measure to identify thresholds for falls detection.
We define upper and lower fall thresholds as follows:

– Upper Fall Threshold (UFT): set at the level of
the smallest magnitude Upper Peak Value (UPV)
of 100 falls recorded. The UFT is related to the
peak impact force experienced by the body seg-
ment (thigh) during the impact phase of the fall.

– Lower Fall Threshold (LFT): set at the level of
the smallest magnitude Lower Peak Value (LPV)
of 100 falls recorded. The LFT is related to the
acceleration of the thigh at or before the initial
contact of the body segment with the ground.

Figure 5 shows the magnitude plot of one of the test
made in the laboratory. Setting up a UFT of 2.74g and
a LFT of 0.6g according to the results shown in [75],
all the tests made were correctly recognized as falling
activity. If the input data LPV = min(M) is greater
than LFT, or UPV = max(M) is less than UFT, the
second decision node is applied to the received time-
slot data, otherwise a falling activity is detected.

The second decision node estimates the proxim-
ity [76] of the device placed on the user’s left ankle
to one of the WSN node placed to the stationary bike.
We define a device i to be in-range of device j if the
received signal strength at j of the packet transmitted

Fall zone 

Fall zone 
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1 

2,74 

Time [ms] 

M
ag

n
it

u
d
e 

[g
] 

UFT exceeded 
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LFT exceeded Lower Peak Value 

Upper Fall Threshold 

Lower Fall Threshold 

Fig. 5. Magnitude plot of the tri-axial embedded accelerometer, with
thresholds used for falling detection. When stationary, the root–
sum-of-squares signal from the tri-axial accelerometers is a constant
+1 g.

by i, Pi,j , falls below a power threshold Pτ . Thus, the
proximity Qi,j is defined as:

Qi,j =

{

1, Pi,j ≥ Pτ

0, Pi,j < Pτ

(2)

If the PAL,CY (i = ankle left AL, j = stationary bi-
cycle CY ) is greater than the threshold set to Pτ =
20dBm we infer that the user is near the stationary
bike assuming that he can be in the cycling or stand-
ing state. In this case, the RSSs vector is given as in-
put to the ESN trained to recognize those activities.
If not, the third decision node is applied to the re-
ceived time-slot data. The RSSs vector is composed of
the means and standard deviations of the reciprocal re-
ceived signal strengths of the motes in the body area
WSN. Specifically, the RSS between sensors placed
at chest and left ankle (P̄C,AL, σ(PC,AL)), chest and
right ankle (P̄C,AR, σ(PC,AR)), and left and right an-
kles (P̄AL,AR, σ(PAL,AR)).

The last decision node uses the x and y axis ac-
celerometer mean values to determine if the user is in
a vertical or horizontal position. As demonstrated in
[56], it is clear that if the user is in a vertical or hor-
izontal position, even if it exhibits periodic behavior
related to the particular activity, he has distinctive pat-
terns based on the relative magnitudes of the x, y, and
z values. Figures 6 and 7 show that for vertical position
activities like standing, walking, and bending keeping
the legs straight (bending 1), the x relative magnitude
Ax is usually less than the y relative magnitude Ay ex-
press in the figures as m/s2. Conversely, if the user
performs activities with his legs in a horizontal posi-
tion like sitting, lying, and bending keeping the legs
folded (bending 2), the x relative magnitude Ax is usu-
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UPV > UFT  

OR  

LPV < LFT 

PAL,CY ≥ Pτ 
FALLING 

Ax > Ay 

ESN 

SITTING LYING BENDING 2 

ESN 

CYCLING STANDING 
ESN 

STANDING WALKING BENDING 1 

[M, Ax, Ay, PAL,CY, RSSs]  

[Ax, Ay, PAL,CY, RSSs]  

RSSs [Ax, Ay, RSSs]  

RSSs = [!"C,AL, σ(PC,AL),!"C,AR, σ(PC,AR), !"AL,AR, σ(PAL,AR)]  

RSSs RSSs 

Y N 

Y N 

Y N 

< fall detection > 

< bike proximity > 

< user orientation > 

Fig. 4. Structure of the decision tree fusion mechanism.
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Fig. 6. Acceleration plot for the vertical position.

ally greater than the y relative magnitude Ay (Fig. 8
shows the two types of bending activity). Based on this
decision we choose which trained ESN to use.

3.5. ESN

In this paper, the activity recognition process is re-
alized by the means of RNNs [9,10], which are dy-
namical neural networks models particularly suitable
for processing temporal sequences of noisy data, such
is the case of human activity recognition. In this con-
text, RNNs are used to produce a classification output
at each time step, based on the history of the RSS sig-
nals received in input. Based on a training set of data
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Fig. 7. Acceleration plot for the horizontal position.

Fig. 8. The two types of bending activity. Bending 1 on the left and
bending 2 on the right.

samples, learning is used to adapt the network parame-
ters to the specific context and input patterns. As men-
tioned in Section 1, for RNN modeling we take into
consideration the efficient RC paradigm [11]. This re-
sults in an approach which, on the one hand strongly
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reduces the computational cost of training, and on the
other hand has been experimentally proved to be par-
ticularly effective in real-world problems pertaining to
application contexts of interest for this paper, such are
AAL and user/robot localization (see Section 2).

In this paper, within the RC/ESN paradigm, we fo-
cus on the Leaky Integrator ESN (LI-ESN)[83], which
is particularly suitable for treating input data with the
peculiarity of the RSS originated from a WSN [18,66].

The architecture of a LI-ESN is composed of an in-
put layer with NU units, a large and sparsely connected
reservoir layer with NR recurrent non-linear units, and
a readout layer with NY feed-forward linear units. The
reservoir encodes the input history of the driving input
signal into a network state. The readout computes the
output of the model by linearly combining the activa-
tion of the reservoir units.

At each time step t, the reservoir of the LI-ESN
computes a state x(t) ∈ R

NR according to a state tran-
sition function:

x(t) = (1−a)x(t−1)+af(Winu(t)+Ŵx(t−1))

(3)

where u(t) ∈ R
NU is the input of the LI-ESN at

time step t, Win ∈ R
NR×NU is the input-to-reservoir

weight matrix (possibly including a bias term), Ŵ ∈
R

NR×NR is the recurrent reservoir weight matrix, f
is the element-wise applied activation function, which
typically is a non-linearity of a sigmoidal type (in this
paper we use tanh), and a ∈ [0, 1] is the leaking rate
parameter, used to control the speed of the reservoir
dynamics [83,11] (when a = 1 the standard ESN stat
transition function is obtained).

At each time step t, the readout computes the output
of the model y(t) ∈ R

NY through a linear combina-
tion of the elements in the state x(t), i.e.:

y(t) = Woutx(t) (4)

where Wout ∈ R
NY ×NR is the readout-to-reservoir

weight matrix (possibly including a bias term).
In particular, in this paper we consider the case of

multi-classification learning tasks among K classes,
where each class corresponds to one of the activities.
In this case, every element in the output vector at time
step t, i.e. yi(t), corresponds to one of the considered
activities, which means that NY = K (in our paper,
the maximum number of activities for one task is 7, see
details in Section 5). In general, at time step t, the i-th

activity is considered as identified if the correspond-
ing element in the readout has a positive activation, i.e.
whenever yi(t) > 0. When it is required to identify
one single activity at each time step, as in our applica-
tion, the identified activity is the one corresponding to
the readout unit with the largest activation, i.e. activity
i is recognized at time step t whenever

yi(t) = maxNY

j=1(yj(t)) (5)

The readout is the only part of the LI-ESN which
undergoes a process of training, typically by using ef-
ficient linear methods, e.g. pseudo-inversion and ridge
regression [11]. The reservoir parameters are left un-
trained after a proper initialization under the con-
straints of the echo state property (ESP) [13,16]. A
sufficient and a necessary condition for the ESP to
hold are provided in literature [14,83]. In practical ap-
plications the sufficient condition is often considered
too restrictive, and the necessary condition is gener-
ally considered for the initialization of the reservoir
parameters. Such necessary condition states that the
system governing the reservoir dynamics (eq. 3) is lo-
cally asymptotically stable around the zero-state. For
the case of LI-ESN, the necessary condition for the
ESP can be expressed as:

ρ(W̃) < 1 (6)

where ρ(W̃) is the spectral radius of the matrix

W̃ = (1− a)I+ aŴ (7)

In general, in order to meet the condition in eq. 6,
a simple process consists in randomly initialize the
weight values in the matrices Win and Ŵ, and then
rescale the matrix Ŵ to obtained the desired value of
the spectral radius (see e.g. [11,14,16] for details). In
particular, in this paper we adopt the efficient weight
encoding strategy (see details in [18,64]) consisting
in randomly selecting the weight values in matrices
Win and Ŵ from a small alphabet of possible val-
ues. Such approach has the advantage of greatly re-
ducing the memory requirements for the storage of the
network parameters, while not decreasing the perfor-
mances of the RC models in applications, as experi-
mentally shown in [18,64].
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Table 1

Number of sequences for each activity in the Activity Recognition
dataset.

Activity N. of sequences

Bending1 7

Bending2 6

Cycling, Lying, Sitting, Standing, Walking 15

4. Fielding the System in a Real Smart

Environment

The proposed activity recognition system aims at
becoming a robust solution for automatic and unobtru-
sive identification of user’s activities in AAL scenar-
ios. Real-time monitoring of human movements could
be a useful tool for many purposes and future applica-
tions such as life-log, health care or entertainment. To
this purpose, we have performed a ”deployment-and-
evaluation” approach that includes different testbeds
for each phase of development of the technology.

Specifically, we have conceived an approach that is
based on the deployment and iterative refinement of
the technology in three main steps. Once a prototype
has been developed, it was first evaluated dealing with
a subset of activities (i.e. standing up and down) in a
laboratory settings. The results obtained in this phase
are described in [21] and have been used to present the
system to the EVAAL competition. After peer review,
our team was accepted to the competition together with
the teams: IJS (from the Jožef Stefan Institute of Ljubl-
jana, Slovenia) [84], AmevaActivity (from the Univer-
sity of Seville, Spain) [85], and CUJ (from the Uni-
versity of Chiba, Japan) [86]. Competitors were in-
vited to install and run their Activity Recognition Sys-
tem (ARS) during a predefined time slot. An actor per-
formed a physical activity trip across the smart home
with a reference ARS used to obtain the ground truth
data. In order to get approximately the same ground
truth for all the contestants, audio signals were used to
synchronize the actor movements [87].

Starting from the encouraging results obtained in
laboratory settings on the restricted set of activities, we
performed further experiments in order to address the
requirements of the EVAAL competition. With the aim
of properly training the LI-ESNs for the activity recog-
nition phase, a new measurement campaign was con-
ducted collecting training data from the body area sen-
sor network that would have been used in the compe-
tition. Three IRIS motes were used for the campaign,
placed on the chest, right and left ankle of the test sub-
ject. Data from such a small WSN was recorded while

Fig. 9. The sensors setup during the competition.

an actor performed the activities: bending keeping the
legs straight (i.e. bending 1), bending keeping the legs
folded (i.e. bending 2), cycling, lying, sitting, stand-
ing, walking. Ground-truth was obtained manually, la-
beling each sequence of activities. Data gathered dur-
ing this measurement campaign was organized into
an Activity Recognition dataset, containing the RSS
measured among the IRIS nodes during the aforemen-
tioned activities, at the frequency of 4 Hz (i.e. 4 sam-
ples per second). Each sequence in the dataset has the
duration of 2 minutes (480 time steps) and corresponds
to the actor performing a specific activity. The dataset
contains a total number of 88 sequences, pertaining to
the different activities, Table 1 shows the number of
available sequences for each activity.

Figure 9 shows the sensors used for the measure-
ment campaign, installed in the CIAMI living lab in
Valencia, venue of the competition. In addition to the
body area sensor network, as illustrated in Section 3.1,
an environmental IRIS mote was installed on the sta-
tionary bike and a smartphone was placed in the ac-
tor’s trousers pocket. The presented system placed in a
top position confirming the effectiveness of the chosen
approach. The results obtained in the competition are
freely available on the official website3 together with
the details of all the competitors systems and the met-
rics used for the evaluation.

After the competition, the enhanced system pre-
sented in this paper was tested again under laboratory
settings in order to perform a complete experimental

3http://evaal.aaloa.org/
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assessment of the reservoir computing networks used
for the activity recognition system, and to compare
the obtained results with alternative methods (IDNNs)
considered as baseline reference. The obtained results
are illustrated in the following section.

5. Results

Based on the overall architecture of the AReM sys-
tem described in Section 3, here we describe the re-
sults obtained by the learning modules performing
the activity recognition process. As described in Sec-
tion 3.4, the fall detection mechanism in the AReM
system is implemented by exploiting state of the art
solutions. Therefore, for the purposes of assessing
the performance of our RC-based activity recognition
process, here we restrict the attention to the remain-
ing activities: Bending1, Bending2, Cycling, Lying,
Sitting, Standing and Walking. Moreover, the perfor-
mance achieved with the proposed RC-based approach
is compared with the one obtained using IDNNs, rep-
resenting a popular paradigmatic approach in the field
of neurocomputing models for application in human
activity recognition problems (see Section 2). Through
such a comparison it is also possible to investigate
whether the use of a recurrent approach for learning in
sequence domains (such is the case of RC), not limited
to the use of finite-size windows for treating streams
of input data (as instead is the case of IDNN), allows
to effectively take advantage on the considered tasks.

For our experiments, we considered both the set-
tings in which only the RSS data from the wearable
IRIS sensors (see Fig. 1) are available to the ARS,
and the case in which also data from additional sen-
sors (additional environmental RSS and smartphone
accelerometer) are available (see details in Section 3).
In the former setting, referred in the following as RSS-

based AReM setting, or simply RSS-based, all the
aforementioned activities are considered, and classi-
fication of the user actions is performed by a single
learning model. In the latter case, referred in the fol-
lowing as Heterogeneous AReM setting, or simply Het-
erogeneous, the augmented set of available data allows
to apply the rule-based classification process described
in Section 3, through the application of the decision
tree in Fig. 4. According to the structure of the consid-
ered decision tree, the classification of the user activ-
ity is performed in this case by resorting to 3 learning
models, each of which specialized by training on sub-
groups of activities, and allowing a more accurate ac-

Table 2

Organization of the computational learning tasks and activities in-
volved in the different ARS settings.

ARS Setting Activities

RSS-based AReM
Bending1, Bending2, Cy-
cling, Lying, Sitting, Stand-
ing, Walking

Heterogeneous AReM

task 1 Cycling, Standing

task 2
Bending1, Standing, Walk-
ing

task 3 Bending2, Lying, Sitting

tivity discrimination. Through a comparison of perfor-
mances achieved under the RSS-based and the Hetero-
geneous settings, it is possible to experimentally assess
the advantages brought by the availability of an aug-
mented set of input data sources and by the design of
the data fusion process, exploiting the specialization of
the learning models trained on sub-sets of activities.

According to these settings, the collected Activity
Recognition dataset described in Section 4 was used
for the definition of different multi-classification learn-
ing tasks. In particular, 4 multi-classification learning
tasks were arranged, the first one for the RSS-based
ARS setting, and the remaining 3 for the different sub-
systems of the Heterogeneous setting. Table 2 provides
the information about the organization of the learning
tasks based on the different settings considered.

For each learning task in Table 2, we split the avail-
able data into a training set and an external separate
test set (for performance evaluation only). The number
of sequences in the training set and in the test sets is 64
and 24, respectively, for the learning task in the RSS-
based setting. For the learning tasks in the Heteroge-
neous setting, the number of sequences in the training
and test sets is 22 and 8, respectively, for task 1, 27 and
10, respectively, for task 2, and 26 and 10 respectively,
for task 3 (note that the Standing activity is present
in both tasks 1 and 2). For each multi-classification
learning task, the values of the hyper-parameters of LI-
ESNs and IDNNs were selected (in order to maximize
the K-class classification accuracy, see eq. 11) on a
validation set, according to a holdout model selection
scheme over the training set of data. For every task in
Table 2, the number of sequences in the validation set
was ≈ 25% of the number of sequences in the train-
ing set, i.e. 14 for the learning task in the RSS-based
ARS setting, and 4, 6 and 6, respectively, for the three
learning tasks in the Heterogeneous ARS setting.

For model selection purposes (on the validation
sets), in our experiments with LI-ESNs we considered,
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for every learning task, networks with reservoir dimen-
sion NR ∈ {10, 50, 100, 300, 500}, 10% of connectiv-
ity, leaking rate a ∈ {0.1, 0.3, 0.5, 0.7, 1}. According
to the weight encoding scheme described in [18,64]
(see Section 3.5), the weights values in matrices Win

and Ŵ were randomly chosen from a weight alpha-
bet uniformly sampled in the range [−0.4, 0.4], lead-
ing to a spectral radius (eq. 6) of approximately 0.9 for
every setting. A number of 5 reservoir guesses were
independently generated for each reservoir hyper-
parametrization, and results were averaged over such
guesses. The readout of LI-ESNs was trained using
pseudo-inversion and ridge regression with regulariza-
tion parameter λr ∈ {0.0001, 0.001, 0.01, 0.1, 0.5, 1,
5, 10, 100, 1000}.
For what concerns the comparative experiments car-
ried out using IDNNs, we considered networks trained
using Back-propagation with learning rate η ∈ {0.0001,
0.002, 0.0025, 0.003, 0.005, 0.01, 0.1} and momen-
tum α ∈ {0, 0.001, 0.0001}. The values of the weight
decay parameter and the number of hidden units were
set to λwd = 0.00001 and NH = 100, respectively,
based on the results achieved on the validation set dur-
ing preliminary experiments involving the ranges of
values λwd ∈ {0, 0.01, 0.001, 0.0001, 0.00001} and
NH ∈ {10, 50, 100, 500}. The length of the input win-
dow (i.e. the input order of the delay network) was
set to 10 (corresponding to 2.5 seconds), which is in
line with typical settings adopted in literature (see Sec-
tion 2). IDNNs were trained for a maximum number of
5000 epochs, stopping the training process whenever
the error on the training set was stable for 10 consecu-
tive epochs.

The predictive performance of the ARS systems
proposed was assessed by computing accuracy and F1
score obtained for each learning task in Table 2, in ac-
cordance to the evaluating criteria of the EVAAL com-
petition (see e.g. [88,89,90]). In particular, the perfor-
mance of the models on each activity was evaluated
by computing per-class (i.e. per-activity) measures of
accuracy, recall, precision and F1 score, according to:

accuracyi =
1

Ni

∑Ni

j=1

tpi+tni

tpi+tni+fpi+fni

recalli =
tpi

tpi+fni

precisioni =
tpi

tpi+fpi

F1i = 2 precisionirecalli
precisioni+recalli

(8)

where Ni is the number of samples available for the
classification task involving the i-th activity, tpi, tni,

fpi, fni are respectively the number of true positive,
true negative, false positive and false negative classifi-
cations for the i-th activity. The overall performance of
the ARS systems (multi-classification case) were com-
puted by averaging per-class accuracy, recall and pre-
cision over the activities:

accuracyav = 1

K

∑K

i=1
accuracyi

recallav = 1

K

∑K

i=1
recalli

precisionav = 1

K

∑K

i=1
precisioni

(9)

Based on the averaged recall and precision, the F1
measure for the case of multi-classification is com-
puted as a macro-F1 score:

F1macro = 2
(precisionavrecallav)

precisionav + recallav
(10)

A further measure of the performance of the mod-
els in the multi-classification case is given by the K-
class classification accuracy, i.e. the accuracy com-
puted over the prediction matrix for the complete set
of activities (confusion matrix), defined as:

accuracyK =

∑K

i=1
tpi

∑K

i=1
Ni

(11)

where the maximum value of K used in our paper is 7.
In the results reported in the following, perfor-

mances (accuracy and F1 scores) were averaged,
and standard deviations were computed, over the 5
reservoir guesses considered for each LI-ESN hyper-
parametrization. Analogously, for the experiments
with IDNNs the performance corresponding to each
network setting was averaged over 5 different runs,
corresponding to different initializations of the weight
values from a uniform distribution in [−0.001, 0.001].
In particular, it should be noted that the obtained stan-
dard deviations are very small in correspondence of
every experimental setting considered (in the order of
0.1 percentage points for the accuracy and of 0.1-1
percentage points for the F1 score), not affecting the
performance evaluation nor the comparison among the
different cases. As such, for the sake of compactness
of results presentation, standard deviations are not ex-
plicitly shown in the Tables reported in this Section.

The performance achieved by LI-ESNs on the multi-
classification learning task corresponding to the RSS-
based ARS setting is shown in Table 3, which reports
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Table 3

Test set per-class accuracy and F1 score achieved by LI-ESNs and
IDNNs on the activities in the RSS-based ARS setting. The last row
reports the accuracy averaged over the different activities and the
macro-F1 score.

Activity Accuracy F1

LI-ESN IDNN LI-ESN IDNN

Bending1 0.981 0.968 0.897 0.833

Bending2 0.977 0.947 0.842 0.620

Cycling 0.999 0.961 0.997 0.888

Lying 0.976 0.900 0.931 0.632

Sitting 0.825 0.850 0.464 0.297

Standing 0.855 0.862 0.552 0.657

Walking 0.999 0.972 0.997 0.913

Overall 0.944 0.923 0.816 0.723

the test per-class accuracy and F1 score for each ac-
tivity, along with the averaged accuracy (eq. 9) and
macro-F1 (eq. 10) of the resulting ARS system. For
performance comparison, Table 3 also reports the per-
formance achieved by IDNNs in the same experimen-
tal conditions. Moreover, the confusion matrices for
the two cases of LI-ESNs and IDNNs are graphically
illustrated in Fig. 10, considering an enumeration of
the activities according to the order in Table 3. Fig-
ure 10 shows for each case a compact graphical repre-
sentation where each row of the matrix corresponds to
the class assigned by the classifier (Output), while each
column represents the activity actually performed (Tar-
get). A classification method with ideal performance
will only have bars (Frequency) on the main diago-
nal of the matrix. The more bars on the non-diagonal
cells are high, the worst the classification performance.
There results show that the performance obtained by

LI-ESNs in the RSS-based setting is already good,
with averaged test accuracy of 0.944, macro F1 score
of 0.816 and K-class classification accuracy of 0.805.
As can be seen from Table 3 and Fig. 10, in general,
single activities are well recognized, with per-activity
accuracy between 0.825 and 0.999. However, due to
the nature of the RSS input signals used, the activi-
ties Sitting and Standing results to be hardly distin-
guishable between each other (see Fig. 10a), with F1
scores close to 0.5. Specifically, the activities Sitting
and Standing, as described in the EVAAL technical
annex, do not include the phases of sitting down and
standing up, in which the proposed system presents
good results [87,21]. Indeed, when the user is seated,
even though the sensors are closer than the standing
still position, the most part of the body along with the
chair is interposed between the sensors, compensating

1
2

3
4

5
6

7

1
2

3
4

5
6

7

0

0.5

1

Output
Target

F
re

q
u
e
n
c
y

0

0.2

0.4

0.6

0.8

1

(a) RSS-based LI-ESN (AReM)

1
2

3
4

5
6

7

1
2

3
4

5
6

7

0

0.5

1

Output
Target

F
re

q
u
e
n
c
y

0

0.2

0.4

0.6

0.8

1

(b) RSS-based IDNN

Fig. 10. Confusion matrices of the performance in the multi-clas-
sification learning task obtained by the proposed LI-ESN based
(AReM) system (a) and the IDNN based one (b), respectively. The
two axes on the base of each graph represent the target activity class
and the output class predicted by the system, respectively. The height
of the bars represent the number of instances normalized to the total
number of target elements in the corresponding class (Frequency).
The smaller the bars outside of the main diagonal, the better is the
performance. Activities are enumerated according to the same order
as in Table 3: 1 for Bending1, 2 for Bending2, 3 for Cycling, 4 for
Lying, 5 for Sitting, 6 for Standing, 7 for Walking.

the increment of RSS due to the closer positions. This
makes the resulting RSS streams for Sitting practically
very similar to the ones collected for Standing. Fur-
thermore, it is worth to note that both such activities,
involving the user in a still position, do not signifi-
cantly perturb the streams of gathered RSS data. Ta-
ble 3 also shows that the performance achieved by LI-
ESNs is also generally higher than the one achieved
by IDNNs. Indeed, in the RSS-based setting, IDNNs
resulted in an averaged test accuracy of 0.923, macro
F1 score of 0.723 and K-class classification accuracy
of 0.675, which are respectively 2.1, 9.3 and 13 per-
centage points lower than the results obtained with LI-
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Table 4

Test set per-class accuracy and F1 score achieved by LI-ESNs and
IDNNs on the activities pertaining to the Heterogeneous ARS set-
ting, task 1 (involving the activities Cycling and Standing). The last
row reports the accuracy averaged over the different activities and
the macro-F1 score.

Activity Accuracy F1

LI-ESN IDNN LI-ESN IDNN

Cycling 1.000 0.995 1.000 0.995

Standing 1.000 0.995 1.000 0.995

Overall 1.000 0.995 1.000 0.995

Table 5

Test set per-class accuracy and F1 score achieved by LI-ESNs and
IDNNs on the activities pertaining to the Heterogeneous ARS set-
ting, task 2 (involving the activities Bending1, Standing and Walk-
ing). The last row reports the accuracy averaged over the different
activities and the macro-F1 score.

Activity Accuracy F1

LI-ESN IDNN LI-ESN IDNN

Bending1 0.996 0.987 0.990 0.969

Standing 0.995 0.996 0.994 0.995

Walking 1.000 1.000 1.000 1.000

Overall 0.997 0.995 0.995 0.988

ESNs. Moreover, the proposed ARS setting based on
LI-ESNs outperforms the analogous case with IDNNs
also in terms of per-class accuracy for all the consid-
ered activities, with the exception of the aforemen-
tioned Sitting and Standing. In such cases, indeed,
the per-class accuracy achieved by IDNNs is slightly
higher than the one obtained by LI-ESNs, reflecting
the fact that on specific tasks the windowing approach
can be effective, and that in principle it is possible to
obtain a good performance on single specific tasks us-
ing the LI-ESN recurrent approach or the IDNN win-
dowing one. However, as a global result of an activ-
ity recognition system over a whole set of activities,
a recurrent approach (such is the LI-ESN based one),
which does not make use of an input window of a-
priori determined length, results in a system of a more
general applicability with better average performance,
in particular in cases in which no specific information
is available for ad hoc tuning of the window length.

The performance of the LI-ESNs on the 3 multi-
classification learning tasks corresponding to the Het-
erogeneous ARS setting are reported in Tables 4, 5 and
6, which also present the results of IDNNs in the same
experimental settings, for the sake of comparison.

Results shown in such tables are computed by con-
sidering for each learning task only the sequences per-

Table 6

Test set per-class accuracy and F1 score achieved by LI-ESNs and
IDNNs on the activities pertaining to the Heterogeneous ARS set-
ting, task 3 (involving the activities Bending2, Sitting, Lying). The
last row reports the accuracy averaged over the different activities
and the macro-F1 score.

Activity Accuracy F1

LI-ESN IDNN LI-ESN IDNN

Bending2 0.941 0.889 0.832 0.728

Sitting 0.933 0.783 0.914 0.753

Lying 0.930 0.830 0.920 0.769

Overall 0.935 0.834 0.896 0.754

taining to the involved activities. In general, LI-ESNs
showed very good performances on these 3 learning
tasks, with average accuracy and macro F1 score above
0.93 and 0.89, respectively, for every task. In partic-
ular, for task 1, involving the activities Cycling and
Standing (see Table 4), average accuracy and macro F1
score are both equal to 1. For task 2, involving the ac-
tivities Bending1, Standing and Walking (see Table 5),
average accuracy and macro F1 score are 0.997 and
0.995, respectively. For task 3, involving the activities
Bending2, Sitting and Lying (see Table 6), average ac-
curacy and macro F1 score are 0.935 and 0.896, re-
spectively. It is also worth to note that Tables 4, 5 and
6 show that LI-ESNs generally outperform IDNNs on
the three tasks considered in the Heterogeneous ARS
setting. Indeed, the performance achieved by LI-ESNs
improves the one obtained by IDNNs up to 10.1 and
14.2 percentage points, respectively, in terms of av-
eraged accuracy and macro F1. The performance im-
provement obtained by the LI-ESN approach is par-
ticularly evident in correspondence of the activities in
task 3, i.e. Bending2, Sitting and Lying (see Table 6).

The performance evaluation of the Heterogeneous
ARS system as a whole is computed by aggregating
the results of the learning models for tasks 1, 2 and 3,
according to the decision tree in Fig. 4. It is worth to
recall that in this case the classification output of the
activity recognition system is the activity correspond-
ing to the readout unit with the highest activation (see
eq. 5) in the LI-ESN activated by the decision tree in
Fig. 4 (analogously for the case of IDNNs).

Table 7 reports the test performance achieved by LI-
ESNs and IDNNs for the Heterogeneous setting, con-
sidering all the sequences for all the activities. Note
that results for the activity Standing are averaged be-
tween the two possible cases represented in task 1 and
task 2 (i.e. proximity and non-proximity to the bicy-
cle). Graphical representations of the confusion matri-
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Fig. 11. Confusion matrices of the performance obtained under the Heterogeneous ARS settings by the proposed LI-ESN based (AReM) system
(a) and the IDNN based one (b), respectively. Activities are enumerated according to the same order as in Tables 3 and 7: 1 for Bending1, 2 for
Bending2, 3 for Cycling, 4 for Lying, 5 for Sitting, 6 for Standing, 7 for Walking.
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Fig. 12. Graphical representation of the results obtained by LI-ESN (AReM) (a) and by IDNN (b) under the Heterogeneous ARS setting on the
test set of the activity recognition dataset. X-axis represents the progressive time-slots of 250 milliseconds. Y-axis represents the activity: 1 for
Bending1, 2 for Bending2, 3 for Cycling, 4 for Lying, 5 for Sitting, 6 for Standing, 7 for Walking.
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Table 7

Test set per-class accuracy and F1 score achieved by LI-ESNs and
IDNNs on the activities in the Heterogeneous ARS setting. The last
row reports the accuracy averaged over the different activities and
the macro-F1 score.

Activity Accuracy F1

LI-ESN IDNN LI-ESN IDNN

Bending1 1.000 0.995 1.000 0.972

Bending2 0.976 0.950 0.832 0.728

Cycling 1.000 0.998 1.000 0.995

Lying 0.971 0.930 0.920 0.722

Sitting 0.972 0.911 0.914 0.771

Standing 1.000 0.997 1.000 0.992

Walking 1.000 1.000 1.000 1.000

Overall 0.988 0.969 0.956 0.885

ces for the results of LI-ESNs and IDNNs under the
Heterogeneous ARS setting are shown in Fig. 11. Fig-
ure 12 reports the output of the LI-ESN (Fig. 12a) and
of the IDNN (Fig. 12b) models in correspondence of
the Heterogeneous ARS setting. For the sake of clarity
of representation, data pertaining to the different activ-
ities are grouped in Fig. 12 based on the ground-truth
and concatenated according to the same order as in Ta-
bles 3 and 7.

As it can be observed in Table 7 and in Fig. 11
and 12, results obtained by LI-ESN on single activi-
ties are extremely good, with test average accuracy be-
tween 0.971 and 1.000 and F1 scores between 0.832
and 1.000. In particular, the performance obtained for
the two activities Standing and Sitting is greatly im-
proved with respect to the RSS-based setting, show-
ing the great advantage of the availability of the aug-
mented set of sensor data to the ARS, which is also
appreciable through a comparison between the confu-
sion matrices in Fig. 10 and 11. Averaged accuracy and
macro F1 score for the Heterogeneous setting with LI-
ESNs are 0.988 and 0.956, respectively, which repre-
sents an improvement of 4.4 and 14 percentage points
with respect to the RSS-based case. The K-class clas-
sification accuracy for the Heterogeneous setting with
LI-ESNs is 0.959, which overcomes the K-class classi-
fication in the corresponding RSS-based case of more
that 15 percentage points. Moreover, the comparison
between the results obtained by LI-ESN and by IDNN
in the Heterogeneous ARS setting, reported in Table 7
and Fig. 11 and 12, confirms the general superiority
of the LI-ESN approach in this application context. In-
deed, the performance of LI-ESNs is always higher
than or equal to the performance of IDNNs on the sin-
gle activities considered, with an improvement up to

approximately 6 and 20 percentage points in terms of
per-class accuracy and F1, respectively. In this regard,
it is also worth to observe that the advantage of IDNNs
on the accuracy for the activities Sitting and Standing,
noted for the RSS-based setting, does not hold any-
more in the Heterogeneous setting. IDNNs in the Het-
erogeneous setting resulted in an average test accuracy
of 0.969, macro F1 score of 0.885 and K-class classi-
fication accuracy of 0.897, which are respectively ap-
proximately 2, 7 and 6 percentage points lower than
the results obtained with LI-ESNs. It is also interesting
to observe that the results achieved with IDNNs in the
two ARS settings considered, although generally infe-
rior to the corresponding ones obtained with the pro-
posed LI-ESN based ARS system, show also in this
case a substantial improvement of the performance ob-
tained in the Heterogeneous setting with respect to the
RSS-based one. This aspect represents a further confir-
mation of the effectiveness of the use of the augmented
set of available sensors within the decision tree fusion
mechanism shown in Fig. 4 and described in Section 3.

6. Conclusion

In this work, we presented AReM, an activity recog-
nition system that exploits the strengths of the RC ap-
proach for modeling RNNs, which resulted to be par-
ticularly appropriate for the identification and classi-
fication of temporal pattern in time series. Data col-
lected from both environmental and wearable sensors
were used as input for the classification process, re-
alized by means of two classification layers. The first
layer is based on a custom decision tree that exploits
consolidated signal processing techniques in order to
discern and group static features extracted from the
data in terms of usefulness for the following steps of
classification. The second layer is based on a set of RC
networks implemented as LI-ESNs, realizing the final
activity recognition step.

Our activity recognition system has been experi-
mentally validated on a real-world activity recogni-
tion dataset, collected with iterative rounds of mea-
surements campaigns. Extremely good performance
results were obtained on an external test set, both in
terms of average accuracy, up to 0.988, and in terms
of macro F1 score, up to 0.956. The effectiveness
of the refined multi-sensor processing chain has been
assessed through a comparison of the performances
achieved under different settings of the activity recog-
nition system. In particular we took into consideration
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the case in which only RSS data from wearable sen-
sors are available, and the case in which additional (en-
vironmental and wearable) sensors data can be used.
The latter setting, allowing to better focus the training
on specific sub-sets of activities, resulted in a signifi-
cant performance enhancement. Moreover, for the sake
of performance comparison with our proposed model,
we took into consideration the competitive IDNN ap-
proach as a paradigmatic representative of the class of
delay networks, a popular choice for neural networks
learning in human activity recognition problems. This
comparison on the one hand showed that the results
obtained by the proposed LI-ESN approach generally
outperform those achieved by IDNN in every setting
considered, and on the other hand further confirmed
the effectiveness of the proposed multi-sensor process-
ing chain with the augmented set of available sensors.

Overall, the activity recognition system proposed in
this paper intends to provide a flexible and robust solu-
tion for the identification of user’s activities. The sys-
tem is particularly interesting since it can constitute
the premise not only for user monitoring applications,
but can be part of a more general solution for ambi-
ent assisted living. To this purpose, as future work, we
plan to use the proposed system in real test sites com-
ing from EU funded project DOREMI 4 once they will
become available for the experimentation.
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