
1

Customizable Dynamic User Interface Distribution

Marco Manca, Fabio Paternò

CNR-ISTI, HIIS Laboratory

Pisa, Italy

{marco.manca, fabio.paterno}@isti.cnr.it

ABSTRACT

This paper describes a solution for flexibly obtaining

distributed user interfaces across multiple devices. To this

end, we propose a model-based approach, with associated

authoring environment, which allows designers and

developers to specify how to distribute interfaces at various

granularity levels, ranging from entire user interfaces to

parts of single interactive elements, and obtain the

corresponding implementations. This solution includes run-

time support for keeping the resulting user interfaces

synchronized and customization tools that allow end users

to dynamically change how the user interface elements are

distributed across multiple interactive devices in order to

address unforeseen situations. We also report on a first user

test and how the environment has evolved according to the

user feedback.

Author Keywords

Distributed User Interfaces, Multi-device User Interfaces,

Model-based User Interface Description Languages.

ACM Classification Keywords

H.5 Information Interfaces and Presentation; H.5.2 User

Interfaces.

INTRODUCTION

The number of computers per person has been increasing

steadily to the point where users may have even more than

five devices [3]. Enabling seamless interaction across

multiple devices would enhance the users’ flexibility. The

way designers address multi-device user interfaces is

through responsive design [11] in which they define

different versions of the user interface mainly depending on

the available screen size. However, this is not sufficient.

How people access their interactive applications will

change, with users no longer accessing their applications

through one device at a given time, but rather using

multiple collaborating devices available while mobile, such

as using the smartphone to control the content on a large

screen. The technological trends towards ubiquitous

environments require Distributed User Interfaces (DUIs),

which are user interfaces that allow users to access

concurrently an interactive application through multiple

devices at a given time.

Current user interface languages and technologies have not

been designed to support concurrent access from multiple

devices, and therefore need to be enhanced in order to be

able to handle the main concepts characterising interactions

with an application through various combinations of

multiple devices. Indeed, such novel user interfaces require

that parts of the interfaces on different devices can be kept

synchronised according to user input or that some parts can

be dynamically migrated from one device to another

through both push and pull mechanisms while preserving

their state. While some applications exploiting distributed

user interfaces have been proposed (for example [14]), such

applications have usually applied specific ad hoc solutions,

which are difficult to generalize. Thus, there is a need for

solutions able to provide support for distributed user

interfaces for various applications, especially if the

distribution of the user interface elements needs to be

changed dynamically.

Model-based approaches [5] have been proposed to manage

the increasing complexity derived from user interfaces in

multi-device environments. They have also been considered

in W3C for standardization in order to ease their industrial

adoption1. The main idea is to provide a small general

conceptual vocabulary to support user interface developers

in the design process. The resulting logical descriptions can

then be transferred into a variety of implementation

languages with the support of automatic transformations,

thereby hiding the complexity deriving from the

heterogeneous languages and devices, and sparing

developers the need to learn all the details of such

implementation languages. Thus, they can be useful to

obtain more accessible applications as well since they make

more explicit the semantics and the role of the various user

interface elements, which is also important for access

through assistive technologies. In the area of distributed

user interfaces, model-based approaches can determine

more general solutions that involve different interaction

modalities or implementation environments since they

provide general frameworks that can be instantiated across

them.

1 http://www.w3.org/TR/2014/NOTE-mbui-intro-

20140107/

Paste the appropriate copyright/license statement here. ACM now supports
three different publication options:

• ACM copyright: ACM holds the copyright on the work. This is

the historical approach.
• License: The author(s) retain copyright, but ACM receives an

exclusive publication license.

• Open Access: The author(s) wish to pay for the work to be open
access. The additional fee must be paid to ACM.

This text field is large enough to hold the appropriate release statement

assuming it is single-spaced in Times New Roman 8-point font. Please do
not change or modify the size of this text box.

Each submission will be assigned a DOI string to be included here.

2

RELATED WORK

Multibrowsing [8] was an early framework that extended

the browsing metaphor across multiple displays. It provided

support to bring up Web pages on any of the shared screens.

In this environment the enhanced clients needed a custom

browser plug-in and the target displays had to run a special

service to receive the distribution event and open the pages.

In addition, there was only one available command

(browse(URL)), applied to an entire user interface. iRos

[17] was its middleware platform used to connect devices

that have their own low-level operating system. There could

only be two types of distribution in this environment: one to

one and one to many. Our approach is more general,

supporting more flexible distributions as well, and does not

need any plug-in to distribute a Web page. Moreover, we

allow users to distribute also subparts of the interfaces.

Penalver et al. [16] provided useful indications regarding

important aspects in DUIs: the UI as a whole or its elements

should be easily transferred across platforms and devices;

DUI systems should be decomposable meaning that if a

given UI is composed of a number of elements, one or more

of these elements can be executed independently without

losing functionality; different elements of the same DUI

should be manageable at the same time in different

platforms. However, they do not provide supporting

software architectures. Melchior et al. [13] developed an

approach by which they describe the distribution in terms of

‘Distribution Primitives’, a set of 11 basic operations for

supporting distribution (display, undisplay, copy, move,

etc.). We opted to use CARE (Complementarity,

Assignment, Redundancy, Equivalence) [1] properties for

this purpose because they provide a more compact

vocabulary still able to express the relevant concepts (their

meaning and use is detailed in the next section). In

addition, our approach is able to support dynamic user

interfaces through customization tools that can run on

various devices (including smartphones) and support

distribution at a broader set of granularities levels.

Felix et al. [4] developed a system to share information for

synchronous collaboration. They provide a shared

workspace to exchange documents between users

participating in the session. The Drag&Share system allows

documents to be distributed, but not the UI elements, even

though it uses a system architecture with some similarities

to our own. Lorenz et al. [9] developed a prototype that

consists of interactive components distributed amongst two

devices: a handheld and a remote device for controlling an

application on a remote screen. However, they defined this

distribution statically and it was not possible to modify how

to distribute the interactive application at run-time. Rachid

et al. [18] investigated solutions for distributing user

interfaces in order to assess their usability in performing a

set of tasks. This type of investigation can be useful to

understand what distributions are more suitable for the

various task types, but does not identify the underlying

support that should make them.

Some research effort has addressed distributed user

interfaces with model-based approaches, but with limited

results and a lack of support for the many ways to distribute

user interface elements. [10] showed how an interactive

system can be distributed among several devices utilizing

UIML to create interface elements and each UI element is

related to a task. Users manually indicate the UI elements

that are displayed on each device but they cannot

decompose the UI into different parts and distribute them in

different ways. There are no commands or definitions such

as the CARE properties. Blumendorf et al. [2] address

multimodal interfaces, but without an underlying language

able to specify user interface distribution in general terms.

Martinie et al. [12] propose a model-based approach for the

design and development of distributed user interfaces in

the context of safety critical systems. The new distributed

user interfaces can be generated at runtime to provide a new

user interface organizing the information required to

perform the task; thus they do not provide a flexible way

for the end users to choose which interface element to

distribute, but the distribution is driven by tasks and

procedures associated to the UI.

Frosini et al. [6] have proposed a framework and an

associated run-time environment that supports distribution

across dynamic and multi-user environments. They provide

only run-time support that saves the distribution state and a

library that is used by developers to introduce the UI

distribution in their applications. However, there is no

support for users to customize the possible distributions in

ways different from those originally indicated.

Panelrama [19] aims to support distributed user interfaces

by organizing the HTML code in a flat panel hierarchy:

each panel groups a number of elements and is associated

with some properties (such as size, touch capability,

proximity to users) so that when relevant devices are

detected nearby then distribution is automatically triggered

by moving the panels to the devices that best fit the

corresponding properties. Thus, Panelrama does not support

the various granularity levels of our approach nor

distribution customization by users.

The MultiMasher tool [7] is a mashup environment able to

support push of some components on multiple devices.

Thus, it allows developers to design only applications that

can be obtained from components of the existing Web

applications that the environment is able to manage, and, as

with all mashup environments, it is not able to support

development of new applications from scratch. To

summarize, there is still a lack of general solutions able at

the same time: to facilitate obtaining implementations for

different devices, as happens with model-based approaches;

to flexibly specify DUIs, by providing a simple set of

properties, which can be applied to a wide variety of

granularities, to allow end users to dynamically customize

the distribution across different types of platforms to better

address unforeseen circumstances.

3

CONCEPTUAL DESIGN OF THE PROPOSED SOLUTION

In this section we provide an overview of the proposed

solution and introduce how distribution is modelled, we

also indicate how the various parts of the solution are

detailed throughout the paper.

Solution Overview

This solution allows developers and end users to flexibly

obtain distributed user interfaces across multiple devices.

This means that how distribution should occur can be

specified at design time, and further modified during actual

use. Figure 1 provides an overview of the main elements of

the solution: at design time it is possible to edit the

distributed user interfaces through a specific authoring tool

exploiting an extended version of a model-based language

(Distributed MARIA) using a small set of properties (the

CARE properties) that allow designers to specify the

possible distribution of the various parts of the user

interface. The advantage of the model-based solution is not

only the possibility of obtaining consistent versions in

various devices. It opens up the possibility of a common

abstract language that identifies the semantics of the

possible user interface elements, and then obtaining various

concrete refinements for various platforms. The proposed

solution is general in various perspectives: it is not

hardwired for a specific implementation language or

application; it supports the possibility of customizing the

distribution in various phases: design, execution, use; and it

is able to support user interface distribution in a wide range

of granularities, thus supporting flexibility in general terms.

Figure 1. The Proposed Solution for Customizable Distributed

User Interfaces

The resulting specification is provided as input for

automatic transformation that generates the implementation

of the corresponding final user interfaces (FUI in the Figure

1) for the various types of devices, the corresponding

distribution profile (composed of the CARE values and the

corresponding devices for each UI element) along with the

data model (description of all data handled by the interface)

that will be used to keep the state of the user interface, and

customization support. Then, there is run-time support that

is able to keep synchronized the various distributed user

interface parts during their use by exploiting such

information, and also allows users to change the

distribution configuration in order to meet unplanned needs

through customization tools.

How Distribution is Modelled

Our work provides flexibility in the possible user interface

distributions that can be obtained. One important aspect is

to support the choice of a range of granularity levels of the

elements to distribute across the various devices. Thus, we

provide the possibility of distributing elements at the

following granularity levels: the entire application user

interface; an entire presentation; compositions of elements

(parts of the user interface identified by composition

operators); elementary interactors (interactive or output-

only elements); parts of single interactive interactors, for

single interactive interactions it is possible to distinguish

three subparts: prompt, input, feedback; where a prompt is

the part of the interactive element that indicates that the

system is ready to receive the corresponding input (e.g. a

label explaining the type of input expected); input is the

part dedicated to receive some information from the user;

and feedback is the response obtained through the

interactive element after an input (for example, it may

correspond to a checkmark when a user clicks on a

checkbox or to a text in a field after a keyboard user input).

In this way we provide control over distribution of even the

most elementary aspects of a user interface, thereby

allowing for example the insertion of input only to a single

device, while the others receive the feedback of this action.

Decomposition into prompt, input and feedback is

meaningful only for interactive elementary interactors, and

cannot be applied for output-only interactors and

composition operators.

A user interface can be logically represented through a tree-

like hierarchical structure based on this classification of its

component elements.

In order to specify how to distribute such elements we use

the CARE properties. Originally introduced in [1], we have

interpreted the general properties in a specific manner more

suitable for the current work: Complementarity, it indicates

that a part of the element can be distributed onto one device

and the remaining parts onto the other(s); for example,

distributing a grouping composition in a complementary

way means that some elements contained therein are

distributed on some devices and the remainder on others;

Assignment, the element is assigned to only one device;

Redundancy, the element is duplicated on multiple devices;

Equivalence, the user interface element can be supported by

either one device or another.

To describe how to distribute the interface, designers have

to indicate the CARE properties for the user interface

elements to distribute, and the specific devices or the

platforms that should be exploited for this purpose. We

4

chose such CARE properties because they represent a

simple vocabulary for describing various ways to distribute

user interface elements. Indeed, the CARE properties

together with the hierarchical structure of the user interface

description, facilitate the flexible specification of the

distribution. When the properties are associated to an

element that is high in the hierarchy representing the

interactive application structure, then they are inherited by

all child elements. Thus, if an interface or a presentation is

assigned to one device, then all elements that it contains are

assigned to that device as well. This applies to all the

intermediate elements in the interface structure hierarchy.

This kind of inheritance provides a simpler and less verbose

definition of the distribution by defining it only in the

intermediate elements in the hierarchy.

Another example can be a user who enters an input from a

smartphone and this value is shown in a public display as

well. This is possible by associating the CARE properties

with the three different subparts of the interactive interactor

(input, prompt, and feedback): prompt and input subparts

are both associated with the assignment property value to

the smartphone, while the feedback subpart is assigned to

the redundancy property on both smartphone and public

display. The concepts just introduced enable dynamically

changing the distribution of the user interface elements

across different devices. For example, a set of elements

assigned to one device can be moved to another one by

simply changing the device associated with the assignment

property. Instead, if the desired operation is to copy an

element to another device, it is sufficient to change the

value of the corresponding CARE property from

Assignment to Redundancy and add the new device

identifier to the list of associated devices.

AN EXAMPLE SCENARIO OF DISTRIBUTED USER
INTERFACE

In order to explain how the environment supports the

distribution specification, we consider an example

application that can be dynamically distributed on a mobile

and a public display in order to access games in a museum.

We focus on the application part related to a game that

shows pictures of some artworks in a museum and the user

has to indicate which of them was not made by a given

artist. The user interface is composed of a presentation that

contains the application title, a grouping containing the

navigator menu, a grouping containing all the artwork

images suitably dimensioned for the device type, a text

representing the question, a single choice with the possible

answers and finally an activator to submit the answer to the

server. The initial user interface (Figure 2) is rendered in a

mobile device. Thus, the interface is associated with the

assignment property, and the contained elements inherit the

same CARE value.

Since mobile devices have small screens, at some point the

user may want to distribute the user interface in order to

show some information on a large screen, for example to

share the main visual content with other users in order to

decide together which reply to enter in the game. To obtain

the user interface distribution shown in Figure 3 some

CARE values have been changed through a Customization

Tool (described afterward): the interface and the

presentation are no longer assigned only to the mobile

device, but are distributed in a complementary way on both

devices, thus the CARE value associated with the interface

and presentation is now complementarity.

Figure 2. UI completely assigned to a mobile device

How the elements are distributed is specified in the child

elements of the presentation by assigning the relevant

CARE properties. In particular, the application title, the

grouping containing the navigator menu and the question

are redundant on both devices, while the grouping

containing the images is assigned to the desktop device

because it has a larger screen that can better show its

content. The single choice is assigned to the mobile device

and the activator element corresponding to the button with

“Validate” label is decomposed according to its three

subparts: input and prompt parts are assigned to the mobile

device, while the feedback part is redundant on the two

devices. Thus, the user can press the button on his own

personal device and also show the results on the large

screen shared with other users.

Figure 3. UI distributed in a complementary way: part on

mobile device (left) and part on desktop device (right)

5

THE LANGUAGE FOR SPECIFYING DISTRIBUTED USER
INTERFACES

For the user interface distribution specification, we used as

starting point the MARIA language [15], whose definition

is publicly available. It has a modular approach with one

language for the abstract description (AUI, Abstract User

Interface) and then a number of platform-dependent

concrete languages (CUI: Concrete User Interface) that

refine the abstract one depending on the interaction

resources of the considered platform. A platform is a type

of device (e.g. desktop, mobile) that supports specific

interaction modalities (e.g. graphical, vocal). Thus, for each

element in the abstract language there is one or more

refinements for the concrete platform considered. A user

interface is composed of one or more presentations. Each of

them contains a number of possible elementary interactors

and compositions thereof. The language includes a data

model, needed for representing the data handled by the user

interface, which is shared between all the defined

presentations. Currently MARIA provides concrete user

interfaces for platforms such as: graphical desktop,

graphical smartphone, vocal, multimodal desktop and

multimodal smartphone. Thus, it opens up the possibility of

obtaining distributed user interfaces that support various

interaction modalities. However, prior to this work the

MARIA language did not provide support for distributed

user interfaces at all. Thus, we have introduced an original

solution for modelling dynamic distribution integrated with

MARIA, along with the associated tools for design and run-

time support.

In order to introduce the distribution support we have

considered the concrete level because determining any

distribution requires considering the concrete features of the

devices involved. For example, in some cases users may be

interested in a distribution from a mobile to a stationary

device in order to exploit a large screen, and aspects such as

screen size and interaction modality are not captured at the

abstract level, which is platform independent by definition.

The new concrete language for DUIs has to indicate how

distribution occurs amongst devices that can belong to

different platforms and how it can change over time.

Regarding the description of the actual user interface

elements in the various devices involved, it uses the

existing concrete languages for the various platforms. We

also added the possibility of describing the distribution at

any granularity level (user interface, presentation, interactor

compositions, single interactors, subparts of interactive

interactors). Thus, when one such element is introduced it

is possible to indicate the corresponding distribution

properties (CARE value and target platform). We also

added a new event type called Distribution Event, which

can be used to specify at design time when dynamic

changes in the distribution of the user interface elements

should occur. The distribution event is associated with a

handler in which the new values of the CARE properties are

assigned, and it is possible to indicate new devices or

platforms involved in the distribution.

Figure 4 shows an example regarding a city guide

application. Such application allows the guides to distribute

user interface components from their tablets to the

smartphones of the tourists in such a way as to determine

the most suitable interactive components also taking into

account the visitors’ abilities. Vision-impaired tourist use a

multimodal version of the application for smartphones.

Figure 4. Small example of distributed user interface.

The excerpt in Figure 5 shows how it is possible to specify

the distribution in the XML language: there is a grouping of

elements contained in the current tab which is associated

with the “complementarity” value since parts of them are

for the mobile and tablet platforms and parts for another

platform (multimodal mobile).

Figure 5. Excerpt of distributed user interface specification.

The tab content contains a description element distributed

in a redundant manner for both tablet and mobile platform

because the textual description is shown in the same way

6

across them. There is one further description element

assigned for the multimodal mobile platform that contains a

textual and a vocal component in order to better support

vision-impaired users. In addition, because of the user

disability, this user interface does not contain the images

that are shown in the other tourists devices.

The authoring environment (Figure 6) provides support for

specifying the distribution. It allows developers to work by

direct manipulation on a graphical representation in the

main central area that is easier to read than the XML

specification. In the right-hand panel (Distribution Tab)

they can interactively specify the distribution element for

any element at any granularity level by indicating the

corresponding CARE value. In the left-hand part is also

possible to interactively indicate the devices involved in the

distribution. The generation software includes in the final

implementation an instance of the data model, which will

be used by the run-time support to store the state of the user

interface and keep synchronised the user interface elements

that are distributed on multiple devices. This allows, for

example, that when a text edit element is redundant on two

devices if the user changes a value in one then the other

will show the updated value.

Figure 6. The authoring environment for distributed UIs.

DISTRIBUTED USER INTERFACE GENERATION

We have designed and implemented the underlying support

that transforms the XML description of the distributed user

interface into a corresponding executable implementation.

As previously mentioned, the distributed concrete user

interface contains the description of each UI element for

each platform involved in the distribution and the

distribution profile. At the beginning of the generation

process the original specification of the distributed user

interface must be split into a number of Concrete User

Interface descriptions for each target platform. During the

splitting transformation the generator also derives a “Sync”

module that contains the distribution profile (CARE values,

devices and platforms involved in the distribution) for all

user interface elements without their concrete descriptions

for each platform. This splitting transformation is

implemented through an XSLT style sheet. Then, the

various parts of the XML-based specification are provided

as input to the corresponding code generators for the target

platforms, and there is also a generator for providing useful

information for the software components in charge to

handle the distribution at run-time. Each of the resulting

platform-dependent concrete user interfaces is thus

transformed into an FUI (Final User Interface) implemented

in JSP (Figure 7). The generator also inserts in the final user

interface some JavaScripts that will be used at run-time to

dynamically receive new CARE values and change the

visibility of the UI elements accordingly when the

distribution state changes, and to keep the distributed user

interface elements synchronized when a user changes an

interactive element value in another device.

Figure 7. Generation Process from the DUI specification

All the user interface elements are generated, but when the

resulting application is launched only those that should be

perceivable according to the CARE properties defined at

design time will be displayed. We took this decision

because dynamic run-time generation and upload can

impact the application performance and thus degrade the

user-experience. To be more precise, the HTML code

corresponding to all defined interface elements is generated,

but their initial visibility depends on the initial value of the

corresponding CARE property, which is used to set their

CSS parameters that determine their display accordingly

Generation also involves producing code on the server side,

which manages the Distribution Profile and the data model,

and triggers the necessary updates on the clients. The

generator takes the ”Sync” module containing only the

distribution information and generates a CARE values table

describing how each user interface element is currently

distributed, thus implementing the initial distribution

configuration. In the generation process the data model

defined in the distributed CUI is also considered in order to

obtain the corresponding run-time component (a Java class)

for managing its values. The data model indicates data that

the user can manipulate through the user interface, ranging

from simple text field values to more structured elements

such as calendars.

DISTRIBUTION CUSTOMIZATION TOOLS

In general, in our approach it is possible to manage

distribution in various ways: distribution specified in the

model-based description of the interactive application with

the initial specification of the CARE properties (design-

time); distribution defined through the handlers of the

distribution events indicated in the interactive application

specification (design-time definition + run-time execution);

distribution obtained through the dynamic customization

7

tool (completely run-time), which allows users to obtain

distributions that were not planned at design time;

distribution specified by direct UI manipulation (completely

run-time), this possibility has been introduced after the user

test reported in the following.

Regarding the possibility to manage the distribution at run-

time, the solution offers a tool able to show the logical

structure of the user interface and allow the users to

dynamically change the distribution of its elements. For this

purpose the users can control and modify, at any granularity

level, the value of the CARE properties and the devices on

which the elements considered are distributed (Figure 8).

Figure 8. Distribution customization tool for desktop (left) and

mobile (right) devices.

Such distribution customization tool exploits the underlying

model-based language by showing the hierarchical structure

of the interface, which is automatically obtained from the

concrete specification. Figure 8 shows the two versions of

the first distribution customization tool developed. On the

left there is the desktop version that shows the entire

hierarchical structure of the interface in a single

presentation through an interactive tree-like representation

in which the various branches can be interactively

folded/unfolded. On the right, there is the version for touch-

based smartphones, which has been designed taking into

account the small screen available and presents only one

level of the interface logical hierarchy at a given time.

The customization tools show the interface elements at the

various granularity levels and, for each item, the

corresponding current CARE value and the device(s) on

which the item is distributed. A user can change the CARE

values and select a new device to indicate how to change

the distribution of the interface at runtime. Sometimes the

interface elements that appear in the customization tool do

not have intuitive names, since they are automatically

generated from the concrete description, and it can be

difficult to understand what user interface element they

refer to, especially if they refer to elements in the user

interface active on another device. Hence, we provide a

feature through which if the user selects an element in the

customization tool, then the corresponding element on the

actual DUI is highlighted.

Such customization tools also allow users to pull some user

interface parts on other devices to their own device: for this

purpose it is sufficient to change the device assigned in the

CARE property. A video showing a demo is available at

http://www.youtube.com/watch?v=1NxcR-xaerk.

RUN-TIME SOFTWARE ARCHITECTURE

There are three types of cases that the run-time architecture

of the distributed user interfaces has to manage: initial user

interface allocation according to the CARE properties

specified in the application; synchronization of user

interface elements duplicated across various devices when

the user changes a value in one of them; dynamic changes

in the distribution according to requests received through

the customization tools or on application requests when

some specific events occur.

In order to support the management of such cases there are

also two server-side modules that communicate with each

other: the UI Manager, which is a servlet that supports the

synchronization of the user interface elements across the

various devices by exploiting the data model (produced by

the generator), which stores the state of the user interface

elements; and the Distribution Manager, which is also

implemented as a servlet, and is able to access the

distribution profile. Such profile consists in the CARE

Values & Devices table generated from the concrete

distributed user interface description as described in

previous sections, and the devices currently associated at

run-time. Thus, for each user interface element it indicates

the associated CARE value, the devices that can be

associated with it, and the IP address of the current devices

that can show it. The Distribution Manager can change the

current CARE values according to either the values

resulting from changes triggered by distribution events

indicated in the specification, or the values received from

the customization tools.

At run-time, at first the interface elements are distributed

according to the CARE values and the devices described in

the interactive application specification. In order to exploit

the distribution environment, the devices have to register

with it by providing their identifier and platform. If they are

consistent with the devices indicated in the specification,

their IP address is added to the distribution profile. When

devices other than those planned for in the specification

access the distribution environment initially they do not

receive any part of the user interface and are added to a

specific device list. In this case the customization tool is

automatically updated and displays the devices in the list as

possible target devices of the distribution. Only new

devices belonging to a platform already considered in the

concrete user interface description can be dynamically

involved in the distribution, e.g. if a vocal platform is not

http://www.youtube.com/watch?v=1NxcR-xaerk&feature=youtu.be

8

considered in the distributed specification, then the

correspondent implementation version is not generated, and

for this reason it is not possible to distribute the interface on

such a device in the event that it dynamically accesses the

distribution environment. In case a device with an exclusive

assignment of a UI element leaves the environment or,

more generally, a necessary device is not available then an

error is generated. At that point, the end user can still

change the relevant CARE properties in order to allocate

the involved user interface elements to other available

devices.

Figure 9. Management of initial user interface configuration

Whenever a client device accesses an application (Figure

9), the corresponding JSP is executed and first requests to

the UI Manager the current values of the UI elements, then

the current CARE values (and the associated devices) for

each user interface element from the Distribution Manager,

which is able to access the current distribution profile.

Next, the application generates the user interface for the

client with the elements that should be presented according

to such profile. In case a composition of elements or some

output only elements are not allocated to the device, then

they are hidden. In case of interactive elements, if they are

not allocated at all then they will be hidden completely. As

mentioned before for such elements it is possible to have

them partly shown on the user interface. Thus, there is a

specific management process for such subparts. In

particular, for the prompt subpart: if the value of the CARE

property determines that the prompt is not distributed on the

device, then the corresponding element is hidden through a

JavaScript instruction, although it is still present in the page

DOM; for the input subpart: if the value of the CARE

property determines that the input is not distributed on the

device, then the element is disabled through a JavaScript

instruction; the feedback subpart is managed later on when

an interaction occurs; if the feedback is distributed on the

device considered, then that device will receive constant

feedback updates otherwise it will not.

Synchronization of the state of the user interface elements

duplicated across various devices is necessary when the

user changes a value in one of them. When this happens the

UI Manager is notified in order to first update the data

model. Such model contains the data with the

corresponding values (the state) of all interface elements,

which are distributed on multiple devices. In order to make

such synchronization possible some JavaScripts are

included when the user interface is generated. In particular,

each generated interactive element is associated to an event

(on value change) and a handler, so that when a user

changes the value of an element, such handler sends the

new value to the server-side module (the UI manager),

which updates the data model and propagates it to all

involved users interface parts distributed in other devices.

These user interface parts contain also scripts in charge of

receiving the values modified in other devices and updating

the local UI consequently. Thus, when a value is changed in

the user interface this is communicated to the UI Manager

(see 1 in Figure10), which is able to access the shared data

model object and update it with it (2). This component also

checks whether other devices are displaying the modified

element through communication with the distribution

manager (3), which is able to access the current distribution

profile (4). In case in the distribution profile there is a

CARE value of the feedback part of that element that is

associated with other devices, this is communicated to the

UI manager (5), which then sends this value to all involved

devices (6). This is implemented through the Web socket

mechanism2, Figure 10 indicates the messages sent through

the Web socket protocol with dashed lines.

Figure 10. Synchronization of cross-device UI state

The software architecture also provides support when a user

changes the distribution state through a Customization

Tool. In this case, the new CARE values are sent to the

Distribution Manager, which updates the current

Distribution profile accordingly, and then sends the updates

to the user interface components distributed across the

devices. This can also imply showing previously hidden

elements that become perceivable according to the new

values of the CARE properties.

EVALUATION

We have carried out a first user test to investigate the

usability and the usefulness of the distribution platform,

including the possibility of dynamically configuring the

distribution. It was a formative evaluation, whose results

have been useful to improve the environment, assess

2 http://dev.w3.org/html5/websockets/

http://dev.w3.org/html5/websockets/

9

whether the CARE properties provide a useful vocabulary

to control user interface distribution, and the usability and

usefulness of the original customization tools in this

distribution process.

The test involved 20 people, aged between 20 and 39 (M:

28.1, SD: 3.81), 13 of them were males and 7 females. 10

participants held a Bachelor Degree, 6 a Master Degree and

4 a High School diploma. Ten users work or study in the IT

sector and ten have familiarity with Web browsing (they

were more familiar with desktop devices than mobile

devices) but they have no knowledge in software

development. Only one user already knew another system

to distribute (or migrate) a Web page to different devices,

none of them had previously used our distribution platform.

Before starting the test we gave a brief introduction of the

relevant concepts and about the test aims. Users performed

the test separately and one analyst took note of any errors or

difficulties. During the test no help was provided. After the

test, each user completed an evaluation questionnaire. The

entire process took about 45 minutes per user.

In the proposed scenario the user accessed the application

to play a game in a museum mobile guide. At the beginning

users started the visit through their mobile device, on which

the user interface was rendered. Users had to open the

customization tool from the mobile device, change the

presentation CARE property and duplicate the user

interface in its entirety on a desktop device. Once the

interface was replicated on both devices users could enter

an input from the mobile device and see it on the desktop

device as well. After that, users had to open the

customization tool from the desktop device and distribute

the presentation in a complementary way: all images had to

be assigned only to the desktop device and the other

interface elements had to be duplicated in both devices.

Then users could interact with the application and see the

feedback of their interactions on both devices. Finally, users

had to interact with the customization tool from the mobile

device to locate in the user interface representation the

element corresponding to the single choice input element

present in the user interface selected. Once the users found

the indicated element they had to assign the input, prompt

and feedback subparts to the mobile device.

All users were able to complete the tasks. In case of

mistakes the moderator suggested that the users read the

introduction text containing the definitions of the terms. For

the evaluation questionnaire users had to rate various

aspects of the distribution process on a scale from 1 to 5 (1

as the most negative score and 5 as the most positive one)

and for each question they were asked to provide

comments. Ratings are reported in terms of: range of ratings

received, programming expert median (PE-M), not

programming expert median (nPE-M) and interquartile

range (IQR) that is calculated as the difference between the

third and the first quartile (programming expert [PE-IQR]

and not programming expert [nPE-IQR]).

Intuitiveness of the customization tool [desktop version]

([1-5], PE-M: 4; nPE-M: 4; PE-IQR: 4.75-4=0.75; nPE-

IQR: 5-3=2)

Intuitiveness of the customization tool [mobile version] ([1-

4], PE-M: 4; nPE-M: 3; PE-IQR: 4-3=1; nPE-IQR: 3.75-

3=0.75)

Users found the desktop structure of the customization tool

more intuitive than the mobile version; some of them

reported some trouble using the mobile version because of

the limited capacity to provide an overview of the interface

due to the limited screen size.

Ease of identifying UI elements within the customization

tool [desktop version] ([2-5], PE-M: 4, nPE-M: 4.5; PE-

IQR: 5-4=1; nPE-IQR: 5-4=1)

Ease of identifying UI elements within the customization

tool [mobile version] ([1-5], PE-M: 4, nPE-M: 3.5; PE-

IQR: 4-3=1; nPE-IQR: 4.75-3=1.75)

Users found more difficult to find an element within the

mobile version of the customization tool because this

version shows only one level of the interface hierarchy at a

given time. It may be better to have a greater similarity

between the two versions in order to facilitate users.

Usefulness of the highlight method in the customization tool

([4-5], PE-M:5; nPE-M: 4.5; PE-IQR: 5-5=0; nPE-IQR: 5-

4=1)

This aspect received quite good ratings: without the

highlight method it would have been difficult to locate the

UI element to distribute from the customization tool.

Ease of performing the distribution process [desktop

version] ([2-5], PE-M: 4, nPE-M: 4; PE-IQR: 4.75-4=0.75;

nPE-IQR: 5-4=1)

Ease of performing the distribution process [mobile

version] ([1-5], PE-M: 4, nPE-M: 4; PE-IQR: 4.75-4=0.75;

nPE-IQR: 4.75-3=1.75)

In general, participants thought that the distribution process

is easy; some users reported troubles related to the

difficulties finding an element within the mobile

customization tool.

Usefulness of CARE properties to describe the distribution

([1-5], PE-M: 4.5; nPE-M: 4; PE-IQR: 5-4=1; nPE-IQR:

4.75-3.25=1.50)

Only one person gave the worst score (1 = Not helpful at

all) commenting that the difference between the CARE

properties values are too complex and it should be hidden to

users; it would be better to choose other values like “show

to all”, “show this element to this device”.

Completeness of the CARE properties ([3-5], PE-M:4; nPE-

M: 4.5; PE-IQR: 5-4=1; nPE-IQR: 5-4=1)

10

This section received quite good ratings; the only relevant

comment concerned the Assignment value that could be

also valid in case of multiple assignment, thus replacing the

Redundancy.

Clearness of the meaning of all CARE properties ([1-5],

PE-M:4.5; nPE-M: 4; PE-IQR: 5-4=1; nPE-IQR: 4-4=0)

Three participants found the initial description too short and

not very clear, but after using the application the meaning

became clearer. Four users said that Equivalence is not the

appropriate term and two of them initially thought that it

had the same meaning as Redundancy.

Clarity of the meaning of interactive subparts (input,

prompt, feedback) ([3-5]; PE-M: 4; nPE-M: 4.5; PE-IQR:

5-4=1; nPE-IQR: 5-4=1)

Some issues were raised about the prompt definition, which

was not clear for some users; regarding the other two

subparts there were no problems.

Usefulness to decompose interactive elements in subparts

([3-5] PE-M:5; nPE-M: 4; PE-IQR: 5-4=1; nPE-IQR: 5-

4=1)

This section received quite good ratings; one user said that

this granularity could be too verbose in some cases; it could

be useful to allow users to specify a CARE property at the

interactive element level, and thus each subpart would

inherit it. We agreed that this was a good suggestion and

have adopted it.

DISCUSSION

The type of user test conducted was a formative evaluation,

able to provide useful comments and feedback, rather than a

summative evaluation. Overall, this evaluation provided

positive feedback and suggestions for improvements, some

of which have subsequently been implemented. The users

indicated various applications in which distribution can be

useful, almost all suggestions concerned collaborative

applications. One participant proposed utilizing the tool to

distribute only a portion of a Web site on a mobile device: it

could be useful for Web sites that are not designed for

mobile devices. The distribution is useful in contexts in

which there are devices provided with large screens on

which to distribute texts or images in order to exploit the

large screen display. Two users observed that a useful

scenario for the distribution could be an e-learning

application where each student can access and see her own

answers and the teacher can see all. One user suggested

adopting the distribution platform for games involving

multiple users with a super-user that can see the state

related to all users and control the game.

In general, the evaluation of the customization tool received

positive ratings; users gave a better rating to the desktop

version; this could be explained by the fact that the desktop

version displays the hierarchical structure of the entire

interface, while on the contrary, the mobile version shows

only one interface hierarchy level at a time. Regarding

usefulness, completeness and clearness of CARE properties

the user evaluations were positive and encouraging, people

who do not work in the information technology field gave

lower rating then the others who are more familiar with

these concepts and thus able to better interpret them in this

context. There were not substantial differences between the

two categories of users considered. In general,

programming experts ratings were slightly higher, hence

those who work or study in the IT sector found it

easier/more useful the distribution process than the others.

However, the evaluation ratings were similar, showing that

also people who are not computer expert can perform the

distribution process through the proposed tool without

particular problems. As a consequence of the evaluation we

have introduced a further way to customize the distribution.

The reason for this addition is that the user test highlighted

some problems with the distribution customization tool, in

particular the mobile one. Indeed, some users complained

that they had to split the screen between the customization

tool and the UI, in order to understand which tool element

corresponded to which UI element. For this reason we

decided to introduce the possibility that users distribute

directly through the UI. Thus, in the generation phase from

the model-based specification to the final implementation

we have added the inclusion of some JavaScripts that allow

users to interactively select the various components and

visualize the possible CARE properties to associate to

them. Then, the user can directly select the CARE value

and device(s) on which to distribute the UI element. In

addition, during the user test one user highlighted a problem

regarding the number of devices on which to distribute the

UI: if there are too many devices it could be difficult to

distribute an element on all of them by selecting each one

individually. For this reason, we have decided to allow

users to distribute a UI element (or the whole UI) also by

indicating a target platform (and not only specific devices).

In this way the considered element will be distributed on all

the devices of that platform type that are subscribed at the

distribution environment at that time.

CONCLUSIONS

We have presented a solution able to address a variety of

distribution scenarios at various granularity levels through

both push and pull mechanisms. One advantage of the

model-based approach is that it is not constrained to one

implementation environment. Thus, it opens up the

possibility of more general and interoperable solutions,

which is important for distributed user interfaces since they

aim to exploit the wide variety of devices that can be

encountered while users are on the move. One limitation of

our approach is the effort required to learn the model-based

language. However, the clear logical user interface

structure obtained is also exploited at run-time to facilitate

the possibility of dynamic end-user customization of

distribution. These seem to be interesting results that justify

the moderate effort necessary in the initial modelling part.

11

REFERENCES

1. Joëlle Coutaz, Laurence Nigay, Daniel Salber, Ann

Blandford, Jon May, Richard M. Young. 1995. Four

Easy Pieces for Assessing the Usability of Multimodal

Interaction: the CARE Properties. In Proceedings of

INTERACT. Lillehammer. 115-120.

2. Marco Blumendorf, Dirk Roscher, Sahin Albayrak.

2010. Dynamic User Interface Distribution for Flexible

Multimodal Interaction. In International Conference on

Multimodal Interfaces and the Workshop on Machine

Learning for Multimodal Interaction (ICMI-

MLML'10). Beijing, China, 20:1 - 20:8.

3. David Dearman, Jeffery Pierce. 2008. It’s on my other

Computer!: computing with multiple devices. In

Proceedings of the SIGCHI Conference on Human

Factors in Computing Systems (CHI '08), Florence,

Italy, 767-776.

4. Albertos M. Felix , Victor M. R. Penichet, José A.

Gallud. 2011. Drag&Share: A Shared Workspace for

Distributed Synchronous Collaboration in Distributed

User Interfaces for the Distributed Ecosystem. Ed.

London, UK: Springer, 125-132.

5. José M.C. Fonseca. 2010. W3C Model-Based UI XG

Final Report. Retrieved January 26, 2016 from

http://www.w3.org/2005/Incubator/model-based-

ui/XGR-mbui-20100504/

6. Luca Frosini, Fabio Paternò. 2014. User interface

distribution in multi-device and multi-user

environments with dynamically migrating engines.

In Proceedings of the 2014 ACM SIGCHI symposium

on Engineering interactive computing systems (EICS

'14). Rome, Italy, 55-64.

7. Maria Husmann, Michael Nebeling, Stefano Pongelli,

Moira C. Norrie. 2014. MultiMasher: Providing

Architectural Support and Visual Tools for Multi-

device Mashups. In Proceeding of Web Information

Systems Engineering (WISE 2014). 199-214.

8. Brad Johanson, Shankar R. Ponnekanti, Caesar

Sengupta, Armando Fox. 2001. Multibrowsing:

Moving Web Content across Multiple Displays, in

Procedeengs of the 3rd international conference on

Ubiquitous Computing (UbiComp '01), London, UK,

346-353.

9. Andreas Lorenz, Clara F. De Castro, Enrico Rukzio.

2009. Using Handheld Devices for Mobile Interaction

with Display in Home Environments. In Proceedings

of the 11th International Conference on Human-

Computer Interaction with Mobile Devices and

Services (MobileHCI'09). ACM Press, NY, USA, 1-10.

10. Kris Luyten, Karin Coninx. 2005. Distributed User

Interface Elements to support Smart Interaction Spaces.

In Proceedings of the Seventh IEEE International

Symposium on Multimedia. Washington, DC, USA,

277-286.

11. Ethan Marcotte. 2011. Responsive Web Design, A Book

Apart.

http://www.abookapart.com/products/responsive-web-

design

12. Célia Martinie, David Navarre, Philippe Palanque.

(2014). A multi-formalism approach for model-based

dynamic distribution of user interfaces of critical

interactive systems. International Journal of Human-

Computer Studies. 72, 1. (January 2014), 77-99.

13. Jérémie Melchior, Jean Vanderdonckt, Peter Van Roy.

2011. A model-based approach for distributed user

interfaces. In Proceedings of the 3rd ACM SIGCHI

symposium on Engineering Interactive Computing

System (EICS 2011). Pisa, Italy, 11-20.

14. Bread A. Myers. 2005. Using handhelds for wireless

remote control of PCs and appliances. Interacting with

Computers. 17, 3 (May 2005), 251-264.

15. Fabio Paternò, Carmen Santoro, Lucio D. Spano. 2009.

MARIA: A universal, declarative, multiple abstraction-

level language for service-oriented applications in

ubiquitous environments. ACM Transactions on

Computer-Human Interaction (TOCHI), 16,4

(November 2009), 1-30.

16. Antonio Penalver, José J. Lopez, José A. Gallud,

Enrique Lazcorreta, Federico Botella. 2011.

Distributed User Interfaces: Specification of Essential

Properties. Distributed User Interfaces - Designing

Interfaces for the Distributed Ecosystem for the

Distributed Ecosystem. Ed. London, UK: Springer. 13-

21.

17. Shankar R. Ponnekanti, Brad Johanson, Emre Kiciman,

Aarmando Fox. 2003. Portability, Extensibility and

Robustness in iROS. in Proceedings of the 1st IEEE

International Conference on Pervasive Computing and

Communications (PERCOM '03). IEEE Computer

Society, Washington, DC, USA, 11- 19.

18. Umar Rashid, Miguel A. Nacenta, Aaron Quigley.

2012. The Cost of Display Switching: A Comparison

of Mobile, Large Display and Hybrid UI

Configurations. In Proceedings of the International

Working Conference on Advanced Visual Interfaces

(AVI’12). Capri Island, Italy, 99-106.

19. Jishuo Yang, Daniel Wigdor. 2014. Panelrama:

enabling easy specification of cross-device web

applications. In Proceedings of the SIGCHI Conference

on Human Factors in Computing Systems (CHI 2014).

Toronto, Canada, 2783-2792.

http://www.w3.org/2005/Incubator/model-based-ui/XGR-mbui-20100504/
http://www.w3.org/2005/Incubator/model-based-ui/XGR-mbui-20100504/

