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Abstract Spacetime computing is undoubtedly one of the most ambitious and less
explored forms of unconventional computing. Totally unconventional is the medium
on which the computation is expected to take place – the elusive texture of physical
spacetime – and unprecedentedly wide its scope, since the emergent properties of
these computations are expected to ultimately reproduce everything we observe in
nature.

First we discuss the distinguishing features of this peculiar form of unconven-
tional computing, and survey a few pioneering approaches. Then we illustrate some
novel ideas and experiments that attempt to establish stronger connections with ad-
vances in quantum gravity and the physics of spacetime. We discuss techniques for
building algorithmic causal sets – our proposed deterministic counterpart of the
stochastic structures adopted in the Causal Set programme for discrete spacetime
modeling – and investigate, in particular, the extent to which they can reflect an
essential feature of continuous spacetime: Lorentz invariance.

1 Introduction

Most approaches in the broad field of unconventional computing are tightly related
to structures and functions that can be observed in the natural world (natural com-
puting).

On one hand, smart solutions that have emerged during the multi-billion-year
evolution of life on Earth provide valuable inspiration for developing novel algo-
rithms meant to run on traditional computers, or novel computing paradigms and
architectures to be implemented by ad-hoc, human-designed electronic hardware
(bio-inspired computing).
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On the other hand, in the last two decades interest has grown for experiments in
which the ’hardware’ itself is provided by nature. For example, Rubel’s Extended
Analog Computer (1993) takes advantage of materials that are unfit for conventional
computation, but still contribute to the machine functionality, just based on the laws
of nature that they follow [26, 22]. As another example, in 1994 Adleman success-
fully used DNA molecules to solve a graph theoretic, combinatorial problem [2],
thus starting the field of biomolecular computing. In [1], computing in ’reaction-
diffusion’ excitable media is shown to involve new computational paradigms, ad-
vanced non-standard architectures and novel materials. ’Natural hardware’ may in-
deed take several forms, including chemical soups, cellular systems, bacteria, ant
colonies, or various other biological substrata, as documented elsewhere in this vol-
ume. One of the main challenges that these unconventional, often massively parallel
systems pose is how to harness their computing capabilities by adequate program-
ming paradigms and techniques.

How about conceiving, as ’natural hardware’, the elusive, ultimate fabric of the
universe, namely spacetime? This bold question immediately raises two problems.

First, spacetime, the mathematical structure defined by the Einstein equations, is
classically conceived as a continuous entity (a pseudo-riemannian manifold), while
we usually associate the concept of computation to discrete entities, such as the state
or the tape of a Turing machine. This objection is easily answered. On one hand,
some of the above mentioned examples of natural computing prove that computation
with continuous media is indeed definitely feasible. On the other hand, several recent
theories of quantum gravity (e.g. Loop Quantum Gravity [29], Causal Dynamical
Triangulations [3], Causal Sets [7] ) adopt discrete models of spacetime that appear
as perfectly adequate for supporting computation, as we shall soon illustrate.

The second difficulty is severe. While the biosphere offers several examples of
brilliant information processing activities whose operation and purpose we now un-
derstand well, from the processing of genetic information as encoded in DNA to
that of sensory data by various receptors and organs (say, echolocation in bats), we
currently have no direct clues about information processing activities and functions
that can be attributed to the discrete texture of spacetime, and no idea of what type
of algorithm, if any, might be working at those ultra-low scales.

Thus, it would be inappropriate, at least as of today, to talk about spacetime-
inspired computing in the same way as we talk about bio-inspired computing. Simi-
larly, it would be extremely hazardous to imagine that physical spacetime might one
day become the ultimate ’natural hardware’ for human-controlled computations at
the Plank scale (10−35 m); and not just because current experiments in molecular
electronics and DNA-based computer circuits still take place at a much higher scale
(10−9 m, the nano-scale) [16], but because, under the conjecture that human actions
are themselves ultimately emergent from computations at ultra-low scales, the idea
that we could manipulate those levels appears as highly questionable, if not a loopy
logical impossibility.

Then, does it make sense to talk about spacetime computing?
The main purposes of this chapter are to provide some arguments in favour of

a positive answer, and to illustrate a few past and present research and experimen-
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tation activities which, in our opinion, can be reasonably collected under this bold
name.

Two warnings are in order. First, the field is still fuzzily defined and might still
take advantage from several research tracks, across several disciplines. But it is not
our aim to be exhaustive in this respect; rather, we shall mainly focus on our own
approach to the matter, presenting some of our recent results as well as original
material. Second, we insist on the highly speculative nature of this research and on
the fact that we still lack experimental evidence for punctual connections between
computational processes and spacetime features.

In Section 2 we mention some solid, general reasons for believing that spacetime
computes, although we are still very far from understanding how it does it.

In Section 3 we mention some early steps in this research area, mainly centered
on the model of cellular automata. In Section 4 we consider other models of com-
putation and their possible use for modeling a discrete, algorithmic, evolving space.

In Section 5 we move from a netwtonian view at space and time, intended as ab-
solute, independent entities, to a relativistic, integrated view at spacetime. This leads
us to deal with causal sets, or causets. After recalling a standard technique for build-
ing these discrete, stochastic models of spacetime, we discuss two general methods
for obtaining discrete, algorithmic, deterministic versions of them, and introduce
EH-causets (’Event-History’) and PA-causets (’Permutation-Ant’). We also intro-
duce an automaton, that we call ’Ring Ant’, which produces both types of causet.

In Section 6 we identify a key feature of continuous spacetime that any discrete
model of a computational spacetime must cope with: Lorentz invariance. We then
introduce a relatively rough but practical indicator meant to assess the ’Lorentzian-
ity’ of the investigated spacetime models.

In Section 7 we illustrate a number of concrete examples of EH-causets derived
from computations of the Ring Ant automaton, and show how they perform in terms
of our Lorentzianity indicator. Section 8 is devoted to the illustration of PA-causets
from computations of the same Ring Ant automaton. We find that these causets can
perform better than EH-causets in terms of Lorentzianity.

In Section 9 we summarise our viewpoints about spacetime computing and its
possible developments.

2 An algorithmic bottom layer

A quick argument in support of the idea that nature is fundamentally algorithmic is
offered by the ’typing monkeys’ metaphor.

In its original version, used, among others, by Borel and Eddington in the context
of statistical mechanics, the metaphor suggests that an infinite sequence of random
characters must include with probability 1, say, all sonnets by Shakespeare. How-
ever, if the sequence is created progressively, one can easily calculate that the ex-
pected time for the first complete sonnet to appear is incomparably longer than the
age of our universe.
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A modern version of the metaphor combines the use of old-fashioned typewrit-
ers with that of computer terminals. Assume, for example, that eight monkeys are
typing at random on eight special typewriters with only three characters. The char-
acters have the same shape - a square - but three different colors: white, grey, black.
Each monkey fills a 30-line sheet, where each line contains 30-characters. The eight
completed sheets are shown in the upper row of Figure 1; they appear statistically
indistinguishable from one another, and no clue of order or structure can be detected
in any of them: no shakespearean sonnet in sight. If the origin and unfolding of our
universe were based on this kind of mechanism, we would get a totally random,
structureless world, unable to support particles, atoms, not to mention stars and life.

When randomness and computation are combined, the picture changes. Each
of the lower diagrams in Figure 1 shows the result of feeding the correspond-
ing upper sheet to a different Turing machine selected at random from the set of
(4× 3× 3)3×3 = 101,559,956,668,416 two-dimensional, 3-state, 3-color Turing
machines, running for 80,000 steps. The potential ’universe’ picture is now differ-
ent: in spite of the randomness in the inputs and in the choice of the machines, some
order emerges, manifested as an unbalance among the three colors, a tendency to
distinguish between background and foreground ’objects’, some alignment, and re-
peated patterns.

Fig. 1 Upper: random typing on eight paper sheets, using a three-character (three-color) typing
machine. Lower: results of 80,000-step computations of eight randomly chosen 3-state, 3-color
Turing machines, each running with the corresponding sheet above as input.

A more formal treatment of the typing monkey metaphor is possible via the no-
tion of algorithmic probability of strings. Consider a string s of n bits. In the absence
of any information on the origin of s, we usually assume that it was picked at random
from the set of all 2n bit strings of length n, thus we assign to it a probability 2−n.
If, however, we have reasons to believe that s was produced algorithmically, we can
use the universal a priori probability, or Solomonoff-Levin algorithmic probability
[14]:

m(s) = ∑
p:U [p]=s

1/2|p|

where the summation involves all programs p of length |p| such that a universal,
prefix-free Turing machine terminates with output string s when running p. The use
of this probability is legitimate regardless of the details of the algorithmic process
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producing s, as guaranteed by Levin’s coding theorem (see [14] for details and fur-
ther references).

Consider the set S of all bit strings of length 5. In Figure 2-left we plot the in-
dividual algorithmic probabilities of the strings of S as estimated by the Online
Algorithmic Complexity Calculator tool 2 [30]. This distribution is normalized - for
each string s the plotted value is indeed m(s)/∑x∈S m(x)) - and compared with the
uniform distribution of the 32 strings, each occurring with probability 1/32. Figure
2-right shows the 12 strings for which the (normalized) algorithmic probability is
greater than or equal to 1/32.

Fig. 2 Left: The algorithmic probabilities of the 32 bit strings of length 5. Right: The 12 strings
with algorithmic probabilty greater than or equal to 1/32.

This simple example shows that algorithmic probability favours regular strings -
in this case, those with all bits equal, with at most one exception. In an algorithmic
universe order and disorder still coexist, but the former is given more chances to
emerge.

3 Cellular automata: from Zuse to Wolfram

The idea of a physical space that computes is attributed to the german engineer
Konrad Zuse (1910-1995), one of the fathers of the modern computer, although a
related concept of a universe made of interacting elementary automaton-like entities
- the monads - had been formulated much earlier by Gottfried Wilhelm von Leibnitz
(1646-1716).

In his 1969 technical report Rechnender Raum (Calculating Space [40], re-edited
in [39]) Zuse considered discretised versions of continuous fields in 1-D and 2-

2 http://www.complexitycalculator.com/



6 Tommaso Bolognesi

D space, describing, in particular, molecule velocity and pressure in a gas-filled
cylinder, and characterised their discrete dynamics in terms of higher order cellular
automata rules directly derived from the differential equations of the continuous
dynamics. Zuse’s interest focused on what he baptized ’digital particles’ (see [40],
Sect. 3.1) - localised structures that emerge and possibly interact as the dynamics
of the discretised field evolves. These ’particles’ are abstract patterns that move in a
spacetime diagram in which space extends horizontally and time flows downward;
they should not be confused with the actual gas molecules, in the same way as an
ocean wave is well distinguished from individual water molecules.

We have implemented some of the 1-D CA discussed in Section 3 of [40]; Fig-
ure 3 shows the associated emergent particles, that correspond to the computations
carried out by Zuse - only manually, and to a rather limited depth - in Figures 15,
19, 20 and 26 of his paper.

Fig. 3 Zuse’s particles in higer-order cellular automata from discretised velocity-pressure 1-D
fields. The diagrams show expansions of the computations illustrated in Figures 15, 19, 20, 26 of
reference [40], using a circular topology for the CA cells. The integer values represented by the
grey levels of the cells only refer to the velocity field; plots for the pressure field are similar.

Zuse observed that, as a consequence of a collision, particles may undergo a
slight displacement of their initial trajectories, depending on their relative phase,
and took this as a sign that ’a certain reaction process in particle interaction’ is
possible. The phenomenon can be observed in the rightmost diagram of Figure 3.

The discovery of particles in CA computations and the intuition that their in-
teractions resemble those of particle physics led Zuse to conjecture that CA might
not just be useful discrete approximations of a supposedly continuous physical real-
ity, but a perfect reflection of what reality ultimately is, and of how it operates: the
physical universe as a giant Cellular Automaton.

Some limited experiments with particle emergence and interaction in 2D CA
are also discussed by Zuse in [40], but it is only with Conway’s Game of Life,
divulged by Martin Gardner in 1970 [13] (the same year of the English translation
of Zuse’s Rechnender Raum) that the spectacular potentialities of these automata
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became known to the wider public. Blinkers, gliders, spaceships, pulsars are just a
few examples of the various localised structures that emerge in the Game of Life,
and that are just elaborated instances of Zuse’s digital particles. However, the large
majority of the scientific community has constantly refused to attribute any deep
theoretical meaning to these emergent phenomena, relegating them to the whimsical
arena of recreational mathematics.

Very important contributions in support to the conjecture of a discrete, algorith-
mic spacetime have been given, after Zuse, by Ed Fredkin, with his work on Digital
Philosophy. 3 Fredkin’s Finite Nature assumption states that space and time are ul-
timately discrete, and that the number of possible states of any volume of spacetime
is also finite [11]. Furthermore, information and computation assume, in Fredkin’s
work, a more fundamental status than matter, energy, and their transformations. As a
consequence, Fredkin’s interest, like Zuse’s, focuses on cellular automata, in partic-
ular on second-order, Reversible Universal Cellular Automata (RUCA) and a model
called SALT [21], in which two distinct components are arranged in a regular 3D
lattice resembling NaCl crystals. According to Fredkin, RUCA reflect exactly and
efficiently CPT symmetry, a fundamental property of physical laws, and can be re-
garded as the fundamental, information-processing mechanism at the roots of the
physical universe.

Important theoretical and experimental developments in the field of cellular au-
tomata, reversible computation and their applications to the modelling of physical
processes are due, among others, to Toffoli and Margolous [33, 18, 34, 35, 32] (see
[8] for a survey).

Perhaps the strongest impulse to the investigation and divulgation of the compu-
tational universe conjecture is due, in more recent years, to Stephen Wolfram. With
his monumental and controversial volume ’A New Kind of Science’ [38], appeared
in 2002, Wolfram has somehow reversed the approach by Zuse and Fredkin: rather
than deriving a specific model of computation from the consideration of specific
physical systems, he has undertaken a rather systematic, abstract exploration of the
wide space of models of computation - from cellular automata to Turing machines,
from register machines to string and graph rewrite systems, and more - with the
objective to classify their emergent behaviours.

When a model of computation is sufficiently simple, it is possible to exhaustively
explore all its instances: this is the case for Elementary Cellular Automata (ECA).
An ECA is a linear arrangement of potentially infinite binary cells, typically rep-
resented as black (for ’1’) and white (for ’0’) squares, representing discrete, 1-D
space. Time is also discrete, and, for any given ECA, the binary value ci(t + 1) of
cell ci at time t + 1 depends on the binary values at time t of ci itself and of its
immediate neighbors, namely ci−1(t),ci(t),ci+1(t). This dependency is expressed
by a boolean function of three boolean arguments; since there are 256 such func-
tions, we have 256 distinct ECAs, whose behaviours have been thoroughly studied
by Wolfram, starting both from simple and from random initial configurations of the
cells.

3 http://www.digitalphilosophy.org/
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ECAs are the simplest form of CA, considerably simpler than the higher-order
CAs investigated by Zuse and Fredkin, and yet they turn out to be very effective
in illustrating the creative power of ’spontaneous’ computations. Emergent features
observed in CA include self-similarity, pseudo-randomness (deterministic chaos),
and digital particles, as illustrated in Figure 4.

Fig. 4 Three ECAs illustrating self-simjilarity, pseudo-randomness, digital particles.

Interestingly, it is enough to move to a slightly more complex class of CAs -
those that operate on ternary rather than binary cells - for finding a single CA in
which the three mentioned features coexist, even when starting from an elementary
initial condition. The automaton, discovered by Remko Siemerink, 4 is illustrated in
Figure 5.

Fig. 5 A 3-color cellular automaton with elementary initial condition, exhibiting pseudo-
randomness, particle trajectories and selfsimilarity.

The properties illustrated in Figures 4 and 5 appear to reflect some of the most
fundamental, recurring patterns of Nature. Another crucial ingredient for the exis-
tence of what we regard as the most complex layer of our universe - the biosphere
- is of course self-replication. In fact, CAs have been originally conceived by John

4 http://www.wolframscience.com/summerschool/2009/alumni/siemerink.html
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von Neumann, after a suggestion by Stanislaw Ulam, exactly for studying and sim-
ulating this phenomenon. The pervasive presence of these features both in Nature
and in the abstract space of CAs provides further evidence that the universe is fun-
damentally algorithmic.

Beside this ability to replicate key aspects of Nature, two of the principles behind
the operation of CAs appear, apriori, quite attractive to physicists: uniformity – the
same boolean function is used for all cells, and locality – the cell transition func-
tion only involves neighbouring cells. Their relevance for applications to physics
is rather obvious: they reflect the views that physical laws should not change with
space or time, and that effects are transmitted by contact. However, a third principle
behind CAs, namely parallelism - the synchronous operation of the unbounded set
of cells - is much less appealing, since it hints at the idea of a global clock.

This reserve on parallelism, the fact that all Turing-universal models are equiva-
lent, at least from the point of view of their computing power, and the observation
that interesting emergent properties are found, more or less evident, also outside the
realm of CAs, have provided momentum for the investigation of the wider space of
non parallel, Turing-universal models.

4 Beyond CA: ant-based models of a dynamic space

The diagram of an elementary cellular automaton is a two-dimensional array of bits
in which space extends horizontally and time flows vertically. Each row is a snapshot
of space at a given time. Beside its 0/1 state, each cell in the array is characterised by
the unique, absolute values of its space and time coordinates. Indeed, ECAs reflect
exactly a newtonian concept of space and time.

But there are several other ways to conceive an algorithmic, netwtonian, evolving
space. By dropping the requirement of parallel operation, one is led to consider
models in which the data structure manipulated by the computation, for example a
1-D array of binary cells, is modified locally rather than globally, for example one
cell at each step.

4.1 Turing machines

Elementary Turing machines (TM) are the most obvious example of this computa-
tional paradigm, that we shall call ant-based. The ’ant’, in the case of a TM, is the
control head - the finite state, read/write unit that reads the current cell and reacts,
depending also on its own state, by writing a new a bit in the cell and moving one
step left or right, as established by the state transition table.

A TM binary tape is analogous to the row of an ECA array, and can be interpreted
as a snapshot of space. By packing the successive tape configurations of a TM we
obtain a 2-D array conceptually equivalent to an ECA diagram - a discrete space-
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time. However, in the TM case the change from one row to the next is confined to
one location, all the rest of the tape being unaffected, so that in general one can
trace the ant motion across spacetime: a TM-based toy universe evolves much more
slowly than an ECA universe.

4.2 Turmites

Similar to CAs, TMs admit higher-dimensional variants. For example, in two-
dimensional Turing machines, called ’turmites’ [15], the control head moves on
a two dimensional square array. The most famous turmite is Langton ant [37], a
machine that gets trapped in a rather complex periodic behavior (a ’highway’) only
after over a thousand, pseudo-random initial steps, but many more behaviors are
possible in this model, as illustrated in [15].

4.3 Network mobile automata

The cell array of a Turing machine is a rigid support similar to an immutable, infinite
newtonian spatial background expected to exist before starting the computation. As
an alternative, and being inspired by the Big-Bang concept, it is attractive to inves-
tigate algorithmic models in which space is not a predefined infinite rigid structure,
but an emergent product itself of the computation.

Wolfram [38] has widely explored the idea of a graph-based computational Big-
Bang, one in which space is modeled by a graph G(N,E) - a set N of nodes intercon-
nected, two-by-two, by a set E of edges. A Network Mobile Automaton is somewhat
analogous to a Turing Machine, except that the ant does not move on a tape but on a
graph, and modifies the latter locally, step by step. Space starts as a tiny graph, and
evolves into a gigantic network of nodes due to the graph-rewrite rules applied at
each step. These rules change the local topology of the graph and, most importantly,
may introduce new nodes and edges: space evolves and grows with the computation.
Trivalent (or ’cubic’) graphs - ones in which each node has exactly three neighbours
- are sufficient for ’implementing’ spaces of any dimensionality, including 3D space
([38], Ch. 9).

In [4] we have explored variants of Network Mobile Automata for creating planar
trivalent networks by using only two simple rewrite rules, namely the 2D Pachner
rules, sometimes called Expand-Contract and Exchange. These rules have found ap-
plication also in Loop Quantum Gravity [29], where they are used for the dynamics
of spin networks. In spite of the planarity restriction, our experiments have yielded
a wide variety of interesting regular 1-D (’polymer-like’) and 2D networks, as well
as oscillating rings, semi-regular hexagonal grids, up to totally irregular patterns.
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4.4 A multi-threaded universe

A typical objection against the ant-based computational universe conjecture is that
we perceive the world as a concurrent, multi-threaded system, not as the single-
threaded one that the ant-based view seems to imply.

Wolfram [38] has an appealing argument to dismiss this objection. In essence,
viewing a sentient being itself as a bounded region R of the toy universe, and as-
sociating R’s perception to a change of its internal configuration/state, an act of
perception will only occur when the ant visits R. But during the inter-visit inter-
vals the ant has the opportunity to modify many of the other regions, thus creating
R’s subjective illusion of multiple parallel changes. The sequential ant behaviour is
detected by the external observer, not by the internal one.

5 From absolute space to relativistic spacetime: algorithmic
causets

Although with graph oriented models we have gotten rid of the cumbersome, reg-
ular and rigid spatial background of CAs and TMs, we have still been reasoning in
newtonian terms, dealing with a sequence, in absolute time, of snapshots of absolute
space. But Minkowski and Einstein have taught us that space and time, taken sepa-
rately, have no absolute value, since different inertial observers, say Bob and Alice,
register different spatial distances and different time intervals between the same two
events: in particular, Bob may perceive them as simultaneous when Alice does not,
and vice versa. The only absolute distance between events - one on which all inertial
observers agree - is spacetime distance, i.e. Lorentz distance.

To most physicists, no spacetime model should ignore the lesson of Special Rel-
ativity. Thus, let us briefly summarize some basic features of this integrated view at
space and time, and the associated notion of causality.

5.1 Lorentz distance and lightcones

Let us consider Minkowski spacetime M(1,3), which describes the simplest form
of a matter-free, flat universe. M(1,3) can be understood as Euclidean 4-D space
E4, with spatial dimensions w, x, y, z, in which one of the dimensions, say w, is
interpreted as a time dimension t, and where the Euclidean distance is replaced by
the Lorentz distance. While the Euclidean distance between two points p(w,x,y,z)
and p′(w′,x′,y′,z′) is given by d2(p, p′)= (w−w′)2+(x−x′)2+(y−y′)2+(z−z′)2,
their Lorentz distance is expressed by:

L2(p, p′) = +(t− t ′)2− (x− x′)2− (y− y′)2− (z− z′)2.
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Due to its + - - - signature, the squared Lorentz distance can be positive, null,
or negative: correspondingly, the two points are said to be in time-like, light-like, or
space-like relation.

The lightcone of point p is the set of all points q in light-like relation with p,
including p itself. The future (resp. past) lightcone of p is the subset of the lightcone
whose points have time coordinate larger (resp. smaller) than that of p. 5 A physical
process taking place at p can only influence the processes taking place at points on
or inside the future lightcone of p: causality is limited by the speed of light.

The Lorentz distance immediately induces a partial order ’≺’ among spacetime
points: p ≺ q whenever L2(p,q) ≥ 0 and q is on or inside the future lightcone of
p. Given a set of points S with partial order ’≺’, we can define intervals between
points: the order interval I[s, t] between points s and t is the set of points {p ∈ S|s≺
p∧ p≺ t}, which includes s and t.

5.2 Stochastic causal sets from ’sprinkling’

If the fundamental structure of a continuous spacetime manifold is its causal, light-
cone structure, it seems natural to conceive discrete spacetime as a partially ordered
set of events, or a causal set (’causet’) [7].

A causet is a set with a partial order relation. As such, it can be represented as
a directed acyclic graph (DAG) C(N,E), where N is the set of nodes and E is the
set of edges that define the partial order among nodes. We shall assume causets to
be transitively reduced, in which case their edges are called links. (The transitive
reduction of a DAG G is the unique smallest graph that has the same transitive
closure as G.)

The sprinkling technique is a stochastic method that allows one to directly derive
such a DAG from a continuous, Lorentzian spacetime - one in which the Lorentz
metric is defined. Consider 2-D Minkowski space M(1,1), the simplest toy model of
a Lorentzian spacetime, with one time dimension (vertical) and one space dimen-
sion (horizontal). In Figure 6-left we show an interval of M(1,1), between the points
labelled 0 and 9 - source and sink - and a set S of 8 points uniformly sprinkled in it.
We also show all directed edges that connect point-pairs that are in time-like relation
(the probability of finding two points in light-like relation is zero). In Figure 6-right
we show, upside-down, the corresponding causet C(S,E), obtained by taking the
transitive reduction of the ’raw’ graph on the left and disregarding node coordinate
information.

In our opinion, one of the attractive efforts in the field of spacetime computing,
that we begin to illustrate in the next subsection, is to reverse the above logic: under

5 Note that the difference between the time coordinates of two points p and q that are in time-like or
light-like relation depends on the frame of reference, and is affected by the Lorentz transformation
between inertial frames, but only in its absolute value, not in its sign. If the points are in space-like
relation, on the contrary, the sign itself may change, so that different observers may disagree on
the time ordering of the events.



Spacetime computing with algorithmic causets 13

Fig. 6 Left: Sprinkling 8 points in an interval (red dotted lines) between two fixed points, labelled
0 and 9, of 2-D Minkowski space M(1,1). Right: Deriving a transitively reduced causet from the
points, based on their mutual Lorentz distances; causal links here flow downward.

the assumption of a fundamentally discrete and algorithmic universe, the plan is to
directly build a discrete, algorithmic model - say, an n-node causet - from scratch,
without resorting to an underlying continuum, while expecting the familiar proper-
ties manifested by continuum models - e.g. dimension, curvature, Lorentz invariance
- to emerge as n→ ∞. 6

Note that this asymptotic perspective implies that those familiar properties might
emerge only after some coarse-graining of the causet, e.g. by focusing only on a
fraction of the available points. This view would leave room for ’wild’ behaviours
of the causet at its smallest scales; for example, the causet as is might turn out not
to be faithfully embeddable in any manifold: ”physics near the Plank scale need not
be continuum-like” [25].

5.3 Algorithmic EH-causets (’Event-History’)

In light of the variety of interesting emergent properties offered by the models of
computation mentioned in the previous sections, and of the importance that we have
come to attribute to causal sets for correct, post-newtonian spacetime modeling, we
are interested in the possibility to directly derive causal sets from the computations
of those simple models. The ultimate, ambitious goal of this approach would be

6 Most physicists would favour the inclusion of a quantum-mechanical perspective to this effort,
trying to handle collections of causets rather than individual instances, in the spirit of ’sum over
histories’, or ’path integrals’. We do not cover this aspect here, except for a few short comments in
the conclusive section.



14 Tommaso Bolognesi

not only to obtain discrete spacetime models that exhibit the right properties of
dimensionality, curvature, Lorentz invariance, but that also emergent properties such
as fractals, or periodic localised structures analogous to CA ’particles’, an effect that
we certainly cannot expect from a purely stochastic approach! In essence, the plan is
to merge two well distinct research efforts that are referred to as the ’Computational
Universe Conjecture’ and the ’Causal Set Programme’.

Can we recast the computations of, say, Turing Machines or Network Mobile
Automata in terms of causal sets? Bizarre as the question may sound, the answer is
definitely positive.

The idea of conceiving the steps of a computation as a set of causally related,
partially ordered events was first explored in [12], but the purpose there was to
characterise computable functions. It was Wolfram [38] who first proposed to view
these graphs as instances of spacetime.

A general method for deriving a DAG from a sequential computation is easily
defined [5], as long as we can represent the computation C as a sequence of steps
that create, destroy, write and read state variables:

C = ((−,W0),(R1,W1), . . . ,(Rn,Wn), . . .)

Each event (Ri,Wi) in the sequence reads the elements of some set Ri of state vari-
ables, and writes those of some set Wi. We conceive state variables, and associated
read and write operations, in a rather broad sense: a state variable is not only a slot
in some memory support, a cell on a tape, the state of a Turing Machine control
unit; it can also be a node or an edge in a trivalent graph or, generally, any atomic
component of some complex data structure. Then, read, write, creation or elimina-
tion operations are just manipulations of these items. The initial configuration of the
system is created - written - by event 0, which does not read anything.

Once the above sequence C of computation steps is provided, a causet C(N,E) is
readily obtained: nodes N = {1,2, . . .n, . . .} are in one-to-one correspondence with
the events, and an edge i→ j is created in E whenever Wi ∩R j 6= /0: this means
that some variable has been written (or created) by event i and read (or destroyed)
by event j. State variables play the role of causality mediators between events, and
organise events in a partial order which describes the history of the computation.
For this reason we shall sometimes refer to these DAGs as EH-causets, for ’Event
History’. (Note that in this model the actual values assumed by the state variables
play no role.)

Before showing to the reader some examples of application of this general tech-
nique, we introduce a second approach for building algorithmic causets, more di-
rectly related to the stochastic, sprinkling procedure of Subsection 5.2. For doing
this, it is convenient to represent sprinklings by permutations.
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5.4 Correspondence between sprinklings and permutations

There exists a tight correspondence between a k-point sprinkling S in 2-D Minkowski
space and a particular permutation π of the first k positive integers. All the infor-
mation necessary for deriving a causet from S, via the Lorentz distance, can be
compactly recorded in a permutation π .

To see this, we must view S under a different angle, literally. Without loss of
generality, assume that the sprinkling - e.g. the one of Figure 6-left - has taken place
in the interval of Minkowski space M(1,1) between points s(0,0) and t(0,

√
2), so

that the interval, identified by the red dotted lines, is indeed a square with sides of
length 1.

Let us now rotate by −π/4 this ’diamond’ and its content around the origin (0,
0), so that the points fall in the unit box between (0,0) and (1,1). Let now Sx be the
list of the points, after rotation, sorted by ascending x-coordinate, and Sy be the list
of the same points sorted by ascending y-coordinate. Finally, let π = (π1,π2, ...,πk)
be the list of integers where πi indicates the rank in Sy of the i-th point in Sx . Clearly
π is a permutation of the first k positive integers. The patient reader may check that
the permutation derived from the set S of 8 sprinkled points in Figure 6-left is (4,
8, 7, 6, 1, 2, 3, 5): the first element is 4 because the first point in Sx, labeled ’1’ in
Figure 6-left, is the 4th point in Sy; the second element is 8 because the second point
in Sx, labeled ’3’ in Figure 6-left, is the 8th point in Sy; and so on.

Consider now the following procedure for deriving a causet from a generic per-
mutation π .

Permutation-based causet construction procedure

A causet Cπ(Π ,F) is derived from a permutation π of the first k positive integers as
follows:

• Nodes
Π = {(i,πi)|i = 1,2 . . .k}∪{(0,0),(k+1,k+1)}

The k+ 2 nodes are points with integer-valued coordinates. Of course these co-
ordinates are not part of the causet structure: they are only used for defining the
causet links.

• Links
A link (i,h)→ ( j,k) from node (i,h) to node ( j,k) is created in F if and only
if i < j, h < k, and the rectangle identified by the two points (as lower left and
upper right vertices, respectively) is empty, i.e. no other node is found inside it.
�

Nodes labeled (0,0) and (k+1,k+1) are the source and the sink of the causet. Note
that graph Cπ(Π ,F) is acyclic and transitively reduced by construction.

Going back to our original sprinkling S and to the permutation π derived from it,
we can now establish (without proof) the following simple fact.
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Fact 1 The causet C(S,E) obtained directly from sprinkling S and the causet
Cπ(Π ,F) obtained from permutation π (in turn derived from S) are isomorphic.
More precisely, there is a link pi → p j in E if and only if there is a link (i,πi)→
( j,π j) in F.

Additionally, it is easy to see that the process of obtaining causets from k-
point random sprinklings in M(1,1) intervals, via the Lorentz distance, is statistically
equivalent to that of obtaining causets from random permutations of the first k pos-
itive integers, via the permutation-based causet construction procedure above. The
ultimate reason is that the x and y coordinates of the rotated sprinkled points are
uniform and independent random variables.

In conclusion, one can safely and conveniently build sprinkled, 2-D interval
causets by just using random permutations.

Let us now consider algorithmic techniques for generating and manipulating per-
mutations, and therefore causets.

5.5 Algorithmic PA-causets (’Permutation Ant’)

In a Permutation Ant Automaton [6] the ’ant’ moves up and down a finite, one-
dimensional array of cells A(c1,c2, . . . ,cn) by short steps or jumps, while performing
operations such as reading, writing, swapping, creating or deleting cells. No matter
how the array evolves, at any stage it stores a permutation π = (π1,π2, . . . ,πn) of the
first n integers, one integer in each cell. Based on this permutation, at any step we
can derive a PA-causet , for ’Permutation Ant’ by the permutation-based construc-
tion procedure of the previous subsection.

The model can be enriched in various ways (see [6]). For example, the ant may be
stateless, or follow a finite-state behaviour, like in Turing Machines. Furthermore,
array cells may store bits, beside the elements of the permutation. The ant may read
and write the bits in its neighborhood, as in CAs, and may react depending on these
bits and on its current state (if any); it may move by unit steps, or may jump to other
locations of array A, as addressed by the πi of the current cell.

In the sequel we describe an algorithm that combines some of these features in
a way that allows us to derive from the same computation two distinct causets: an
EH-causet and a PA-causet. The advantage is to use a single model for illustrating
the two causet construction mechanisms and for exploring two causet spaces.

5.6 Ring Ant

This model borrows and combines ideas from automata introduced in [6] and in
[5]. The support of the computation is a circular tape with a distinguished first cell
c1. Each cell ci stores a pair (bi,πi), where bi is a bit and πi is a positive integer
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representing an element of the stored permutation π , which must be read starting
from c1.

The ant has 4 possible states {s1,s2,s3,s4}; its behavior depends on the current
detected situation and is manifested by a set of possible reactions.

Situation. This is coded by 5 bits: 3 bits (bi−1,bi,bi+1) are those found in the cell
ci where the ant is currently positioned, and in the two neighboring cells, with
indices treated circularly. The two remaining bits code the state of the ant (i.e.
s1 ↔ (0,0), s2 ↔ (0,1), s3 ↔ (1,0), s4 ↔ (1,1)). Thus, there are 32 possible
situations.

Reaction. This is also expressed by 5 bits (b1 . . .b5) whose interpretation is as
follows.

• b1− insert a new cell (b1,n+1) at the current location, where n is the current
tape length, so that (n+1) is a fresh new element of the permutation.

• (b2,b3) identify 4 cases:
– (0,0): ant moves left one step;
– (0,1): ant moves right one step;
– (1,0): ant moves left by πi steps, where ci is the current cell;
– (1,1): ant moves right by πi steps, where ci is the current cell;

• (b4,b5) identify the new state of the ant.

The last two of the four ant moves are reminiscent of the GOTO command of
various programming languages. Since for each of the 32 situations we can associate
1 out of 32 reactions, we can conceive 3232 distinct instances of the automaton - a
huge space that we can only explore by random samplings or by a genetic algorithm
approach. 7

In our experiments we have started each computation with a two-cell circular
tape storing permutation π = (1,2), with bits set to 0, and with the ant in state s1,
and we have run the automaton for an arbitrary number of steps - typically a few
thousands. Note that at each step the circular tape and the stored permutation grow
by one unit.

The derivation of an EH-causet from a computation of this automaton, along the
lines described in subsection 5.3, needs some clarification. We let the bits stored in
the tape cells play the role of causality mediators among the events that write and
read them; the permutation elements can’t be used for this purpose, because they are
never read. Since each event reads the bits of three cells, we obtain a ’raw’ causet
in which nodes - representing events - have in-degree 3. The out-degree of an event
equals the number of times subsequent events have read the cell created by that
event.

On the other hand, deriving a PA-causet from the final permutation is straightfor-
ward using the procedure described in subsection 5.4. Note that the final permuta-
tion, read from cell c1, always starts with ’1’. This means that the derived PA-causet

7 Some of the computations presented here have been indeed selected by a genetic algorithm, using
appropriate fitness functions. These aspects are not discussed here.
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has always the node with integer coordinates (1,1) as the root; this is also the only
source node of the graph.

We ask again the reader to be patient: before providing examples of causets ob-
tained by the above techniques we need to discuss an important criterion that we
shall use for their assessment.

6 Causal sets and Lorentz invariance

We have mentioned before the requirement for discrete, algorithmic spacetime mod-
els to reflect as much as possible the features of continuous, physical spacetime.
For example, we might attempt to reproduce the standard 4 dimensions of rela-
tivistic spacetime, or even aim at 10, 11 or 26 dimensions, as suggested by more
recent theories such as String, Superstring and M-theory. In fact, one may expect
spacetime dimensionality to depend on the observation scale. For example, two re-
cent quantum gravity theories - Causal Dynamical Triangulations [3] and Quantum
Einstein Gravity [24] - agree in picturing a four-dimensional universe which turns
two-dimensional when observed at ultra low scales. A few techniques are available
for estimating causet dimensionality [20, 23], and some applications to algorithmic
causets have been investigated in [5].

However, the fundamental property of continuous spacetime on which we want
to focus now is Lorentz invariance.

A physical entity, e.g. the distance between two spacetime events, or a physi-
cal law, e.g. the Maxwell equations, is Lorentz invariant if it does not change its
value, or its form, under the Lorentz transformation, which describes the change
of spacetime coordinates in passing from one inertial (non accelerating) frame of
reference to another. According to the principle of relativity, the laws of physics
must be invariant for all inertial frames of reference. It was the consideration of the
Maxwell equations that led Einstein to abandon the galilean principle of relativity
and to adopt the one based on the Lorentz transformation, since only the latter can
account for the constant speed of light that comes with the Maxwell equations.

The issue of Lorentz invariance for causets is delicate, and we shall try to illus-
trate its essence without introducing excessive technicalities.

To begin with, a causet C(N,E) is an abstract graph structure without coordi-
nates, thus, applying a Lorentz transformation to it appears totally meaningless. For
the idea to make sense we must still refer to an embedding of C in a manifold M,
where each node has its own coordinates. The embedding must be consistent with
the partial order expressed by the links E, that is, for any edge p→ q in the transitive
closure of E, p and q must be causally related also in M, via the Lorentz metric, and
vice versa.

Embeddability is one of the hard problems studied in the field of causal sets. A
generic DAG C(N,E) with a sufficient number of nodes is very unlikely to be em-
beddable in a manifold. However, once C is embedded in some manifold M, it can be
embedded in any other manifold M′ obtained by applying a Lorentz transformation
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to M: this is because the transformation drags, with M, the nodes N embedded in
it, and does so while preserving their mutual Lorentz distances, so that consistency
between the partial orders - in the discrete and in the continuum - is preserved.
From the above remarks one might be tempted to conclude that as soon as a causet
is embeddable in a Lorentzian manifold, it is also Lorentz invariant. But there is a
complication.

A key point of Lorentz invariance is that all reference frames must appear equiv-
alent - none must be singled out as preferred. If we decide to look at the pure causal
structure of the graph, without coordinates, then we have no means to discriminate
among Lorentz-interrelated reference frames: they all correspond to one and the
same graph. But if we allow to access the coordinate information coming with the
embeddings, then it turns out that for some graphs all embeddings are equivalent,
while for other graphs they are not. In the latter case, a preferred frame may emerge.

The typical examples used for illustrating these two cases are a sprinkled 2-D
causet and a regular square grid. A remarkable feature of a uniform Poisson dis-
tribution of points in a region of 2-D Minkowski space M(1,1) is that a Lorentz
transformation will change the overall shape of the cloud of points, but will leave
the local picture unchanged: an observer sitting on one of the points will notice no
change in its neighbourhood - in statistical sense. No frame is special.

This is not the case for a regular, directed square grid embedded in M(1,1), one
where each node has two incoming and two outgoing links at +45 or -45 degrees
from the vertical, time axis - links that partition the plane into square tiles. Here
a Lorentz transformation does induce local changes: as the frame speed increases,
points get packed with increasing density along lines that get increasingly separated,
breaking the symmetry of the original grid, and allowing us to single out the latter
as the preferred, rest frame.

The notion of ’causet Lorentz invariance’ or ’causet Lorentzianity’ that uses em-
beddings and coordinates has, in our opinion, strong and weak aspects. It is strong
because the original notion of Lorentz invariance does rest, crucially, upon that of
reference frame - an embedding manifold. It is weak because causets were not con-
ceived to inhabit a continuous background spacetime, but to be themselves the only
existing, discrete spacetime - a concept known as background independence. Their
’Lorentzianity’ should be directly manifested by their features - their nodes and
edges - without need to refer to manifolds and their coordinate systems. Of course,
when following this latter path we should be ready to give up the rich tool set that
comes with continuous manifolds. For example, we immediately get into trouble
when trying to define ’reference frame’ purely in terms of DAGs.

What we show next is an alternative and simplified approach to causet Lorentzian-
ity that avoids embeddings and reference frames, and only looks at DAG properties.
This will be applied to algorithmic causets in the next section.
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6.1 The interplay of longest and shortest paths

A rather counterintuitive feature of Minkowski space and its Lorentz distance L is
the reversed triangular inequality - the fact that, given three points p, q and x, with
q in the future lightcone of p and x in the order interval I[p,q] (see subsection 5.1),
we have:

L(p,q)≥ L(p,x)+L(x,q).

The Lorentz distance measures the time elapsed along a trajectory between two
points, and the above inequality reflects the well known twin paradox of Special
Relativity, by which the travelling twin, going through point x, ages more slowly
than his sedentary brother. In fact, beside the longest path - a straight line from p to
q - there is an infinite number of alternative paths that register shorter, or even much
shorter time delays between those points, up to the limit case of two segments of
light rays forming a π/2 angle at x, corresponding to a null time delay.

In [6] we have proposed a notion of causet Lorentzianity that takes into account,
in a graph-oriented setting, this peculiar, wide range of path lenghts that charac-
terises Lorentzian manifolds. The technique consists in collecting and aggregating
statistical data about path lengths in the causet C under investigation. Given inter-
val causet C[s, t], we compute the lengths l pls(x) and spls(x) of, respectively, the
longest and shortest paths from s to any given element x of the set of causet Nodes.
We then aggregate the data into function msp(l), which provides the mean shortest
path length associated to each possible longest path length l:

msp(l) := Mean|{spls(x)|x ∈ Nodes∧ l pls(x) = l}|

A very slow growth of this function reveals the presence of a wide gap between the
lengths of the longest and shortest path from s to the other nodes. This is indeed what
we observe in the longest/shortest path plot - the plots of the above msp function -
for interval causets obtained from sprinkling in M(1,1). Instances of this plot will be
included in many of the forthcoming figures (see, for example, the lowest function
plots in the bottom row of Figure 7) as a benchmark for analogous plots of other
causets.

Having introduced our loose but practical indicator of ’causet Lorentzianity’, we
are ready to examine some empirical results. In the next two sections we explore
the two classes of causets that we can derive from the computations of the Ring
Ant automata of subsection 5.6, namely the EH-causets (Event-History), in which
computation steps are partially ordered through the mediation of write and read
operations, and PA-causets (Permutation-Ant), in which a partial order is directly
derived from the final permutation computed by the ant.
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7 EH-causets from Ring Ant automata

By randomly sampling the huge space of EH-causets we could establish the follow-
ing facts.

• All the EH-causets that we have examined - in the order of a few thousand - are
planar. Recall that these causets are obtained by transitively reducing raw graphs:
the latter in general turn out not to be planar.

• We find that around 70%-80% of the causets are linear paths - totally ordered se-
quences of nodes - or other slightly more elaborate periodic patterns that still
grow, essentially, one-dimensional. Often the periodic phase is reached after
an initial random-like transient phase. Emergent periodic patterns, called ’high-
ways’, are commonly observed in many other models of computation, e.g. in
two-dimensional Turing machines [15, 37].

• In the remaining cases we find either random-like planar graphs, or regular planar
graphs that we call tiling causets, for reasons to be clarified later, or intermediate
cases in which randomness and regularity coexist.

7.1 Highways

In Figure 7 we show three examples of emergent highways in EH-causets from Ring
Ant computations. Causets are shown in the upper row. In the lower row we present
the corresponding longest/shortest path plots, each compared with the analogous
plot for an interval causet obtained from sprinkling in M(1,1), which grows much
more slowly. Eventually the functions for these causets grow linear: due to the peri-
odic highway, the longest and (mean) shortest path lengths get coupled by a constant
proportionality factor.

Under a spacetime perspective, these cases are not very interesting: establishing
an analogy with the ’digital particles’ that emerge in some cellular automata seems
inappropriate, since in that case the localised structures move on a background struc-
ture, possibly interpreted as empty spacetime, which is missing here.

7.2 Random-like causets

The two rows in Figure 8 show two different, random-like EH-causets from Ring
Ant computations. Each graph is shown in two alternative renderings (left and cen-
ter). In each of the two diagrams on the r.h.s., the upper and lower functions repre-
sent, respectively, the longest/shortest path plots for the corresponding causet and
for a sprinkled 2-D Minkowski causet (not shown in figure). The large gap between
the two plots, in both cases, indicates that, in spite of their random-like character,
these causets perform poorly w.r.t. our Lorentzianity criterion.
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Fig. 7 Upper row: EH-causets from Ring Ant computations with emergent highways. Lower row:
corresponding longest/shortest path plots, compared with the longest/shortest path plot of a 2500-
node, sprinkled, 2-D Minkowski interval causet (lower function plots).

We may wonder whether better, i.e. lower longest/shortest path plots can be ob-
tained by a randomised version of the EH-causet construction technique, one in
which each time a new node n is added to the raw causet, three edges p→ n, q→ n,
r→ n are added to the graph, with p, q, r chosen at random among the existing
nodes. The experiment is illustrated in Figure 9, where the longest/shortest path
plot for a causet obtained by such a randomised procedure is compared, as usual,
to that of a sprinkled causet. The randomisation yields an improvement over the
random-like cases of Figure 8, but not enough to achieve the performance of sprin-
kled causets. 8 We note, incidentally, that these randomised causets are not planar.

7.3 Regular tiling causets

Figure 10 shows two regular EH-causets from Ring Ant computations, and their
longest/shortest path plots. The graph on the left repeats the basic pattern of the
graph on the right, and should not be likened to the periodic patterns - highways - of

8 Due to computational bottlenecks, in Figure 9 and in subsequent analogous figures we tolerate
possible differences between the maximum longest path length (about 100 links) achieved by the
2500-node, 2-D Minkowski sprinkled causet constantly used as a benchmark, and the maximum
longest path lengths obtained for the various causets under scrutiny, as long as the growth trends
for these functions are sufficiently clear.
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Fig. 8 Two random-like EH-causets from Ring Ant computations. At each row the same graph is
shown with two different graph drawing algorithms (left and center). Right: the longest/shortest
path plot for the causet at the left (upper function) is compared with the analogous plot for a 2500-
node, sprinkled 2-D Minkowski causet, not shown (lower function).
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Fig. 9 Left: causet from randomised version of the Ring Ant EH-causet construction technique.
Right: corresponding longest/shortest path plot (upper function), compared with the plot for a
sprinkled causet (lower function).

Figure 7. Its corresponding longest/shortest path plot exhibits a slight improvement
w.r.t. the linear growth of those periodic causets, but is still very far from the per-
formance of random, sprinkled causets. The longest/shortest path plot for the graph
on the right of Figure 10 performs better, with a considerably slower growth of the
mean shortest path length.

These regular, ’tiling causets’ are reminiscent of the tessellations of the hyper-
bolic plane, whose patterns are often represented on the Poincaré disc [9].

We recall that regular tessellations of the sphere, of the Euclidean plane and of the
hyperbolic plane, can be represented by the Schläfli symbol {p,q} which indicates
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Fig. 10 Two regular EH-causets from Ring Ant computations (upper row), and their corresponding
longest/shortest path plots (lower row). As in Figure 8, each plot is compared with the analogous
plot for a sprinkled 2-D Minkowski causet, which appears, in both cases, as the lower function.

that q regular p-gons meet at each vertex. Based on the value of 1/p + 1/q the
following can be established:

• 1/p+1/q > 1/2: the integer solutions are {{3,3},{3,4},{3,5},{4,3},{5,3}},
which are the Schläfli symbols for the five Platonic solids - tetrahedron, octahe-
dron, icosahedron, cube, dodecahedron.

• 1/p+1/q = 1/2: the integer solutions are {{3,6},{4,4},{6,3}}, corresponding
to the familiar tilings of the plane by equilateral triangles, squares, hexagons.

• 1/p+1/q < 1/2: there are infinite integer solutions, and as many regular tessel-
lations of the hyperbolic plane.

Figure 11 shows two tessellations with regular pentagons meeting at vertices in
groups of three (left) and four (right) yielding, respectively, positive and negative
curvature. Curvature can indeed be defined also for planar graphs.

Fig. 11 Pentagonal tessellations {5,3} and {5,4}.
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Definition 1. (Combinatorial curvature)

For a planar graph G(N,E), the combinatorial curvature cc of a node x∈N is defined
as:

cc(x) := 1−degree(x)/2+ ∑
f∼x

(1/size( f )),

where summation is over all faces f incident with x. �
Based on this definition, the dodecahedron {5,3} has constant positive curvature

1/10, while hyperbolic tessellation {5,4} has constant negative curvature -1/5.
We have mentioned regular tessellations and their curvature for comparisons with

the causet in Figure 10-right. This planar graph has less symmetries than those of
the tessellations in Figure 11, and is essentially formed by two concentric spirals of
pentagonal faces; these faces meet at vertices in groups of three or four, with the ex-
ception of a pair of adjacent faces - a heptagon and an exagon - found at each round
of one of the spirals. Following the spiral paths we find that nodes with degree 3 and
degree 4 alternate, with the degree understood now as the sum of the in-degree and
out-degree. Thus, roughly half of the nodes have positive curvature, and half have
negative curvature. Link orientation is not shown in figure: both the radial links and
those on the spiralling paths point outwards. Note that a hypothetical arrangement of
the pentagons into a single spiral would yield a totally ordered, totally uninteresting
causet: the presence of at least two spirals is essential for avoiding this collapse.

An interesting effect of the spiral arrangement is that a spiral path provides the
longest path from the root, at the center of the graph, to any given node x, while an
essentially radial path will provide a substantially shorter, alternative path to x. This
’trick’ implemented by the graph explains the relatively good performance of the
longest/shortest path plot. Note that a similar pair of paths - a long, spiralling route
and a short, mainly radial one - can be found for any pair of nodes.

7.4 Mixed cases

Several cases were found in which elements of order - e.g. the tiling structure -
are mixed with random-like components. One example is the EH-causet shown in
Figure 12.

The mix of regularity and pseudo-randomness is one of our key motivations for
investigating algorithmic causets. However, the performance of this causet in terms
of our rough Lorentzianity indicator is quite poor, as revealed by the plot in the r.h.s.
of the figure.
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Fig. 12 Left: EH-causet from a Ring Ant computation, in which the pattern observed in the causets
of Figure 10 appears mixed with random-like elements. Right: longest/shortest path plot for this
causet (upper function) compared with the analogous plot of a sprinkled causet (lower function).

7.5 Causet from the fractal sequence

When discussing random-like EH-causets, we have introduced a randomised causet
construction procedure in which each new node n is connected to previously created
from-nodes p, q, r, chosen at random.

Now that we have seen examples of regular causets it is useful to explore the
opposite solution and directly select those from-nodes by a completely deterministic
procedure.

The fractal sequence [36] is a sequence of natural numbers defined as:

a(n) = k if n = (2k−1)∗2m,

where m = 0,1 . . . and k = 1,2 . . . Its first 12 values are (1, 1, 2, 1, 3, 2, 4, 1, 5,
3, 6, 2); in Figure 13-left we plot the first 1000 values. The center of the figure
shows the 502-node causet derived by splitting that 1000-element sequence into
500 consecutive pairs and using each pair as the from-nodes of each new node. 9

More precisely: we start with two nodes, labeled 1 and 2; the from-nodes of new
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Fig. 13 Left: Fractal sequence. Center: Causet obtained from the sequence of pairs of elements
of the fractal sequence. Right: longest/shortest path plot of the causet (intermediate solid line),
compared with analogous plots for sprinkled causet (lower) and causet in Figure 10-right (upper).

9 It turns out that segmenting the fractal sequence into triples, quadruples, etc., in place of pairs,
does not yield interesting causets.
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node 3 are (1, 1), since this is the first pair of the fractal sequence, thus parallel
edges 1→ 3 and 1→ 3 are added; then node 4 is added, with edges 2→ 4 and
1→ 4, since (2, 1) is the second pair of the sequence; then edges 3→ 5 and 2→ 5
are added, and so on. The longest/shortest path plot of the causet is shown at the
right: it is the solid line that appears in the middle, between the lower reference plot
for a sprinkled causet and the upper longest/shortest path plot for the example of
Figure 10-right, reproduced here for comparison.

The resulting causet is remarkably similar to the causet in Figure 10-right. The
procedures for their construction are quite different, and the raw causets appear
rather different too. But when transitively reduced, the two graphs reveal the same
basic structure, formed by two concentric spirals of planar faces, although with the
fractal sequence one of the spirals is formed by heptagons, not pentagons. Again the
relatively good longest/shortest path plot is due to the simultaneous presence of long
spiral and short radial paths between nodes. This appears to be a recurrent ’trick’ in
algorithmic causets, for keeping the growth rate of the longest/shortest path plots
under control.

8 PA-causets from Ring Ant automata

As explained in Subsection 5.6, the deterministic Ring Ant automaton whose com-
putations can be represented as partially ordered sets of events - yielding the EH-
causets just discussed - also keeps a permutation π of the first n naturals, with n
growing by one unit at each step. At any time the permutation can be readily turned
into a PA-causet (’Permutation Ant’), as described in Subsection 5.4.

Analogous to the case of EH-causets, about 60% of these PA-causets are unin-
teresting, 1-D linear graphs. The remaining graphs split between regular structures,
such as trees, and random-like structures.

8.1 Regular causets

In Figure 14 we show three very simple cases, meant primarily to further clarify the
process of deriving the PA-causet (bottom row) from the final permutation (upper
row). The elements of the permutation, intended as nodes of the causet, ’see’ in
their future lightcone only the elements/nodes that appear up-right to them in the
permutation plot. Hence, with the permutation in Figure 14-left, that moves upward,
all nodes are causally related with one another, thus yielding a linear path structure.
With the two remaining permutations, that move downward, one or a few nodes near
the origin of the plot ’see’ almost all the remaining nodes in their future lightcone,
while all these nodes are totally or largely causally unrelated, thus yielding a tree
structure.

Two further regular cases are illustrated in Figure 15. The graphs look similar,
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Fig. 14 Upper row: Final permutations computed by three runs of the Ring Ant automaton. Lower
row: PA-causets derived from the permutations.
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Fig. 15 Upper row: final permutations computed by two runs of the Ring Ant automaton. Central
row: PA-causets derived from the permutations. Lower row: longest/shortest path plots. In both
plots we compare the longest/shortest path plot of the corresponding causet - a straight line - with
that for a sprinkled causet.

but differ in link orientation. In the graph on the right all radial edges point outward,
while in the graph on the left the outer radial edges point inward. The reader may
easily deduce the impact of this difference on the two longest/shortest path plots. In
particular, the graph on the right is the first we have found whose longest/shortest
path plot outperforms that of the sprinkled causet. The ’trick’ is trivial, even more
than that of the spiralling graphs: all nodes that are reached from the root - the
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central node - by a longest path longer than 2 can be reached by a shortest path of
length 2, thus the longest/shortest path plot is constant.

8.2 Random-like causets

Let us now consider some random-like cases. Two of these PA-causets are shown
in the central row of Figure 16; the permutation from which each is derived appears
in the upper row, and the corresponding longest/shortest path plots (dotted lines),
compared with the analogous plot for sprinkled causets (solid lines), is shown in the
lower row.
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Fig. 16 Upper row: final, random-like, 2500-element permutations computed by two runs of
the Ring Ant automaton. Central row: PA-causets derived from the permutations. Lower row:
longest/shortest path plots. The dotted line is the longest/shortest path plot for the PA-causet, while
the solid line is that of a sprinkled causet of the same size (2500 nodes).

At a simple visual inspection, these deterministic causets appear indistinguish-
able from the stochastic causets obtained by sprinkling. Most importantly, their
longest/shortest path plots are equivalent to those from sprinkled causets. Thus, we
have eventually found algorithmic causets that satisfy our test for Lorentzianity.
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The significance of this success should be correctly assessed, and perhaps de-
mystified: the result ultimately confirms that permutations are indeed equivalent to
sprinklings, as discussed in Subsection 5.4, and that some instances of our Ring Ant
automaton behave as ’good’ pseudo-random number generators - an ability that, ac-
cording to a conjecture proposed in [38], would indicate computational universality.

On the other hand, the crucial challenge - one that justifies our insistence on
determinism - would be to find cases in which passing our Lorentzianity test com-
bines with the presence of order, or of some mix of order and disorder in the causet,
where ’order’ is simply understood as a regularity that can be easily detected by
visual inspection. Would this be possible?

Note that with PA-causets we can visually inspect two types of diagram - the per-
mutation and the graph - with the idea that possible emergent order might be more
apparent in one than in the other. By exploiting this advantageous circumstance, we
have identified some additional interesting computations that seem to match, at least
to some extent, our objective.

8.3 Mixed cases

In the case illustrated in Figure 17, the final permutation, shown on the left, is some-
what similar to the fractal sequence of Figure 13-left. A peculiarity of the corre-

Fig. 17 A peculiar, regular Ring Ant computation. Left: final permutation. Center: PA-causet de-
rived from the permutation. Right: longest/shortest path plot (the short horizontal segment), com-
pared with the analogous plot for a sprinkled causet.

sponding causet, shown at the center of the figure, is that the shortest path from the
root to any node is never longer than 2. For the 1000-node causet shown, the longest
path has length at most 10. The resulting longest/shortest path plot is shown in Fig-
ure 17-right, where it is compared, as usual, with the analogous plot for a 2500-node
sprinkled causet.

Given the high regularity detected in the permutation diagram - a regularity that
goes unnoticed in the plot of the graph - we have reconstructed a version of the
permutation by an ad-hoc algorithm, and plotted the graph with integer node coor-
dinates as defined in Subsection 5.4, in order to better expose its structure. This is
shown in Figure 18.
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Fig. 18 The distilled structure of the causet in Figure 17.

The reader may easily check that the shortest path from the root - the leftmost
node at the bottom - to any other node is never longer than 2, while the longest
path does grow, but quite slowly, presumably as the logarithm of the number of
nodes. This graph implements another brute-force ’trick’ for keeping the growth of
the longest/shortest path plot under control, alternative to the double spiral of Figure
10-right or the circular pattern of Figure 15-right.

Of course a flat longest/shortest path plot - one in which the mean shortest path
length is constant, and independent from the longest path length - is as bad as one
that grows linearly; our aim is to approximate the longest/shortest path plots of
sprinkled causets.

It turns out that several permutations can be obtained in which aspects of regular-
ity and of pseudo-randomness are mixed to varying degrees, with a beneficial effect
on longest/shortest path plots. This phenomenon is illustrated in Figure 19, where
three permutations of this kind and their corresponding longest/shortest path plots
are presented.

A rather peculiar case of mix between order and randomness, in which the two
components are sharply separated, is illustrated in Figure 20. As in the previous
example of Figure 17, the plot of the final permutation is much more informative
than the (default rendering of the) graph. This permutation appears as a mix of the
descending ’lines’ already seen in Figure 17, and a series of random-like slabs, and
its structure appears to grow indefinitely. In Figure 21 we show the final permutation
after 21,000 steps of the automaton. The appearance of these slabs plays an essential
role in keeping the longest/shortest path plot close to that of sprinkled causets.

Do the ’lines’ that appear in the permutation of Figure 17, or the remarkable mix
of order and disorder in the permutation of Figure 21, correspond to properties of
physical relevance for the associated causet/spacetime?

A first simple remark is that in both cases the ’lines’ are formed by points that are
in space-like relation with one another. However, these sets are not maximal space-
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Fig. 19 Upper: permutations from 20,000-step computations of the Ring Ant automaton. Lower:
longest/shortest path plots for the same computations, but limited to 2500 steps. These are com-
pared, as usual, with the plot for a 2500-node sprinkled causet.
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Fig. 20 A Ring Ant computation producing a mixed, ordered and random-like pattern. Left: final
permutation. Center: PA-causet derived from the permutation. Right: longest/shortest path plot.

like regions, since each line has points that are space-like related also to additional,
external points. Furthermore, it would be wrong to take these lines as separators
between past and future, since links may well cross them, as documented in Figure
18. In conclusion, whether or not these lines might represent some meaningful 2-D
spacetime pattern is still unclear to us.

On the other hand, in search for properties of physical relevance, we may wonder
how these two cases perform under the Lorentz transformation.

In the left column of Figure 22 we show the sets of points of our two permuta-
tions after a 45 degree rotation, thus going back to their interpretation as events in
Minkowski space M(1,1). In the column at the right we show their Lorentz transfor-
mations, relative to a reference system that moves at 1/3 of the speed of light c with
respect to the system at rest.

Let us focus on the upper case. Consider the descending lines that form the orig-
inal permutation π (Figures 17-left and 18), and assign them indices i = 1, 2, ...,
starting from the top. Line i is formed by points whose y coordinates decrease by
unit steps while x-coordinates are evenly spaced by steps of length 2i. As a conse-
quence, the angular coefficient of line i is m(i) = −2−i. After the rotation by π/4,
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Fig. 21 Final permutation after 21,000 steps of the automaton of Figure 20.

Fig. 22 Lorentz transformation of the two permutations of Figures 17 (32,767 nodes) and 21
(21,000 nodes). The points are plotted as seen by a system at rest (left column) and by a sys-
tem moving at 1/3 of the speed of light c (right column). Selfsimilarity is manifested in the upper
case, and approximated in the lower case, as highlighted by the dotted regions.

line i has angular coefficient Tan(θ(i)+π/4), where θ(i) = ArcTan(−2−i). After
some manipulation, using:

Sin(ArcTan(−2−i)) =−2−i/
√

1+4−i,
Cos(ArcTan(−2−i)) = 1/

√
1+4−i,
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we obtain the values mr(i) of the angular coefficients of the rotated lines in the
upper-left diagram of Figure 22 :

mr(i) =
2i−1
2i +1

.

We wish now to apply the 2-D Lorentz transformation LTv, for a frame moving at
constant speed v, to the points (x, t) of the rotated lines:

LTv(x, t) = (γv(x− vt),γv(t− xv)),

where γv is the Lorentz factor 1/
√

1− v2.
We can now compute the slope mrLTv(i) of the Lorentz-transformation LTv of the

rotated line i - another line - based on v and on the slope mr(i) of the latter. Letting
LTv(1,mr(i)) = (xv(i), tv(i)), we have:

mrLTv(i) = tv(i)/xv(i).

In general, a Lorentz transformation of the set of rotated lines, relative to a
generic speed, will yield slopes that do not compare with those of the original line
set. But if, for any integer j, we select speed v( j) = (2 j−1)/(2 j +1), intended as a
fraction of the speed of light c, then:

mrLTv( j)(i) =
tv( j)(i)
xv( j)(i)

=
mr(i)− v( j)

1− v( j)mr(i)
= mr(i− j).

The last equality indicates that the Lorentz transformation, for these specific v( j)
speeds, shifts the original lines so that they overlap with themselves.

For example, the set of lines with angular coefficients (1/3, 3/5, 7/9, 15/17, 31/33)
after a Lorentz transformation LT1/3 (i.e. for j = 1) become lines with coefficients
(0, 1/3, 3/5, 7/9, 15/17). This is exactly reflected in the upper row of Figure 22,
where the upper line on the r.h.s. is flat (mrLTv(1)(1) = 0), while the lines below it
repeat the slopes of the lines at the l.h.s.. After transformation LT3/5 ( j = 2), the new
slopes are (-1/3, 0, 1/3, 3/5, 7/9), and so on.

The fact that this peculiar form of invariance is achieved only for a discrete set of
inertial observer speeds is strongly reminiscent of the so called Lorentzian lattices
[27], which are invariant only under a discrete subgroup of the Lorentz group.

In the case illustrated in the lower row of Figure 22, the overall structure of
the cloud of spacetime points as seen from the system at rest (l.h.s. diagram) is only
qualitatively repeated in a subset of the Lorentz-transformed set (r.h.s. diagram), due
to the fact that the thickness values for the successive random-like slabs do not seem
to follow a regular progression. Recall, however, that the Lorentz transformation
leaves unaffected, in statistical sense, a cloud of points uniformly distributed in a
region of M(1,1), such as these slabs.



Spacetime computing with algorithmic causets 35

We believe that the examples illustrated in this subsection represent promising
preliminary steps in the search for algorithmic causets that mix regular and pseudo-
random features while attempting to match the requirement of Lorentz invariance.

9 Conclusions

Does it make sense to talk about spacetime computing? In this chapter we hope we
have identified a few attractive research items that can be legitimately grouped under
this name, and be seen as dealing with a rather extreme form of natural computing.

As anticipated in the introduction, our presentation has mainly focused on some
specific issues related to the modelling of discrete, algorithmic spacetime by causal
sets, while several other relevant aspects have been left uncovered. A much wider
treatment of the relations between nature and computation can be found, for exam-
ple, in [39].

One of the aspects we have largely ignored here is quantum mechanics.
Although causal sets reflect in their basic structure the quantisation of space-

time, each node of the graph corresponding to a ’quantum’ (an ’atom’) of the latter,
much more would be needed, e.g. in terms of dynamical laws, in order to set up
a fully blown quantum-mechanical, algorithmic, causet-based theory of the natural
universe, one involving Lagrangians, amplitudes, path integrals or sums over histo-
ries and all the conceptual tools that make quantum mechanics and quantum field
theory so powerful (and so difficult). It is fair to say that very little progress has
been done so far by theoretical physicists in this direction: for our purposes here,
any detailed discussion on these aspects would be inappropriate.

It is worth mentioning, however, that the related question of whether and how we
can use computers to fully and exactly simulate Physics, and quantum mechanical
features in particular, was already addressed by Richard Feynman in 1981, in a
famous keynote speech at a conference on the ’Physics of Computation’ [10]. In
that speech, also due to previous interactions with Fredkin, Feynman suggested,
for this simulation, a visionary computer architecture based on cellular automata
enriched with quantum mechanical capabilities, thus promoting the development of
quantum computing.

The influence of these ideas is particularly evident in the work of Seth Lloyd,
where all the different physical phenomena of the quantum world - e.g. all sub-
atomic particle interactions - are interpreted as different quantum information pro-
cessing activities, and the universe is seen as a huge network of programs that col-
lectively determine the evolution ... of the universe itself [17].

If this multiplicity of different quantum computing processes is a correct picture
of our world, then we might hope to be eventually able to ’crack’ the code of some
of these programs and profit from their imitation, in the same way as we do with
bio-inspired computing.

However, the boldest conjecture about spacetime computing hints at the existence
of a single algorithm at the root of everything, with that multiplicity of computing
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processes only emerging from this unique source, and Schmidhuber [28] goes as
far as suggesting that it is cheaper for a Turing machine to compute all possible
computable universes rather than just one (ours), thus outlining an ultra-concise,
computational theory of the multiverse.

Whether this is instead the correct picture - whether there is indeed a sin-
gle, possibly elementary, possibly immutable, perhaps even deterministic and non-
quantistic algorithm at the bottom of the universe or multiverse 10 - is still com-
pletely unknown. What is certain is that its discovery would deeply revolutionise
the landscape of theoretical physics, catapulting spacetime computing to its fore-
front.

In light of the above conjecture, a sensible research track in the spacetime com-
puting agenda is, in our opinion, the exploration of abstract algorithms for building
discrete models of spacetime - models that, in the present chapter, we have identified
with causal sets. By ’abstract’ we mean that we abstain from coding into these al-
gorithms any knowledge from theoretical physics - e.g. constants such as the speed
of light - since everything should emerge from the algorithm itself, a posteriori.

One may object that the space of algorithms is potentially infinite, and that
searching it blindly is unreasonable. We believe that these difficulties can be in part
mitigated. First, the notion of computational universality (or Turing-completeness)
acts as a sort of unifying factor for all models above a certain threshold of sophistica-
tion. Second, the space of qualitative behaviours that characterise the computations
of potentially all conceivable algorithms is much smaller than the space of those
algorithms, as widely shown by Wolfram [38].

Furthermore, the search for ’promising’ algorithms is not totally blind, but should
be guided by the early appearance of interesting emergent patterns - patterns that we
should be able to recognise as useful for setting up, in the long, or very long run,
the features of our familiar physical world. Among the valuable clues we include
periodicity, self-similarity, pseudo-randomness, and ’digital particles’.

All of these features have been already found in the artificial, computational uni-
verse, but mainly in models such as cellular automata and 2-D Turing Machines
that, due to other intrinsic limitations, lack physical realism. In this chapter we
have therefore devoted much attention to the alternative model of (algorithmic)
causal sets, and have extended the list of desirable emergent features to one of
great physical significance: Lorentz invariance. We have discussed an indicator - the
longest/shortest path plot - meant to reveal the closeness of an algorithmic causet
to the ideal (2-D) Lorentzian causet, and have shown the extent to which regular,
random-like, or mixed causets perform against this benchmark. Finally, we have
identified causets that satisfy a form of discretised Lorentz invariance while offer-
ing a remarkable mix of regularity and pseudo-randomness.

Causal sets represent a more promising and physically realistic model than cel-
lular automata or Turing machines. Of course, several of the regular, often planar
causets that we have introduced appear naively simple, and remote from the com-
plexity of the 4-dimensional causets that we might expect to represent spacetime,

10 The possible existence of non-quantum mechanical laws at the roots of reality, below the layer
of quantum mechanics, has been recently envisaged by G. ’t Hooft [31].
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at least at sufficiently high scales of observation. Still, they have been helpful for
elucidating the variety of emergent properties that the model can offer.

Cracking the code that animates the elusive, discrete texture of the physical uni-
verse is the most ambitious goal of spacetime computing. As pointed out in [19],
this goal would greatly benefit from the cooperation of various research areas, most
notably quantum gravity and cosmology, complex networks and the theory of com-
puting. Algorithmic causal sets seem to represent an ideal choice also in this re-
spect: causets have acquired enduring attention and esteem from various schools
of thought in quantum gravity, and, given their high abstraction level, they also of-
fer a relatively easy access point for investigations and simulations by the curious
computer scientist!
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