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Rate Distortion Function for Alpha-Stable Sources

Ercan E. Kuruoglu and Jia Wang

Abstract

In this paper, we develop a numerical approximation based on the Blahut-Arimoto algorithm to the rate

distortion function of sources with alpha-stable distribution both for the symmetric and the skewed cases and

provide bounds for its lossy coding performance.

Index Terms

Rate distortion function, alpha-stable distribution, Blahut-Arimoto algorithm.

I. INTRODUCTION

Heavy-tailed or impulsive phenomena abound in many real life signal processing applications. Many

man made signals such as web teletraffic or web transmission times [1], email based communications,

and timing of individual human actions [2], SAR images of urban areas [3], or natural signals such as

astronomical images [4] demonstrate impulsive characteristics.

In particular, it has been observed by various researchers that the wavelet coefficients of audio [6],

and various types of images show heavy tailed characteristics and suggested Laplace distribution [5],

generalized Gaussian distributions [7], Cauchy distribution [8] and α-stable distributions [10], [11].
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These observations seem to be contadicting the central limit theorem which indicates the Gaussian

distribution for processes formed as the summation of a large number of variables. However, there exists

a generalised version of the central limit theorem which states that the sum of a large number of random

variables with power-law tail distributions decreasing as 1/|x|α+1 where 0 < α < 2 (and therefore having

infinite variance) will tend to a stable distribution Sα(x) as the number of variables approaches infinity

[9].

This theoretical justification has provided the alpha-stable distributions with wide acceptance as im-

pulsive data models which is also supported experimentally by works such as, [10] where Achim et al.

show its superiority to Laplace distribution in modelling the wavelet coefficients of biomedical ultrasound

images and in [11] for SAR images. Despite the potential of α-stable distributions in modelling various

types of impulsive and skewed data, unfortunately, to the best of our knowledge, there is no work on the

source coding properties of α-stable distribution and its rate-distortion function other than in [8] where

Tsakalides and Nikias indicated a number of open problems for the study of source coding systems for

heavy-tailed distributions.

Recently, with the increasing popularity of compressed sensing and the need for efficient modelling of

sparse data, α-stable distributions have been used in the framework of compressed sensing in works such

as [12], [13], [14].

It is, therefore, of fundamental importance to develop the rate distortion function of this distribution

family which would provide us with bounds in lossy and lossless source coding and insight into the

limit of success of compressed sensing schemes with alpha-stable data models. In particular, the rate

distortion function can help us with the design of more realistic source coders and compressed sensing

schemes. In this paper, we develop a numerical approximation to the rate distortion function for alpha-

stable distributions.
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II. ALPHA-STABLE DISTRIBUTION

The alpha-stable distributions have received great interest in the last decade due to their success in

modeling data which are too impulsive to be accommodated by the Gaussian distribution. The alpha-

stable distribution family was known since early 20th century and it became a popular model for various

type of signals.

The alpha-stable distribution is a generalization of the Gaussian distribution that accommodates for

impulsive and skewed characteristics as well. The distributions are defined by their characteristic functions:

ϕ(t) = exp[iδt− |γt|α Bt,α] (1)

Bt,α =


1− iβsgn(t) tan(πα

2
) if α ̸= 1

1 + iβsgn(t) 2
π
log |t| if α = 1

(2)

where α ∈ (0, 2], β ∈ [−1, 1], γ ∈ (0,∞), δ ∈ (−∞,∞) ∈ −∞ < δ < +∞. α(0 < α ≤ 2) is the

characteristic exponent and sets the degree of impulsiveness of the distribution (Fig. 2). The smaller

the value of α, the greater the frequency and the size of extreme events. For α = 2, the distribution

corresponds to the Gaussian distribution; α = 1 and β = 0 corresponds to the Cauchy distribution. β is

the symmetry parameter and determines the skewness of the distribution (Fig. 3). β = 0 implies that the

distribution is symmetric. γ is the scale parameter, which measures of the spread of the samples from a

distribution around the mean (Fig. 4) similar to the role of variance for the Gaussian distribution. δ is the

location parameter and basically corresponds to a shift in the x-axis of the probability density function.

III. RATE DISTORTION FUNCTION FOR ALPHA-STABLE DISTRIBUTION

The fundamental results of rate-distortion theory are due to Shannon’s coding theorems [15] which

provide an achievable bound on the performance of source coding methods. This bound is often expressed

as the rate-distortion function R(D) for a given source and separates the regions that can or cannot be

attained by any coding system. The rate distortion function is formally defined as:

min
QY |X (y|x )

IQ(Y ;X) subject to DQ ≤ D∗ (3)
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where DQ and D∗ are the distortions between X and Y for a given QY |X (y |x) and the prescribed maxi-

mum distortion, respectively. When the mean squared error is used as distortion measure, for continuous

amplitude signals, we have:

DQ =

∫ ∞

−∞

∫ ∞

−∞
PX(x)QY |X (y |x)(x− y)2dxdy (4)

An analytical solution to this minimization problem is often difficult to obtain.

For calculating the rate-distortion function of discrete-alphabet sources, there exists an elegant numerical

algorithm developed by Blahut, known as the Blahut-Arimoto (BA) algorithm [16]. For a continuous-

alphabet source, the source can be approximated by a discrete source-alphabet using a high-rate scalar

quantizer and the Blahut-Arimoto algorithm may be used on this discretised source to approximate the

R(D) curve.

It is known that the BA algorithm converges to the rate distortion function for discrete sources [16],

[18]. For a continuous source, since we first discretize/quantize it to a discrete source before applying the

BA algorithm, one may wonder whether this two-step procedure converges to the rate distortion function

of the original continuous source. This is indeed true and we briefly sketch the proof as follows:

Assume X̃ to be the discretized version of the continuous source X and X̂ is the optimal description

achieving RX̃(D) which is the rate-distortion function of the discrete source X̃ . Then suppose Ed(X, X̂) =

D + ϵ, where ϵ is a positive real number. Due to the fact that X − X̃ − X̂ form a Markov chain and X̃

is a function of X , I(X; X̂) = I(X̃; X̂). Thus

I(X̃; X̂) ≥ R(D + ϵ), (5)

where R(D) is the rate-distortion function of X . Moreover, for given positive real number ϵ′, one can

make the quantization step size sufficiently small such that for any X̂ ′ with Ed(X, X̂ ′) ≤ D− ϵ′, we have

Ed(X̃, X̂ ′) ≤ D. Thus

I(X̃; X̂) ≤ R(D − ϵ′). (6)
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TABLE I

APPROXIMATION ERROR FOR VARIOUS NUMBER OF SAMPLES. (RT : THEORETICAL R(D) FUNCTION OF GAUSSIAN DISTRIBUTION, RE :

EXPERIMENTAL R(D) FUNCTION USING THE BA ALGORITHM.

# of samples S =
∑

(|RT −RE | ×∆D)

8 0.2928

16 0.0621

32 0.0148

64 0.0027

128 0.0015

Then it can be seen that by letting ϵ, ϵ′ → 0, RX̃(D) converges to R(D) due to the continuity of the rate

distortion function.

IV. EXPERIMENTAL RESULTS

A. Effect of the number of samples on the approximation of R(D)

For α = 2, the α-stable distribution corresponds to the Gaussian distribution with mean δ and the

variance is 2γ2. The rate distortion function for a N(0, σ2) source with squared error distortion measure

(in the rest of this paper we use this distortion measure) can be analytically calculated to be [17]:

R(D) =


1
2
log σ2

D
0 ≤ D ≤ σ2

0 D > σ2

(7)

When the number of samples increases, the experimental results become better approximations to the

theoretical results (Fig. 1a). As can be seen clearly in Fig. 1.b and Table I, 128 samples are enough for

a very close approximation.

For smaller α, for example α = 1, as the number of samples increases, we also can see that the gap

between the two experimental curves become smaller (Fig. 1.c). In this case, even 64 samples are enough.

B. R(D) curves for various α values

α determines the weight in the tails. At a particular distortion, the minimum rate description required

increases as α decreases (Fig. 2). That is, for more impulsive data, we need higher description length to
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have the same distortion. Therefore, source coding schemes based on the Gaussian assumption can lead

to significantly more distortion if the source is α-stable with small α.

C. R(D) curves for various β values

As α decreases, the effect of β on the pdf (and R(D)) becomes more pronounced: the left tail gets

lighter and lighter for β > 0. In Fig. 3b, we can see that, at a particular distortion value, the minimum

rate description required decreases as the parameter β increases, that is, the more skewed the distribution

is, higher compression rate can be achieved; however, the effect of the symmetry parameter β is less

pronounced in the R(D) function when compared to α.

D. R(D) curves for various γ values

At a particular distortion, the minimum rate description required increases as the dispersion, γ, increases

(Fig. 4), that is, the more dispersed the data is, the higher rate of compression can be achieved for the

same distortion. As in α, the effect of γ is very pronounced on the R(D) curve.

E. R(D) curves for various δ values

When δ varies, the curves of rate-distortion function are the same (Fig. 5). This can be explained by

the fact that the entropy and hence mutual information) are independent of the location parameters and

from Equation 3 also is R(D).

V. CONCLUSIONS

For α-stable sources, we have demonstrated experimentally that the BA algorithm can be used to

approximate the R(D) curve of the alpha-stable distribution. The dependence of the R(D) curve on the

parameter values is demonstrated. The R(D) function is very sensitive to the value of the shape parameter

α and the scale parameter γ, while it is not affected by the location parameter and is affected only slightly

by the symmetry parameter, β. It has been observed that for impulsive sources, i.e. for small α, for a
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given distortion, required rate description is larger. With the curves presented in this paper, we provide

bounds for the achievable rates for impulsive sources modeled with alpha stable distributions which we

believe can be useful in the design of realistic source coding systems.
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Fig. 1. (a) R(D)s calculated using BA algorithm for the Gaussian distribution (α = 2, β = 0, γ = 1, δ = 0), with varying number of

samples. (b) Zooming in to show the detail of (a). (c) R(D) functions calculated using BA algorithm for the Cauchy distribution (α =

1.0, β = 0, γ = 1, δ = 0), with varying sample numbers.
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Fig. 2. (a) Probability density function for the α-stable distribution (β = 0, γ = 1, δ = 0), with varying α. (b) R(D) functions calculated

using BA algorithm for these α-stable distributions
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Fig. 3. (a) Probability density function of the α-stable distribution (α = 0.8, γ = 1, δ = 0), with varying β. (b) R(D) functions calculated

using BA algorithm
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Fig. 4. (a) Probability density function of the α-stable distribution (α = 1.5, β = 0, δ = 0), with varying γ (b) R(D) functions calculated

using BA algorithm
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Fig. 5. R(D)functions calculated using BA algorithm for the α-stable distribution (α = 1.5, β = 0, γ = 1), with varying δ.
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